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ABSTRACT. – For the white noise, the spectral density is constant, and the past (restriction to
(−∞,0)) is independent from the future (restriction to(0,+∞)). If the spectral density is not too
far from being constant, then dependence between the past and the future can be eliminated by
an equivalent measure change. A necessary and sufficient condition for a spectral density to have
such a property (in other words, to describe an off-white noise) is derived here from well-known
results.
 2002 Éditions scientifiques et médicales Elsevier SAS

RÉSUMÉ. – Pour le bruit blanc, la densité spectrale est constante et le passé (restriction à
(−∞,0)) est indépendant du futur (restriction à(0,+∞)). Si la densité spectrale n’est pas trop
éloignée d’une constante, la dépendance entre passé et futur peut être éliminée en remplaçant
la mesure par une mesure équivalente. Un tel processus gaussien stationnaire sera appelé « off-
white noise ». Nous donnons une condition nécessaire et suffisante sur la densité spectrale pour
que cette propriété soit vérifiée.
 2002 Éditions scientifiques et médicales Elsevier SAS

0. Introduction

‘Past and future’ is a well-known topic in the theory of stationary Gaussian random
processes. The restriction of a processX(t) to t ∈ (−∞,0) is the past; the future is its
restriction to(0,+∞) or, more generally,(s,+∞). Typically one shows that the past and
the future are nearly independent if the separations is large enough, under appropriate
conditions on the spectral density of the process. In contrast, the present work deals with
the cases = 0 (no separation). For a continuous process, of course,X(0) belongs both
to the past and to the future, making them heavily dependent. However, for the white
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noise they are independent anyway. An off-white noise2 introduced in [6] (motivated
by the theory of continuous tensor products of Hilbert spaces) generalizes the white
noise. It is defined as a stationary Gaussian generalized random process such that the
joint distribution of the past and the future is equivalent (that is, mutually absolutely
continuous) to the product of their marginal distributions. The present work derives
from well-known results about ‘past and future’ a necessary and sufficient condition
for a spectral density to describe an off-white noise. I feel that it is basically a folklore
worth to be written.

In the Hilbert spaceH of all linear measurable functionals over a Gaussian random
process, the pastP and the futureF are linear subspaces. For the white noise,H =
P⊕F , the subspaces being orthogonal. For an off-white noise the corresponding relation
is

H = P ⊕F in the FHS sense,

as defined in [6]; it means that the orthogonal projection fromF to P is a Hilbert–
Schmidt operator, andH = P ⊕F in the topological sense. The latter means thatP +F
is dense inH andP,F are at positive angle (that is, the projection is of norm less
than 1).

1. Analytic functions inside and outside the circle

DEFINITION 1.1. – (a)A past-and-future structure(or ‘PaF structure’) consists of:
• a separable Hilbert spaceH ;
• a two-sided sequence(Pn)n∈Z of (closed linear) subspacesPn ⊂ H , increasing(in

the sense thatPn ⊂Pn+1 for all n) and such that the union of allPn is dense inH ;
• a two-sided sequence(Fn)n∈Z of subspacesFn ⊂ H , decreasing and such that the

union of allFn is dense inH ;
• a unitary operatorT :H → H such thatTPn = Pn+1 andTFn = Fn+1 for all n.
(b) Two PaF structures(H, (Pn), (Fn), T ) and (H ′, (P ′

n), (F ′
n), T ′) are isomorphic,

if there exists an invertible linear isometryU :H → H ′ such thatUPn = P ′
n and

UFn = F ′
n for all n, andUT = T ′U .

(c) A PaF geometryis a PaF structure treated up to isomorphism.
(d) For any PaF geometryG = (H, (Pn), (Fn), T ) and anyk ∈ Z defineG + k (the

shifted PaF geometry) as (H, (Pn+k), (Fn), T ) (or equivalently(H, (Pn), (Fn−k), T )).
Also define thetime-reversed PaF geometryasG = (H, (F−n), (P−n), T −1).

Let µ be a (positive)σ -finite Borel measure on the unit circle{z ∈ C: |z| = 1}. The
set of all polynomialsP such that

∫ |P |2 dµ < ∞ is an ideal in the commutative ring of
polynomials. If the ideal contains not only 0, then it is generated by a single polynomial
Pµ (not identically 0), since every ideal in that ring is principal. It is easy to see that (up
to a coefficient that may be ignored),Pµ(z) = (z − z1) · · · (z − zm) for somez1, . . . , zm

on the circle. Ifµ is finite thenm = 0 andPµ(z) = 1.

