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ABSTRACT. – The problem of detecting the presence of a quantitative gene using a great
number of markers in a backcross genetic scheme is addressed.

An asymptotic test based on the maximum of a differentiable stochastic process is constructed.
Bounds for threshold and power calculation are presented. Simulations and numerical experi-
ments illustrate the convergence towards the asymptotic distribution and the sharpness of the
bounds.
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RÉSUMÉ. – Nous étudions le problème de la détection d’un gène quantitatif sur un
chromosome à partir d’un grand échantillon d’un population rétrocroisée et en utilisant un grand
nombre de marqueurs. Le test asymptotique proposé est basé sur la distribution du maximum de
processus stochastiques à trajectoires dérivables ; nous donnons des bornes pour le niveau et la
puissance du test. Les simulation illustrent la convergence vers le régime asymptotique ainsi que
la précision des bornes.
 2002 Éditions scientifiques et médicales Elsevier SAS
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1. Model

In a genetic problem, studying a backcross population:A × (A × B), Azaïs and
Cierco-Ayrolles [1] adress the problem of detecting a gene influencing some quantitative
trait on a given chromosome. They consider the following process, depending on the
positiond on the chromosome

Sn(d) := 2

n

n∑
k=1

(Yk − Yn)I[Xk(d)=1] − 2

n

n∑
k=1

(Yk − Y n)I[Xk(d)=−1], (1)

where
– Yk is the observed quantitative variable on the individualk, k = 1, n.
– Xk(d) is the genotypic composition of the individualk at location d on the

chromosome,d ∈ [0,L]. In a backcross crossing scheme it can only take two values
(AB or AA) that are denoted+1 or−1. This information is given by a genetic marker.

– d is the genetic distance from the origin of the chromosome, it is defined as a
function of the probability of existence of crossing-overs. It is measured in Morgan (M);

– Yn is the general mean of the data.
– I[E] is the indicator function of the eventE.
We use a model in which the true position of the gene is at locationd0 and its influence

on the quantitative response of individuals is modelled by

Yk =µ+Xk(d0)a/2+ εk,
with the usual analysis of variance assumptions. We setσ 2 := Var(εk). We assume that
the genetic composition of each individual is observed only at locationsd1, . . . , dM
where some genetic markers exist. So that the full observation is

{(
Yk,Xk(d1), . . . ,Xk(dM)

)
, k = 1, . . . , n

}
.

When the putative locationd and the true locationd0 agree, excepted minor
modifications, the quantity estimated by formula (1) is equal to the analysis of variance
estimator or the Gaussian maximum likelihood estimator of the gene effecta. Moreover
Sn(d) can be actually computed only ifd is a genetic marker positiondi . Between such
two positions, a linear interpolation is performed.

We use now a local asymptotic framework in which (a) the numbern of observed
individuals tends to infinity, (b) the number of genetic markersMn tends to infinity with
n, their locations being denoted bydi,n; i = 1,Mn (c) the sizea of the gene effect is
small;a = δn−1/2.

Under this framework, and assuming a genetical model with crossing-over following
a standard Poisson point process model, Cierco [4] studied the normalized process

Xn(d) := Sn(d)( V̂ar
(
Sn(d)

))−1/2
,

whereV̂ar is obtained from the estimatorσ̂ 2 function of the residual sum of squares. She
proved that this process converges in distribution to an Ornstein–Uhlenbeck process with
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a drift: (X(d))d∈[0,L] which is a Gaussian process with:E(X(d))= δ
2σ exp(−2|d0 − d|)

and Cov(X(d),X(d + t))= exp(−2|t|).

2. Smoothing the detection test process

The problem is to test the null hypothesisδ = 0 againstδ 
= 0. The classical
approach would be to use the test statisticTn = supd∈[0,L] |Xn(d)| which corresponds
to a likelihood ratio test in the case of Gaussian observations. This is inconvenient for
two reasons.

(i) The limit process has irregular sample paths, the distribution of its supremum is
known only in some cases. In the other cases, existing bounds are not very sharp.

(ii) It does not take into account that the presence of a gene atd0 modifies the
expectation of the limit process in a neighbourhood ofd0.

