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ABSTRACT. – We consider an increasing sequence of finite boxes�L ⊂ Z2 and a reversible
stochastic frustrated Ising model having invariant measures satisfying free boundary conditions.
We show that the spectral gap associated with the Edwards–Anderson model has a different
asymptotic behavior in low and in high temperature.

In low temperature, associated with the spectral gap, there is a qualitatively slower relaxation
to equilibrium than there is in high temperature. Some geometrical lemmas are employed in the
paper to show that some regions arealmostindependent from their exterior. We use for this aim
a Peierls’ argument. 2002 Éditions scientifiques et médicales Elsevier SAS

AMS classification:82C44; 82C26; 82C22

RÉSUMÉ. – Nous considérons, dans cet article, une suite strictement croissante de boites finies
�L ⊂ Z2 et un modèle d’Ising stochastique réversible non ferromagnétique ayant des mesures
invariantes avec conditions de frontière libre. Nous montrons que le frou spectral associé au
modèle d’Edwards–Anderson a des comportements asymptotiques différents à haute et basse
température.

A basse température, la relaxation vers l’équilibre est qualitativement plus lente qu’à haute
température. Nous employons dans cet article des lemmes géomêtriques pour montrer que
certaines régions sontpresqueindépendantes de leur exterieur. À cette fin, nous utilisons un
argument de type Peierls. 2002 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

In the past two decades different dynamics have been analyzed for spin models. The
most popular for physical reasons is the Glauber dynamics [15]. Other dynamics such as
heat bath, Metropolis, etc. all share the characteristic of being single site dynamics, that
is to say only one spin at the time is flipped. In this work we only deal with dynamics of
this type and other local dynamics. Dynamics such as Swendsen–Wang, in which whole
clusters are flipped at once are beyond the scope of the present paper (see [26,24] for the
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ferromagnetic Ising model). A paper is in preparation to prove a similar behavior for the
Swendsen–Wang dynamics of a frustrated Ising model [4].

Some basic results for the Glauber dynamics in the ferromagnetic Ising model are in
[27,21–23].

A fundamental paper for the ferromagnetic Ising model is [23]. In that paper, it
is proved that for 2-dimensional spin systems with finite ferromagnetic interactions,
the conditions of weak mixing imply strong mixing of Gibbs states. One of the most
interesting consequences, from our point of view, is that for the ferromagnetic Ising
model at all temperaturesT > Tc there is a rapid (i.e. exponential) convergence to
equilibrium using a Glauber dynamics (some results in [21] and [22] are also needed).

Also in the context of Glauber dynamics, the paper [29,28,20] are relevant; in these
works is proved that the Dobrushin–Shlosman mixing conditions are equivalent to the
existence of a logarithmic Sobolev inequality for the associated Gibbs measure. In
particular, in [20] it is proved that there is a positive spectral gap for the Kawasaki and for
the Glauber dynamics if the mixing conditions are satisfied. These properties are proved
in a general framework but they are applicable mainly for models at high temperature.

There are also some results concerning the zero-temperature case of Glauber
dynamics, usually studied with a random initial spin configuration; for a review, see [25].

The case we study here is the dynamics of the Edwards–Anderson model in two
dimensions. In this context some progress has been recently made. In the work of [2]
there are upper and lower bounds onq(J, t) for the Edwards–Anderson model. There
the quantityq(J, t) is the absolute value of the difference between the expectation at
time t of the spin in the origin, starting with a fixed initial condition, and its value in the
equilibrium (J is the strength of the coupling).

The bounds in [2] are almost optimal and show that the velocity of convergence to the
stationary measure, in the Griffiths’ region [16], for almost all initial conditions (with
respect to the Gibbs measure), have the following bounds if the probability distribution
of interactions decays more than exponentially and if there is a probability greater than
zero to have interactions different in absolute value.

The lower bound is

q(J, t) � c1(J ) exp
[−t exp

[−k1(ln t)1− 1
d
]]

and the upper bound

q(J, t) � c2(J ) exp
[−t exp

[−k2(ln t)1− 1
d (ln ln t)d−1]].

Also in the context of Glauber dynamics, we mention the work [11], which discusses
the spectral gap for the Random Energy Model. It is proved in there that the gap has the
same dependence on the volume at any temperature, at least in the leading order. This
shows that the situation for mean field models can be quite different from the short range
situation that we discuss here.

Our work deals with Glauber dynamics for Edwards–Anderson spin-glass model
in Z2. It differs in results and methods from [2], first they have results only for the
diluted Ising models and at temperature regions different from ours. Moreover, in [2] the
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dynamics is defined on the infinite graphZd , with d � 2, while we analyze a sequence
of boxes� to study the spectral gap of the finite transition matrix.

