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ABSTRACT. — For the white noise, the spectral density is constant, and the past (restriction to
(—o00, 0)) is independent from the future (restriction(® +00)). If the spectral density is not too
far from being constant, then dependence between the past and the future can be eliminated
an equivalent measure change. A necessary and sufficient condition for a spectral density to ha
such a property (in other words, to describe an off-white noise) is derived here from well-known
results.
0 2002 Editions scientifiques et médicales Elsevier SAS

RESUME. — Pour le bruit blanc, la densité spectrale est constante et le passé (restriction
(—00, 0)) est indépendant du futur (restrictiof@ +o0)). Si la densité spectrale n’est pas trop
éloignée d’'une constante, la dépendance entre passé et futur peut étre éliminée en remplac
la mesure par une mesure équivalente. Un tel processus gaussien stationnaire sera appelé «
white noise ». Nous donnons une condition nécessaire et suffisante sur la densité spectrale pc
gue cette propriété soit vérifiée.

0 2002 Editions scientifiques et médicales Elsevier SAS

0. Introduction

‘Past and future’ is a well-known topic in the theory of stationary Gaussian random
processes. The restriction of a procésg) to ¢ € (—oo, 0) is the past; the future is its
restriction to(0, +o00) or, more generallys, +o00). Typically one shows that the past and
the future are nearly independent if the separati@mlarge enough, under appropriate
conditions on the spectral density of the process. In contrast, the present work deals wi
the cases = 0 (no separation). For a continuous process, of colf$6) belongs both
to the past and to the future, making them heavily dependent. However, for the white
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noise they are independent anyway. An off-white ndisetroduced in [6] (motivated
by the theory of continuous tensor products of Hilbert spaces) generalizes the white
noise. It is defined as a stationary Gaussian generalized random process such that t
joint distribution of the past and the future is equivalent (that is, mutually absolutely
continuous) to the product of their marginal distributions. The present work derives
from well-known results about ‘past and future’ a necessary and sufficient condition
for a spectral density to describe an off-white noise. | feel that it is basically a folklore
worth to be written.

In the Hilbert spaced of all linear measurable functionals over a Gaussian random
process, the pag? and the futureF are linear subspaces. For the white noide=
‘P& F, the subspaces being orthogonal. For an off-white noise the corresponding relatio
is

H=P&F inthe FHS sense,

as defined in [6]; it means that the orthogonal projection ftento P is a Hilbert—
Schmidt operator, anfl = P & F in the topological sense. The latter means fhat 7

is dense inH and P, F are at positive angle (that is, the projection is of norm less
than 1).

1. Analytic functionsinside and outside thecircle

DEFINITION 1.1.— (a)A past-and-future structur@r ‘PaF structure) consists of
e aseparable Hilbert spacé#;
e atwo-sided sequend®®, ),z Of (closed lineay subspace®, C H, increasing(in
the sense thaP, c P, for all n) and such that the union of &R, is dense inH;
e atwo-sided sequend¢r, ),z Of subspaces, C H, decreasing and such that the
union of all 7, is dense inH;
e aunitary operatorT : H — H such thatT’P, =P, andT F, = F,., for all n.
(b) Two PaF structuresH, (P,), (F,), T) and (H', (P)), (F,), T') are isomorphic,
if there exists an invertible linear isomety : H — H' such thatUP, = P, and
UF,=F, forall n,andUT =T'U.
(c) A PaF geometrys a PaF structure treated up to isomorphism.
(d) For any PaF geometry; = (H, (P,), (F,), T) and anyk € Z defineG + k (the
shifted PaF geometiyas (H, (P,.x), (Fn), T) (or equivalently(H, (P,), (Fu_i), T)).
Also define théime-reversed PaF geometng G = (H, (F_,), (P_,), T™Y).

Let 1 be a (positivey -finite Borel measure on the unit circie € C: |z| = 1}. The
set of all polynomialsP such thatf | P|?du < oo is an ideal in the commutative ring of
polynomials. If the ideal contains not only 0, then it is generated by a single polynomial
P, (not identically 0), since every ideal in that ring is principal. It is easy to see that (up
to a coefficient that may be ignored), (z) = (z — z1) - - - (z — z,») fOr somezy, ..., z,
on the circle. Ifu is finite thenm = 0 and P, (z) = 1.