For these two reasons, we have decided to smooth the detection test process
(Xn(d))d∈[0,L]. For calculations simplicity, we use a centred Gaussian kernel of varying
varianceε2 denotedϕε. Let (Xεn(d))d∈[0,L] be the smoothed process(Xn ∗ ϕε)(d).

We considered the following test statisticT εn = supd∈[0,L] |Xεn(d)|. Property of weak
convergence of processes (Billingsley, 1968) implies that the limit of(Xεn(d))d∈[0,L] is
the smoothed version of the limit process, the characteristics of which can be easily
computed. Note that since we work on asymptotic distribution, our results are free from
the markers locations.

2.1. Bound for threshold and power calculation

Bounds are described for a generic process that will be denoted(Y (d))d∈[0,L]. In
practice, this process is the limit process(Xε(d))d∈[0,L]. So we consider a Gaussian
process(Y (d))d∈[0,L] with C1 sample paths and we assume that for everyt1, t2; s1, s2 ∈
[0,L], t1 
= t2, s1 
= s2, the distribution ofY (t1), Y (t2);Y ′(s1), Y ′(s2) is nondegenerate,
(Y ′ is the derivative). In our particular case, this condition is met because the spectrum
of (Y (d)− E(Y (d)))d∈[0,L] has a continuous component [5].

For threshold or power calculations, we are interested in the distribution function of
the random variable|Y |� = supd∈[0,L] |Y (d)|. We use the following event equality which
is a particular case of the general method described by Azaïs and Wschebor [2]:

∀u� 0, P
{|Y |� > u} = P

({|Y (0)|> u} ∪ {|Y (0)| � u ; (Uu +D−u)� 1
})
, (2)

where “;” denotes the intersection,Uu and D−u are respectively the number of
upcrossings ofu and of downcrossings of−u by the processY on the interval[0,L],
defined as

Uu := #
{
d ∈ [0,L];Y (d)= u;Y ′(d) > 0

};
D−u := #

{
d ∈ [0,L];Y (d)= −u;Y ′(d) < 0

}
.

Our method is based on the double inequality below. Ifξ is a random variable with
non-negative integer values, then:

E(ξ)− 1

2

[
E

(
ξ(ξ − 1)

)]
� P(ξ � 1)� E(ξ). (3)



1090 J.-M. AZAÏS, C. CIERCO-AYROLLES / Ann. I. H. Poincaré – PR 38 (2002) 1087–1092

Applying (3) with ξ = (Uu +D−u)I|Y (0)|�u, we have the fundamental inequality:

P
{|Y (0)|> u} + E

(
(Uu +D−u)I|Y (0)|�u

) − E[(Uu +D−u)(Uu +D−u − 1)]
2

� P
{|Y |∗ > u} � P

{|Y (0)|> u} + E
(
(Uu +D−u)I|Y (0)|�u

)
. (4)

Expectations involved in the above inequality can be evaluated by Rice’s formulae [5]
and expressions more adapted to numerical computation may be found in [3].

Remarks. –
– Relation (4) is a refinement of Davies’ method [6]. Davies worked with the random

variableY � = supd∈[0,L]Y (d) and, instead of(4), he used the relation:

P(Y � > u)� P
(
Y (0) > u

) + P(Uu � 1)� P
(
Y (0) > u

) + E(Uu).

Besides the fact that we work with|Y |� instead ofY �, the upper bound is
very similar to Davies’ one, except for the small improvement due to the event
{|Y (0)| � u}.

– By simulation, it has been verified that for centred process and rather large values of
u, the lower bound is more accurate than the upper one. This is because of the use of
the second order factorial moment. So, in the following, for threshold calculations,
we will use the lower bound.

– This inequality cannot be applied directly to the original limit process for it has
nondifferentiable sample paths.

3. Simulation study

This section presents the results of a Monte Carlo experiment to evaluate the quality
of the proposed method under a variety of conditions. Our aim was to study (a) the
relationship between the value of the smoothing parameter and the validity of the
asymptotic approximation for reasonable numbers of markers and individuals, (b) the
sharpness of the bounds given by the “fundamental inequality” for various values of the
smoothing parameter.

Table 1 displays empirical levels for smoothed and unsmoothed procedures with
thresholds calculated under the asymptotic distribution.