2 The term is suggested by William Arveson; I called it a ‘slightly coloured noise’.
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DEFINITION 1.2. – (a)A nonatomicσ -finite Borel measureµ on the circle will be
called moderate,if the ideal of polynomialsP satisfying

∫ |P |2 dµ < ∞ is different
from {0}.

(b) Polesof a moderate measureµ are roots of the polynomialPµ that generates the
ideal.Multiplicity of a pole ofµ is its multiplicity as a root ofPµ.

The set of all moderate measures is a linear space, closed under multiplication by
functions of the formf/|P |2 wheref is a bounded nonnegative Borel function on the
circle andP is a polynomial (not identically 0).

Conjugationz �→ z̄ maps the circle onto itself, and sends each measureµ on the circle
to another measure, denote itµ̃. Clearly,µ is moderate if and only if̃µ is moderate, and
if they are, thenPµ(z) = Pµ̃(z̄) for all z. Also, each functionf ∈ L2(µ) corresponds
to another functionf̃ ∈ L2(µ̃) such thatf (z) = f̃ (z̄). However, iff is a polynomial
P restricted to the circle theñf is rather the rational functionz �→ P(1/z) restricted to
the circle. In particular, ifP(z) = z − z1 where|z1| = 1 thenP(1/z) = −z1(z − z̄1)/z =
−z1P(z̄)/z. Accordingly, ifP(z) = (z−z1) · · · (z−zm) for somez1, . . . , zm on the circle
thenP(1/z) = const·z−mP (z̄). Therefore

Pµ̃

(
1

z

)
= const·z−mPµ(z) for all z ∈ C \ {0}; herem = degPµ;

andP̃µ̃(z) = const·z−mPµ(z) for |z| = 1. FunctionsPµ andP̃µ̃ have the same zeros (on
the circle); however,Pµ has a pole (of multiplicitym) at ∞, while P̃µ̃, or rather its
analytic continuation const·z−mPµ(z), has a pole (of multiplicitym) at 0.

Every moderate measureµ determines a PaF structure(H, (Pn), (Fn), T ) as follows:
• H = L2(µ);
• Fn is spanned by functionsz �→ zkPµ(z) for k ∈ Z, k � n; 3

• Pn is spanned by functionsz �→ zkP̃µ̃(z) for k ∈ Z, k � n;
• (Tf )(z) = zf (z) for f ∈ L2(µ).
In other words,Pn is spanned by functionsz �→ zkPµ(z) for k ∈ Z, k � n − degPµ.
Treating the PaF structure up to isomorphism, we get a PaF geometry; denote it by

Gµ. The time-reversed PaF geometry (as defined by 1.1(d)) corresponds toµ̃:

Gµ = Gµ̃;

an isomorphism isL2(µ) � f �→ f̃ ∈ L2(µ̃). If µ is symmetric (that is,µ = µ̃) thenGµ

is time-symmetric (that is,Gµ = Gµ).

PROPOSITION 1.3. – Let µ,µ′ be moderate measures,z0 a point on the circle, and
µ′(dz) = |z − z0|2µ(dz). Then4

Gµ′ = Gµ + 1.

3 Here Pµ may be replaced with any polynomialP (not identically 0) satisfying
∫ |P |2 dµ < ∞;

redundant roots ofP do not influence theclosedsubspace.
4 Gµ + 1 is the shifted PaF geometry, recall 1.1(d).
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Proof. –We haveGµ = (H, (Pn), (Fn), T ), Gµ′ = (H ′, (P ′
n), (F ′

n), T ′). Multiplication
by 1/(z − z0) is an invertible linear isometryL2(µ) → L2(µ

′), that is,H → H ′; it
intertwinesT with T ′. We’ll prove that it sendsF0 to F ′

0 andP1 to P ′
0.