2The term is suggested by William Arveson; | called it a ‘slightly coloured noise’.
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DEFINITION 1.2.— (a)A nonatomico -finite Borel measure. on the circle will be
called moderate,if the ideal of polynomialsP satisfying [ |P|?du < oo is different
from {0}.

(b) Polesof a moderate measuye are roots of the polynomiaP, that generates the
ideal. Multiplicity of a pole ofu is its multiplicity as a root ofP,,.

The set of all moderate measures is a linear space, closed under multiplication b
functions of the formf/| P|> where f is a bounded nonnegative Borel function on the
circle andP is a polynomial (not identically 0).

Conjugationz — z maps the circle onto itself, and sends each meagsuarethe circle
to another measure, denotgiit Clearly, u is moderate if and only ifi is moderate, and
if they are, thenP,(z) = P;(z) for all z. Also, each functionf € L,(u) corresponds
to another functionf € L(jt) such thatf(z) = f(z). However, if f is a polynomial
P restricted to the circle theif is rather the rational function+ P (1/z) restricted to
the circle. In particular, if? (z) = z — z1 where|z;| =1 thenP(1/z) = —z1(z — Z1) /z =
—21P(2)/z. Accordingly, if P(z) = (z —z1) - - - (z — zm) fOr somezy, ..., z,, on the circle
thenP(1/z) = constz=™ P(z). Therefore

1
P; (—) =constz " P,(z) forallzeC\{0}; herem =degP,;
Z

and 15,1 (z) =constz™" P,(z) for |z] = 1. FunctionsP, and 15,1 have the same zeros (on
the circle); howeverp, has a pole (of multiplicitym) at co, while P;, or rather its
analytic continuation const™ P, (z), has a pole (of multiplicityn) at 0.

Every moderate measuredetermines a PaF structuw#, (P,), (F,), T) as follows:

o H= L),

e F, is spanned by functions— z*P,(z) for k € Z, k > n;?

e P, is spanned by functions— z*P;(z) for k € Z, k <n;

o (Tf)(z)=zf(2)for f e Lao(n).

In other wordsP, is spanned by functions— zX P, (z) for k € Z, k <n — degP,,.

Treating the PaF structure up to isomorphism, we get a PaF geometry; denote it b
G,.. The time-reversed PaF geometry (as defined by 1.1(d)) correspopds to

an isomorphism i€, () 3 f +— f € Lo(f). If w is symmetric (that isy = /1) theng,
is time-symmetric (that is7, = G,,).

PrROPOSITION 1.3. — Let u, 1’ be moderate measureg, a point on the circle, and
W (dz) =z — zol*u(dz). Thent

gu/ = gu, + 1

3Here P, may be replaced with any polynomia (not identically 0) satisfyingf|P\2d,u, < 00;
redundant roots oP do not influence thelosedsubspace.
4 G, + Lis the shifted PaF geometry, recall 1.1(d).
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Proof. -We haveg, = (H, (P,), (F.), T), Gy = (H', (P)), (F)), T'). Multiplication
by 1/(z — zo) is an invertible linear isometry.,(u) — Lo(u'), that is, H — H’; it
intertwinesT with 7'. We’ll prove that it sendsF to F andP; to Py,

First, ﬁfo D F}, for a trivial reason: for alk > 0 the functionz — (z — z0)z* P (2)

belongs taFy, since [ |(z — zo) P (z)|? u(dz) = [ | Py (2)|* W' (dz) < 00.®
In order to prove thatz_izofo C F, take polynomialsP, such thatP,(z) — -

n — oo, and|P,(z)| < 2|£] whenevelz| = 1; say, we may take

1
—20

for

1-(1—¢,)"z82"

Pn(Z) = _(1_811)20 1— (1—8 )ZOZ

choosinge, — 0+ such thatre, — oo. We have (for every > 0) P,(z)z"P,(z) —
z—lzoZkPu(Z) pointwise, and|P,(z)z"P,(z)| < |z——2zo||PM(Z)|- The majorant belongs to
Lo(w); polynomialsz — P,(z)z"P,(z) belong toL,(u), therefore toL,(1'), and to
Fo. 80, 2= Fo =Ty,