– For the unsmoothed process (ε = 0), the threshold is calculated using Table II of
[7]. For this reason, the chromosome length, 0.98 M (Morgan) has been chosen to
correspond to an entry of DeLong’s table, and to be close to lengths encountered
for several vegetal species.

– For the smoothed process, we used the lower bound in the “fundamental inequali-
ty”.

Simulations have been performed for two values of the smoothing parameter and three
markers densities: a marker every eachicM with i = 1,2,7. The number of individuals
has been chosen equal to 500. The crossing-overs were simulated according to a standard
Poisson process. We performed 10000 simulations, so that the 5% confidence interval
for the empirical levels associated to the theoretical ones are indicated.
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Table 1
Threshold and empirical level (in %) of test using the unsmoothed detection test process (ε = 0)
(Xn(d))d∈[0,L] and the smoothed detection process(Xεn(d))d∈[0,L]. The chromosome length is
equal to 0.98 M, and the number of individuals is equal to 500. The second line of the table
gives a confidence interval for the empirical proportion related to the nominal level over 104

simulations

Nominal level of the test

10% 5% 1%

5% confidence interval

for the emp. level 9.41–10.59 4.57–5.43 0.80–1.19

Thresholdε = 0 2.74 3.01 3.55

Thresholdε2 = 10−2 2.019 2.276 2.785

Thresholdε2 = 10−3 2.321 2.593 3.128

Marker density 1 cM 2 cM 7 cM 1 cM 2 cM 7 cM 1 cM 2 cM 7 cM

Emp. level forε = 0 7.37 6.67 4.99 3.91 3.42 2.4 0.77 0.67 0.43

Emp. level forε2 = 10−2 12.17 12.17 11.82 6.75 6.69 6.53 1.76 1.72 1.77

Emp. level forε2 = 10−3 10.84 10.66 9.71 5.63 5.55 5.02 1.34 1.32 1.04

Table 2
Power in % associated to the detection test in the case of a gene of sizeδ = 6, located at a
distanced0 = 0.4 from the origin of a chromosome of length 1 M. The value ofσ is equal to 1.
The empirical powers are calculated over 104 simulations and the corresponding 95% confi-
dence intervals are given

ε2 = 10−2 ε2 = 10−3 Unsmoothed process

5% threshold 2.281 2.599 3.02

Lower bound 69.84 69.05 –

Upper bound 71.27 82.11 –

Empirical power 71.37± 0.88 72.53± 0.87 68.99± 0.91

Table 2 presents the power associated to the detection test in the case of a gene of size
δ = 6 located at the positiond0 = 0.4. The length of the chromosome is 1 M, calculations
are made under the asymptotic distribution, using a test with nominal level equal to 5%.

– For the unsmoothed detection test process, the threshold is calculated via DeLong’s
table and the power by the only possible method which is a Monte Carlo method.
104 simulations have been used.

– For the smoothed process, the threshold is calculated as above using the lower
bound and the power is calculated by three manners: using the upper bound in the
“fundamental inequality”, using the lower bound in the “fundamental inequality”,
by a Monte Carlo method.
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4. Discussion

Table 1 clearly indicates that the unsmoothed procedure is very conservative. We have
checked by simulation that this is not due to a typo in DeLong’s table.

The empirical level given by the smoothed procedure is close to the nominal value.
For ε2 = 10−3, it is nearly inside the confidence interval.

Table 2 shows clearly that smoothing at sizeε2 = 10−2,10−3 does not diminish power
on the asymptotic distribution.

It is also clear in Table 2 that at the sizeε2 = 10−2,10−3, the lower bound is almost
exact.

In conclusion, the procedure we advocate is the use of the asymptotic test after
smoothing withε2 = 10−3 and with thresholds and powers calculated using the lower
bound in the “fundamental inequality”. The corresponding thresholds are given by Azaïs
and Cierco-Ayrolles [1].

The validity of this procedure has been justified, in conditions near to practice, by
the following statements that have been illustrated by the Monte Carlo experiment:
(a) smoothing improves the convergence to the asymptotic. In condition near to practice
the asymptotic behaviour is met, (b) smoothing does not diminish power on the
asymptotic distribution, (c) the lower bound is almost exact for threshold and power
calculation.
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