First, 1
z−z0

F0 ⊃ F ′
0 for a trivial reason: for allk � 0 the functionz �→ (z − z0)z

kPµ′(z)

belongs toF0, since
∫ |(z − z0)Pµ′(z)|2 µ(dz) = ∫ |Pµ′(z)|2 µ′(dz) < ∞. 5

In order to prove that 1
z−z0

F0 ⊂ F ′
0 take polynomialsPn such thatPn(z) → 1

z−z0
for

n → ∞, and|Pn(z)| � 2
∣∣ 1
z−z0

∣∣, whenever|z| = 1; say, we may take

Pn(z) = −(1− εn)z̄0
1− (1− εn)

nz̄n
0z

n

1− (1− εn)z̄0z

choosingεn → 0+ such thatnεn → ∞. We have (for everyk � 0) Pn(z)zkPµ(z) →
1

z−z0
zkPµ(z) pointwise, and|Pn(z)zkPµ(z)| � 2

|z−z0| |Pµ(z)|. The majorant belongs to

L2(µ
′); polynomialsz �→ Pn(z)zkPµ(z) belong toL2(µ), therefore toL2(µ

′), and to
F ′

0. So, 1
z−z0

F0 = F ′
0.

Now we apply the equality 1
z−z0

F0 = F ′
0 to measures̃µ, µ̃′ (symmetric toµ, µ′); these

are related byµ̃′(dz) = |z − z̄0|2 µ̃(dz); thus, 1
z−z̄0

F0(µ̃) = F0(µ̃
′). The isomorphism

f �→ f̃ betweenGµ andGµ̃ (as well asGµ′ andGµ̃′ ) transformsF0(µ̃) to P0(µ), F0(µ̃
′)

to P0(µ
′), and the functionz �→ 1

z−z̄0
into the functionz �→ 1

z̄−z̄0
. So,

1

z̄ − z̄0
P0(µ) = P0(µ

′).

However, 1
z̄−z̄0

= const·z · 1
z−z0

for |z| = 1 (namely, const= −z̄0); therefore

1

z̄ − z̄0
P0(µ) = 1

z − z0
zP0(µ) = 1

z − z0
P1(µ).

So, 1
z−z0

P1(µ) = P0(µ
′), that is, 1

z−z0
P1 = P ′

0. ✷
Given a PaF geometryG = (H, (Pn), (Fn), T ), we may ask, whether or not two spaces

Pn,Fn+k+1 are at positive angle.6 It depends onk, notn. If it holds for k then it surely
holds fork +1. We define the index, Ind(G), as the leastk ∈ Z possessing the property.7

Evidently,

Ind(G + k) = Ind(G) + k. (1.4)

Combined with Proposition 1.3 it means that Ind(Gµ′) = Ind(Gµ) + 1 whenever
µ′(dz) = |z − z0|2 µ(dz).

5 It may happen thatz0 is a pole ofµ, thenPµ(z) = (z − z0)Pµ′ (z); otherwisePµ = Pµ′ . In any case
z �→ (z − z0)Pµ′ (z) belongs to the ideal generated byPµ.

6 Alternatively we could ask whether or not they are orthogonal, have trivial intersection, etc. Every such
property leads to its ‘index’ satisfying (1.4).

7 If all k possess the property then Ind(G) = −∞; if no one does then Ind(G) = +∞.
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Assume for a while thatµ is finite. We have Ind(Gµ) � 0, since constant functions
belong both toP0 and toF0. It is well-known (see [2, Sect. 9] or [3, Th. 4 in Sect. V.2])
that Ind(Gµ) = N if and only if dµ = |P |2dν for some polynomialP of degreeN with
all roots on the circle, and somefinite measureν such that Ind(Gν) = 0. Finiteness of
ν ensures thatP(ν)

0 + F (ν)
1 is dense inH (ν). ThusH (ν) = P(ν)

0 ⊕F (ν)
1 in the topological

sense. Taking into account thatGµ = Gν + N we see that the two following conditions
are equivalent for every finite measureµ:

Ind(Gµ) = N; (1.5a)

H = P0 ⊕FN+1 in the topological sense. (1.5b)

Therefore (due to 1.3) these conditions are equivalent for everymoderatemeasureµ.
In order to getH = P0⊕FN+1 in the FHS sense, (one of) the following two equivalent

conditions must be added:

1.6a. The orthogonal projection fromFN+1 to P0 is a Hilbert–Schmidt operator.