Now we apply the equalitg_l—m}“o = Fyto measureg, i’ (symmetric tou, 1'); these

are related byi'(dz) = |z — Zol? i(dz); thus, %fo(ﬂ) = Fo(it'). The isomorphism
f f betweeng,, andg; (as well asj,, andG;) transformsZo(ji) to Po(u), Fo(it')
to Po(1), and the functior; — ﬁ into the functionz ﬁ So,

Po(r) = Po(u)).

Z—720

However, = = constz - = for |z| = 1 (namely, const —Zo); therefore

——Po(p) = ZPo(u) =
Z—1720 Z—20 7—20

Pr(w).

S0, L Pu(w) = Po(), that is, L-P1 =P O

Given a PaF geomety = (H, (P,), (F,), T), we may ask, whether or not two spaces
P, Fnir+1 are at positive anglé. It depends ork, notx. If it holds for k then it surely
holds fork + 1. We define the index, Ing), as the least € Z possessing the property.
Evidently,

INd(G + k) = Ind(G) + k. (1.4)

Combined with Proposition 1.3 it means that (64,) = Ind(G,) + 1 whenever
W (dz) =z — zol* u(dz).

5t may happen thatg is a pole ofy, then P, (z) = (z — z0) P,y (z); otherwiseP,, = P,. In any case
7> (z — z0) Py (z) belongs to the ideal generated By.

6AIternativer we could ask whether or not they are orthogonal, have trivial intersection, etc. Every such
property leads to its ‘index’ satisfying (1.4).

7If all k possess the property then (§d = —oo; if no one does then ING) = +oo.
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Assume for a while thag is finite. We have Ind7,) > 0, since constant functions
belong both tdP, and toFy. It is well-known (see [2, Sect. 9] or [3, Th. 4 in Sect. V.2])
that IndG,) = N if and only if du = | P|?dv for some polynomialP of degreeN with
all roots on the circle, and sonfmite measurev such that In@dg,) = 0. Finiteness of
v ensures thapy” + F1” is dense inH™. ThusH® =P§"” & F." in the topological
sense. Taking into account th@f = G, + N we see that the two following conditions
are equivalent for every finite measuyre

Ind(G,) = N; (1.5a)
H =Py ® Fy.1 in the topological sense. (1.5b)

Therefore (due to 1.3) these conditions are equivalent for ewederatemeasurex.
In order to getH = Py® Fy.1 inthe FHS sense, (one of) the following two equivalent
conditions must be added:

1.6a. The orthogonal projection froffiy 1 to Py is a Hilbert—Schmidt operator.

1.6b. The producPyFy.1 P is a trace-class operator; hePg and Fy,, are orthogonal
projections (fromH) to Py and F; respectively.

Recall that a real-valued functign on the circle belongs to Sobolev spaﬁ«é/z if
and only if it satisfies the following two equivalent conditions:

_ 2

/ 190G = 9@ 1 (dzp) < o0, (1.72)

lz1 — z2/?
where L stands for Lebesgue measure;

+00

> Inl@al? < oo, (1.7b)

—0o0

whereg, are Fourier coefficients af.

A well-known deep result of Ibragimov and Solev (see [3, Sect. IV.4], see also [5,
Sect. 7]) states that a finite measwresatisfiesboth (1.5a)and (1.6b) if and only ifu
has a density (w.r.t. Lebesgue measure) of the foim= | P|?> expp whereg W21/2
andP is a polynomial of degre& with all zeros on the circle.

Combining the deep result with Proposition 1.3 we generalize the former from finite

to moderate measures as follows.

PROPOSITION 1.8. —For every moderate measugeon the circle and integeN, the
following two conditions are equivalent.

(@) H="Py @ Fy,1 inthe FHS sense.