1.6b. The productP0FN+1P0 is a trace-class operator; hereP0 andFN+1 are orthogonal
projections (fromH ) to P0 andF1 respectively.

Recall that a real-valued functionϕ on the circle belongs to Sobolev spaceW
1/2
2 if

and only if it satisfies the following two equivalent conditions:

∫ ∫ |ϕ(z1) − ϕ(z2)|2
|z1 − z2|2 L(dz1)L(dz2) < ∞, (1.7a)

where L stands for Lebesgue measure;

+∞∑
−∞

|n||ϕ̂n|2 < ∞, (1.7b)

whereϕ̂n are Fourier coefficients ofϕ.
A well-known deep result of Ibragimov and Solev (see [3, Sect. IV.4], see also [5,

Sect. 7]) states that a finite measureµ satisfiesboth (1.5a)and (1.6b) if and only ifµ
has a densityw (w.r.t. Lebesgue measure) of the formw = |P |2 expϕ whereϕ ∈ W

1/2
2

andP is a polynomial of degreeN with all zeros on the circle.
Combining the deep result with Proposition 1.3 we generalize the former from finite

to moderate measures as follows.

PROPOSITION 1.8. –For every moderate measureµ on the circle and integerN , the
following two conditions are equivalent.

(a) H = P0 ⊕FN+1 in the FHS sense.
(b) µ has a density of the form

dµ

dL
(z) =

∣∣∣∣ (z − z1) · · · (z − zl)

(z − z′
1) · · · (z − z′

m)

∣∣∣∣
2

expϕ(z)

for somel,m ∈ {0,1,2, . . .} such thatl − m = N , some pointsz1, . . . , zl, z′
1, . . . , z′

m on
the circle, and some functionϕ ∈ W

1/2
2 .
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Proof. –A moderate measureµ is related to a finite measureν by dν = |Pµ|2dµ;
thusGν = Gµ + m wherem = degPµ. Condition (a) forµ is equivalent to the condition
H (ν) = P(ν)

0 ⊕F (ν)
N+m+1 for ν. The latter holds if and only ifν has a densityw of the form

w = |P |2 expϕ, whereϕ ∈ W
1/2
2 and degP = N + m. It means thatµ has the density

|P |2
|Pµ|2 expϕ; note that degP − degPµ = N . ✷

The following remarks will not be used.
If µ satisfies condition 1.8(b) thenl,m and z1, . . . , zl, z′

1, . . . , z′
m are uniquely

determined byµ (provided thatzi �= z′
j for all i, j , of course).

A proposition similar to 1.8 holds for “H = P0 ⊕ FN+1 in the topological sense”;
here the condition “ϕ ∈ W

1/2
2 ” is replaced with the Helson–Szegö condition:ϕ = ψ̃ + χ

with ‖ψ‖∞ < π
2 and‖χ‖∞ < ∞, whereψ,χ belong toL∞ on the circle, andψ̃ is the

conjugate function toψ . (Or alternatively, Muckenhoupt’s condition(A2) may be used.)

2. Generalized random processes in continuous time

Consider a Gaussian measureγ in the space of (tempered, Schwartz; real-valued)
distributions (generalized functions) overR; assume thatγ is invariant under shifts
of R. Such measures are probability distributions8 of stationary Gaussian generalized
random processes [4]. The space of tempered distributions is dual to the space of rapidly
decreasing infinitely differentiable functionsϕ onR. Suchϕ gives a linear functional on
the space of distributions; w.r.t.γ it gives a normally distributed random variable, whose
variance is a quadratic form ofϕ and may be written as

∫ |ϕ̂|2 dν whereϕ̂ is Fourier
transform ofϕ, andν is so-called spectral measure (ofγ ). It is a positiveσ -finite Borel
measure onR, symmetric (that is, invariant under the mapλ → −λ) and such that

+∞∫
−∞

1

(1+ λ2)m
ν(dλ) < ∞ (2.1)

for m large enough, see [4, Th. 3.3, 3.4]. Letm ∈ {0,1,2, . . .} be the least number
satisfying (2.1). Ifν is finite thenm = 0.