(b) 1 has a density of the form

(z—z1) @ —2) |
(z—z2) (=2,

d
d—’f(z) - expy (2)

for somel, m € {0, 1, 2, ...} such that —m = N, some pointsy, ..., z, 2}, ..., 2, ON

the circle, and some functiape W,’°.
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Proof. —A moderate measurg is related to a finite measuneby dv = |P,|?du;
thusg, = G, +m wherem = degP,. Condition (a) foru is equivalent to the condition

H® =Pg" @ Fy1,..1 for v. The latter holds if and only if has a density of the form

w = |P|>expy, Whereg € Wzl/2 and deg? = N + m. It means thau has the density

|I1f||22 expy; note that ded® —degP, =N. O
"

The following remarks will not be used.

If n satisfies condition 1.8(b) thehm and z4,...,z, z3,...,z, are uniquely
determined by. (provided that; # z'; for all i, j, of course).

A proposition similar to 1.8 holds forH = Py & Fyy1 in the topological sense”;
here the condition¢ e Wzl/z” is replaced with the Helson—-Szegé conditign= ¥ + x
with [Vl < 5 and|lx [l < 0o, Whereys, x belong toL, on the circle, andy is the

conjugate function tay. (Or alternatively, Muckenhoupt’s conditiam,) may be used.)

2. Generalized random processes in continuoustime

Consider a Gaussian measyrein the space of (tempered, Schwartz; real-valued)
distributions (generalized functions) ov&; assume thay is invariant under shifts
of R. Such measures are probability distributi8nsf stationary Gaussian generalized
random processes [4]. The space of tempered distributions is dual to the space of rapid
decreasing infinitely differentiable functiopsonR. Suchg gives a linear functional on
the space of distributions; w.rjt.it gives a normally distributed random variable, whose
variance is a quadratic form @f and may be written ag |¢|2dv where@ is Fourier
transform ofp, andv is so-called spectral measure {of. It is a positiveo -finite Borel
measure ofiR, symmetric (that is, invariant under the map> —A) and such that

+oo

| v

—o0

v(dA) < o0 (2.1)

for m large enough, see [4, Th. 3.3, 3.4]. Lete {0,1,2,...} be the least number
satisfying (2.1). Ifv is finite thenm = 0.

Consider the Sobolev spadg" (R) of all functionsg :R — R such thatp, ¢/, ...,
o™ € Li(R). If ¢ € WI"(R) then functionsk = @(1), A = AG(A), ..., A > A"G(A)
belong to the spac€y(R) of all (bounded) continuous functions d vanishing at
oo, which means that the function— (1 + 12)"/2¢ (1) belongs toCo(R). Taking into
account (2.1) we have

Vo e WI'(R), @€ Lav).

8 Sorry, ‘a distribution in the space of distributions’ may be confusing. A ‘probability distribution’ is just
a probability measure (intended to describe a random element of the corresponding space). In contrast,
generalized function, called also ‘distribution’, is a more singular (than a measure) obje, garerally
not positive; for example, a derivativé”) of Dirac’s delta-function.
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Thus, the quadratic fornp — [ |¢|>dv extends naturally from the space of rapidly
increasing infinitely differentiable functions 7" (R). Of course, the former space is
dense in the lattef.

Introduce two subspace®y(v), Fo(v) C Lo(v); namely, Po(v) is spanned by
functions@ wherep € Wi (R), ¢(¢) =0 fort € [0, oo); the same forFo(v), bute(r) =0

for t € (=00, 0]. The mapi — —1 sendsv to itself, andPo(v) to Fo(v). That is,
f e Fov) |f and only if f € Po(v); here f(— A) f(A)
We use the well-known conformal map= &=, 2’ ;*1 of the real line Iy’ =0

to the unit circle|z| = 1; it also maps half- planes IMm> 0, Imz’ < 0 onto the disk
lz] < 1 and the regionz| > 1 respectively. Denote by the image ofv under the map

A ﬁ, the o -finite measurg: on the circle is symmetric (that is, = 1) and satisfies

/|1— 212" u(dz) < oo,

which is the same as (2.1), sinfe— 1 |* = 2
moderate measure; it has a pole of multiplicityat 1 (or it is a finite measure, and
m=0); P,(z) = (z = D"; Pulz) = (% - D" ="z "z - D"

Denote byPo(u), Fo(r) subspacesPy, Fo appearing in the PaF structutg, =
(H, (P,), (F,), T). That is, Fo C La(u) is spanned by functions — z*(1 — z)" for
k >0, andPy(p) is spanned by functions — zk(% — 1™ or z+ K" (z — ™ for
k <O0.