Consider the Sobolev spaceWm
1 (R) of all functionsϕ :R → R such thatϕ,ϕ′, . . . ,

ϕ(m) ∈ L1(R). If ϕ ∈ Wm
1 (R) then functionsλ �→ ϕ̂(λ), λ �→ λϕ̂(λ), . . . , λ �→ λmϕ̂(λ)

belong to the spaceC0(R) of all (bounded) continuous functions onR vanishing at
∞, which means that the functionλ �→ (1 + λ2)m/2ϕ̂(λ) belongs toC0(R). Taking into
account (2.1) we have

∀ϕ ∈ Wm
1 (R), ϕ̂ ∈ L2(ν).

8 Sorry, ‘a distribution in the space of distributions’ may be confusing. A ‘probability distribution’ is just
a probability measure (intended to describe a random element of the corresponding space). In contrast, a
generalized function, called also ‘distribution’, is a more singular (than a measure) object overR, generally
not positive; for example, a derivativeδ(n) of Dirac’s delta-function.
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Thus, the quadratic formϕ �→ ∫ |ϕ̂|2 dν extends naturally from the space of rapidly
increasing infinitely differentiable functions toWm

1 (R). Of course, the former space is
dense in the latter.9

Introduce two subspacesP0(ν),F0(ν) ⊂ L2(ν); namely, P0(ν) is spanned by
functionsϕ̂ whereϕ ∈ Wm

1 (R), ϕ(t) = 0 for t ∈ [0,∞); the same forF0(ν), butϕ(t) = 0
for t ∈ (−∞,0]. The mapλ �→ −λ sendsν to itself, andP0(ν) to F0(ν). That is,
f ∈F0(ν) if and only if f̃ ∈ P0(ν); heref̃ (−λ) = f (λ).

We use the well-known conformal mapz = z′−i
z′+i

, z′ = −i z+1
z−1 of the real line Imz′ = 0

to the unit circle|z| = 1; it also maps half-planes Imz′ > 0, Imz′ < 0 onto the disk
|z| < 1 and the region|z| > 1 respectively. Denote byµ the image ofν under the map
λ �→ λ−i

λ+i
; theσ -finite measureµ on the circle is symmetric (that is,µ = µ̃) and satisfies

∫
|1− z|2m µ(dz) < ∞,

which is the same as (2.1), since
∣∣1 − λ−i

λ+i

∣∣2 = 4
λ2+1. In terms of Definition 1.2,µ is a

moderate measure; it has a pole of multiplicitym at 1 (or it is a finite measure, and
m = 0); Pµ(z) = (z − 1)m; P̃µ̃(z) = (1

z
− 1)m = (−1)mz−m(z − 1)m.

Denote byP0(µ),F0(µ) subspacesP0,F0 appearing in the PaF structureGµ =
(H, (Pn), (Fn), T ). That is,F0 ⊂ L2(µ) is spanned by functionsz �→ zk(1 − z)n for
k � 0, andP0(µ) is spanned by functionsz �→ zk(1

z
− 1)m or z �→ zk−m(z − 1)m for

k � 0.
The next lemma is well-known for finite measures (see [1, Sect. XII.5, before

Theorem 5.1]); here is a generalization to moderate measures.

LEMMA 2.2. – Let two functions,f on the circle andg on R, be related by

f

(
λ − i

λ + i

)
= g(λ) for all λ ∈ R. (2.3)

Thenf ∈P0(µ) if and only ifg ∈ P0(ν). Also,f ∈F0(µ) if and only ifg ∈F0(ν).

Proof. –It suffices to prove the latter,f ∈ F0(µ) ⇔ g ∈F0(ν), sincef ∈P0(µ) ⇔
f̃ ∈F0(µ), andg ∈P0(ν) ⇔ g̃ ∈F0(ν), andf̃ ( λ−i

λ+i
) = f (λ+i

λ−i
) = g(−λ) = g̃(λ).

In order to prove thatf ∈ F0(µ) implies g ∈ F0(ν), considerf (z) = zk(1 − z)n

for some k � 0; we have to prove thatg ∈ F0(ν), where g(λ) = (λ−i
λ+i

)k( 2i
λ+i

)n =
(2i)n 1

(λ+i)n
(1−2i 1

λ+i
)k is a linear combination of functionsλ �→ 1

(λ+i)n+l , l = 0,1, . . . , k.