The next lemma is well-known for finite measures (see [1, Sect. XII.5, before
Theorem 5.1]); here is a generalization to moderate measures.

LEMMA 2.2.— Let two functions,f on the circle andz onR, be related by

A—1i
f <K—+z> =g) forall A eR. (2.3)

Thenf e Po(w) if and only ifg € Py(v). Also, f € Fo(w) if and only ifg € Fo(v).

Proof. —It suffices to prove the latter, € Fo(u) < g € Fo(v), sincef € Po(n) <
f € Fo(w), andg € Po(v) & § € Fo(v), andf(%) fEE) =g(=0) =gM).

In order to prove thatf € Fo(u) implies g € Fo(v), consider f(z) = zk(l — )"
for somek > 0; We have to prove thag € Fo(v), where g(k) (Hl) (2 =

A+i
(20)" (Hl)n 1- 21 )" is a linear combination of functioris—~ (le 1=0,1 ... k.

Suchg is Fourier transform of a linear combination of functions, (r) = ¢"*'~ le ! for

t > 0 (otherwise 0), except for the case=/ = 0; in that cases is constant, and we
need Fourier transform of a measure (concentrated at the origin) rather than a functio
of L,. The same difficulty appears far> 0, when!/ = O; in that casé,, = h, does

not belong tow} (R), sincer "~V jumps at the origin, and™ is a finite measure rather

9 Note also thaCg(R) could be replaced witty (R) (all bounded continuous functions &); accordingly,
»™ could be a finite measure rather than a functionLg{R), which will be used in the proof of
Lemma 2.2.
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than a function of..;. However, a smoothing, say— %ffs h,(t +u)du, does the job
for { = 0. For! > 0 the functionk,; belongs toW; (R). So,g € Fo(v).

In order to prove thag € Fo(v) implies f € Fo(u), considerg = ¢ wheregp €
WI(R), ¢(t) =0 for t € (—o0, 0]. The functioni — (A +i)"g(A) on the closed half-
plane Imh > 0 is continuous, and tends to O fgx| — oco. Therefore the function
z+— (1 —2)7"f(z) on the closed diskz|] < 1 is continuous (and vanishes at 1).
Take polynomialsP, such thatP,(z) — (1 — z)™" f(z) uniformly on the disk; then
functionsz — (1 — z)" P,(z) belong toFo(u) and converge tgf in Lo(u). So, f €
Fo(w). O

3. Off-white noises

Return to a Gaussian measyrein the space of distributions, its spectral measure
v, and the corresponding stationary Gaussian generalized random process. The spa
Po(v), Fo(v) of Lo(v), defined in Section 2, correspond unitarily (via Fourier transform)
to subspaces of the Hilbert space ofjalmeasurable linear functionals. NameRBg(v)
corresponds to functionals localized (on the time axis)(enc, 0) (“the past”), and
Fo(v) corresponds to functionals localized @) oo) (“the future”™). Thus, orthogonality
of Po(v), Fo(v) means independence of the past and the future (which is the case for the
white noise, whose spectral measure is Lebesgue meas®e dhe property

Lo(v) =Po(v) ® Fo(v) inthe FHS sense (3.1)

means that dependence between the past and the future boils down to a density. That
y is equivalent (mutually absolutely continuous) to another measure that makes the pa
and the future independeff. Such a process will be called aff-white noise.

THEOREM 3.2. —The following two conditions are equivalent.
(a) v is the spectral measure of an off-white noise
(b) u has a density of the form

du, (z—21) (2 —zm1) |*
I(Z) = G expe(z)

for somem € {1, 2, ...}, some pointg,, ..., z,,_1 on the circle, different froni, and
some functiony € W,’°.

Proof. —Condition (a) is equivalent to (3.1). By Lemma 2.2, (3.1) is equivalent
to Lo(u) = Po(u) ® Fo(w) in the FHS sense. The latter is 1.8(a) fdr= —1. By
Proposition 1.8 it is equivalent to 1.8(b) fo¥ = —1. It remains to note that has
no poles except for 1. O

10 mean(—oo, 0) and (0, co), not (—oo, 1) and(z, co) for all ¢ simultaneously.
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Clearly,m in 3.2(b) is the same as in (2.1). We are mostly interested in the case
m =1, in that case (2.1) becomes

+o00
1

and 3.2(b) becomes

du 1
H(Z) 1 |2uJ(Z)

However!!
dv
Zony=I11-—
dL( )= | zl (z)
wherez = 2= ey L thus
A—1
— | =2W (), 3.4
w(iy)=2we (34)

whereW (i) = 2 (3).

The condition Inw € W2

can be rewritten in terms d¥/,

di1dry < 00, (35)

/ [IN W (A1) — IN W (A2)|?
A1 — A2l?

which is (1.7a) combined with the fact thg 1””2 is invariant under linear-fractional
transformationst?> Recall thatW (—A) = W(A)
PROPOSITION 3.6. — (a)lf W satisfieq3.5)then

InW@h) — In WP < o, (3.7)
A
0

(b) Let W be strictly positive, have a continuous derivative, and

o0 2

/‘i INnW(L)
di

0

AdA < 0. (3.8)

ThenW satisfieq3.5).

11I denote by L both Lebesgue measure on the4circ|e and Lebesgue meashreVéa havedz =
2
(H 2 di, thus L(dz) = AZHL(dA) also,|1—z| 2

12 az+b 1 _ _flefz2)
Thatis, if f(z) = o then Gt = G
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Proof. —First, integration in (3.5) may be restricted frdnx R to (0 00) x (0, 00).

Indeed, using the propertyv(,) = W(—1) we get the kernel ?»2|2 + i
equivalent to—|
Second,
T T1INW() — InW(o)[?
//I nW(iy) nVZV( 2)| dhidig
[A1— Azl
00
T odu T 2d
= ——— 1]l A) —| M| — 3.9
O/(M_l)zo/mvv(u) WP, (3.9)

which is just a change of variablg; = A,u.
Let W satisfy (3.5); we have to check (3.7). Consider

1/2

fu) = </|In W (ur) —In W(A)|2d%>
0
The triangle inequality giveg (uv) < f(u) + f(v), since
7 2d\ 7 2 dA
0/yln W (uvr) — InW(vd)| Tzo/yln W(ur) —InW ()| -

Also, f(u) < oo for almost allu due to (3.5) and (3.9). Taking such thatf (1) < co
andf( ) < oo we getf(2) < oo, whichis (3.7).

Let W satisfy (3.8); we need to check (3.5), or equivalenfly, f2(u) -4
We have
W/ 2 1/2 u 00 W/ ) 2 1/2
// A0 x| 3dn g/ / AOfsan)  dx:
W(Ax) /\ W(ix)
1/2 u 00 , 2 1/2
/||n W —inw P2 < /d—x / rdr|
/ A J X W)
f () < constiInu for all u € [1, 0o0); similarly, f(u) < const| Inu| for all u € (0, 1].

So,
/f() —12 S COSt/(u_u>2du<oo O

Example3.10. — Assume thaW (r) = |1|* for |A| large enough, andV is strictly
positive and smooth everywhere. Then condition (3.5) is satisfied if and oaly=iD
(just the white noise).

e 1)2 < 0.

Example3.11. — Assume tha¥v (A) = (In|A])* for |A| large enough, an@’ is strictly
positive and smooth everywhere. Then condition (3.5) is satisfied for. &londition
(3.3) is also satisfied. Thus, every suéhdescribes an off-white noise.
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Example3.12. — Assume that’ (1) = exp(— In® |A]) for |A| large enough (here >
0), andW is strictly positive and smooth everywhere. Then condition (3.5) is satisfied if
and only ifae < 1/2. Condition (3.3) is also satisfied. So, ok (0, 1/2) every suchW
describes an off-white noise.
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