Suchg is Fourier transform of a linear combination of functionshn+l(t) = tn+l−1e−t for
t > 0 (otherwise 0), except for the casen = l = 0; in that caseg is constant, and we
need Fourier transform of a measure (concentrated at the origin) rather than a function
of L1. The same difficulty appears forn > 0, whenl = 0; in that casehn+l = hn does
not belong toWn

1 (R), sinceh(n−1)
n jumps at the origin, andh(n)

n is a finite measure rather

9 Note also thatC0(R) could be replaced withC(R) (all bounded continuous functions onR); accordingly,
ϕ(m) could be a finite measure rather than a function ofL1(R), which will be used in the proof of
Lemma 2.2.
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than a function ofL1. However, a smoothing, say,t �→ 1
ε

∫ 0
−ε hn(t + u)du, does the job

for l = 0. Forl > 0 the functionhn+l belongs toWn
1 (R). So,g ∈ F0(ν).

In order to prove thatg ∈ F0(ν) implies f ∈ F0(µ), considerg = ϕ̂ where ϕ ∈
Wn

1 (R), ϕ(t) = 0 for t ∈ (−∞,0]. The functionλ �→ (λ + i)ng(λ) on the closed half-
plane Imλ � 0 is continuous, and tends to 0 for|λ| → ∞. Therefore the function
z �→ (1 − z)−nf (z) on the closed disk|z| � 1 is continuous (and vanishes at 1).
Take polynomialsPn such thatPn(z) → (1 − z)−nf (z) uniformly on the disk; then
functions z �→ (1 − z)nPn(z) belong toF0(µ) and converge tof in L2(µ). So, f ∈
F0(µ). ✷

3. Off-white noises

Return to a Gaussian measureγ in the space of distributions, its spectral measure
ν, and the corresponding stationary Gaussian generalized random process. The spaces
P0(ν),F0(ν) of L2(ν), defined in Section 2, correspond unitarily (via Fourier transform)
to subspaces of the Hilbert space of allγ -measurable linear functionals. Namely,P0(ν)

corresponds to functionals localized (on the time axis) on(−∞,0) (“the past”), and
F0(ν) corresponds to functionals localized on(0,∞) (“the future”). Thus, orthogonality
of P0(ν),F0(ν) means independence of the past and the future (which is the case for the
white noise, whose spectral measure is Lebesgue measure onR). The property

L2(ν) = P0(ν) ⊕F0(ν) in the FHS sense (3.1)

means that dependence between the past and the future boils down to a density. That is,
γ is equivalent (mutually absolutely continuous) to another measure that makes the past
and the future independent.10 Such a process will be called anoff-white noise.

THEOREM 3.2. –The following two conditions are equivalent.
(a) ν is the spectral measure of an off-white noise;
(b) µ has a density of the form

dµ

dL
(z) =

∣∣∣∣ (z − z1) · · · (z − zm−1)

(z − 1)m

∣∣∣∣
2

expϕ(z)

for somem ∈ {1,2, . . .}, some pointsz1, . . . , zm−1 on the circle, different from1, and
some functionϕ ∈ W

1/2
2 .

Proof. –Condition (a) is equivalent to (3.1). By Lemma 2.2, (3.1) is equivalent
to L2(µ) = P0(µ) ⊕ F0(µ) in the FHS sense. The latter is 1.8(a) forN = −1. By
Proposition 1.8 it is equivalent to 1.8(b) forN = −1. It remains to note thatµ has
no poles except for 1. ✷
10I mean(−∞,0) and(0,∞), not (−∞, t) and(t,∞) for all t simultaneously.
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Clearly, m in 3.2(b) is the same asm in (2.1). We are mostly interested in the case
m = 1; in that case (2.1) becomes

+∞∫
−∞

1

1+ λ2
ν(dλ) < ∞, (3.3)

and 3.2(b) becomes

dµ

dL
(z) = 1

|1− z|2w(z).

However,11

dν

dL
(λ) = 1

2
|1− z|2dµ

dL
(z)

wherez = λ−i
λ+i

; thus

w

(
λ − i

λ + i

)
= 2W(λ), (3.4)

whereW(λ) = dν
dL (λ).

The condition lnw ∈ W
1/2
2 can be rewritten in terms ofW ,

∫ ∫ | lnW(λ1) − lnW(λ2)|2
|λ1 − λ2|2 dλ1 dλ2 < ∞, (3.5)

which is (1.7a) combined with the fact thatdz1dz2
(z1−z2)2 is invariant under linear-fractional

transformations.12 Recall thatW(−λ) = W(λ).

PROPOSITION 3.6. – (a)If W satisfies(3.5) then

∞∫
0

∣∣ ln W(2λ) − lnW(λ)
∣∣2dλ

λ
< ∞. (3.7)

(b) Let W be strictly positive, have a continuous derivative, and

∞∫
0

∣∣∣∣ d

dλ
lnW(λ)

∣∣∣∣
2

λdλ < ∞. (3.8)

ThenW satisfies(3.5).

11I denote by L both Lebesgue measure on the circle and Lebesgue measure onR. We havedz =
2i

(λ+i)2 dλ, thus L(dz) = 2
λ2+1

L(dλ); also,|1− z|2 = 4
λ2+1

.

12That is, iff (z) = az+b
cz+d then 1

(z1−z2)2 = f ′(z1)f ′(z2)

(f (z1)−f (z2))2 .
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Proof. –First, integration in (3.5) may be restricted fromR × R to (0,∞) × (0,∞).
Indeed, using the propertyW(λ) = W(−λ) we get the kernel 2

|λ1−λ2|2 + 2
|λ1+λ2|2

equivalent to 1
|λ1−λ2|2 .

Second,
∞∫

0

∞∫
0

| lnW(λ1) − ln W(λ2)|2
|λ1 − λ2|2 dλ1 dλ2

=
∞∫

0

du

(u − 1)2

∞∫
0

∣∣ ln W(uλ) − ln W(λ)
∣∣2dλ

λ
, (3.9)

which is just a change of variable,λ1 = λ2u.
Let W satisfy (3.5); we have to check (3.7). Consider

f (u) =
( ∞∫

0

| lnW(uλ) − lnW(λ)|2 dλ

λ

)1/2

.

The triangle inequality givesf (uv) � f (u) + f (v), since

∞∫
0

∣∣ lnW(uvλ) − lnW(vλ)
∣∣2dλ

λ
=

∞∫
0

∣∣ lnW(uλ) − lnW(λ)
∣∣2 dλ

λ
.

Also, f (u) < ∞ for almost allu due to (3.5) and (3.9). Takingu such thatf (u) < ∞
andf ( 2

u
) < ∞ we getf (2) < ∞, which is (3.7).

Let W satisfy (3.8); we need to check (3.5), or equivalently,
∫∞

0 f 2(u) du

(u−1)2 < ∞.
We have ( ∞∫

0

∣∣∣∣∣
u∫

1

W ′(λx)

W(λx)
dx

∣∣∣∣∣
2

λdλ

)1/2

�
u∫

1

( ∞∫
0

∣∣∣∣W ′(λx)

W(λx)

∣∣∣∣
2

λdλ

)1/2

dx;
( ∞∫

0

∣∣ lnW(λu) − lnW(λ)
∣∣2dλ

λ

)1/2

�
( u∫

1

dx

x

)( ∞∫
0

∣∣∣∣W ′(λ)

W(λ)

∣∣∣∣
2

λdλ

)1/2

;

f (u) � const· lnu for all u ∈ [1,∞); similarly, f (u) � const·| lnu| for all u ∈ (0,1].
So,

∞∫
0

f 2(u)
du

(u − 1)2
� const·

∞∫
0

(
lnu

u − 1

)
2du < ∞. ✷

Example3.10. – Assume thatW(λ) = |λ|α for |λ| large enough, andW is strictly
positive and smooth everywhere. Then condition (3.5) is satisfied if and only ifα = 0
(just the white noise).

Example3.11. – Assume thatW(λ) = (ln |λ|)α for |λ| large enough, andW is strictly
positive and smooth everywhere. Then condition (3.5) is satisfied for allα. Condition
(3.3) is also satisfied. Thus, every suchW describes an off-white noise.
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Example3.12. – Assume thatW(λ) = exp(− lnα |λ|) for |λ| large enough (hereα >

0), andW is strictly positive and smooth everywhere. Then condition (3.5) is satisfied if
and only ifα < 1/2. Condition (3.3) is also satisfied. So, forα ∈ (0,1/2) every suchW
describes an off-white noise.
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