Another difference from [2] consists in the choice of the interactions; in our case
we can also take all interactions with equal absolute value. Some results for zero-
temperature dynamics in the equal absolute value (±J ) spin glass model have also been
obtained in [13].

Also in our case it seems natural to think that a temperatureT0 exists, like in the
ferromagnetic case, separating two regions of the temperature parameter range in which
there is a qualitatively different relaxation speed to the equilibrium; i.e. we think that for
everyT < T0 there is a slow relaxation to the equilibrium while for everyT > T0 a fast
relaxation to the equilibrium takes place. Seeing also the work [23] we conjecture thatT0

is equal toTc, the critical temperature for the ferromagnetic Ising model. It seems to be
relevant also for spin-glasses because there are arbitrarily large ferromagnetic regions.

Our work is similar in construction and in techniques to [27], in which a bound is
proved for the spectral gap at low temperature for the ferromagnetic stochastic Ising
model; more precisely, it shows that in the low temperature regime, the spectral gap
decreases exponentially fast in|�|(d−1)/d for all dimensionsd � 2.

We will study the dynamics of a short-ranged Ising model (spin-glass), where the
Hamiltonian is

H�L,J(σ )=− ∑
〈i,k〉,i,k∈�L

Ji,kσiσk. (1)

Here �L = [−L, L]2 ∩ Z2, and J denotes a specific realization of the interactions
{Ji,k}i,k∈Z2, the spinsσi = ±1 and the sum is only over nearest-neighbor pairs, with
i and k belonging to the finite region�L. The {Ji,k}i,k∈Z2 are independent identically
distributed random variables on{−1, 1}, with a Bernoulli distribution of parameter
p ∈ (0, 1). Starting from (1) we define the Gibbs measure and we consider anylocal
irreducible Markov chainhaving the Gibbs measure as stationary measure. The adjective
local means that for any transition there are only finitely many different spins between
the new configuration and the old one, and these different spins are all inside the
translation of a fixed finite region independent of�. To fix ideas we can think of Glauber
dynamics that in every transition can have only a single different spin.

We will also introduce a new kind of distanceDρ(·, ·) between two measures that
are defined on a regular lattice. We show that there are some spins for which the auto-
correlation time decays slowly to zero (see Theorem 2). In Theorem 3 we will use the
distanceDρ with its induced topology to study the convergence of the measure at timet ,
µ

(t)
�,σ,J,T , starting in the configurationσ (of the Markov chain) to the stationary measure

µ�,J,T . We will show that forT large enough there existc > 0 andM > 0 uniformly
bounded in� andσ (see Theorem 3) such that

Dρ

(
µ

(t)
�,σ,J,T , µ�,J,T

)
< Me−ct . (2)

On the other hand forT small enough we will show that there exists anε = ε(T ) > 0
and a box� depending only on the timet such that

sup
σ

Dρ

(
µ

(t)
�,σ,J,T , µ�,J,T

)
> ε (3)
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almost surely in the realization of the interactionsJ (see Theorem 3). So there are two
regions(0, TB) – low temperature – and(TA,∞) – high temperature – in which the
relaxation to the equilibrium measure of the Glauber process is qualitatively different.

In Section 5 we deal only with reversible Markov chains on boxes�L at temperature
T = 1/β. For the transition matrices associated to these Markov chains all the
eigenvaluesρL,β,i are real because the Markov chain is reversible. In high temperature
(small β) it is known that the spectral gapλ∗,L,β of the Markov chain is positive and
uniformly larger than zero:λ∗,L,β > Cβ ; in low temperature we will prove that there is a
constantAβ > 1 such that for all largeL:

λ∗,L,β < A−√lnL
β (4)

almost surely in the realization of the interactionsJ. The most important difference in
results between this work on the stochastic Edwards–Anderson model and the article
[27] on stochastic ferromagnetic Ising models is on the bounds of relaxation speed at
low temperature. In fact, in the ferromagnetic model with free boundary conditions,
there is an auto-correlation time that increases exponentially with the lengthL of the box
�L = [−L, L]2∩Z2, while in the spin glass models here,we are able only to show that it

increases withA
√

lnL
β whereAβ > 1 for large enoughβ (see also (4) and Proposition 1.2).

As mentioned, the study of the dynamical or equilibrium properties of spin glasses is
more difficult than the corresponding problems for ferromagnetic systems because some
simple and useful inequalities are lost; as examples we mention the FKG inequality and
the attractive property for the Glauber process; for these reasons the results are weaker.

The idea at the origin of this work is extremely simple and it consists in observing that
whenever there are some ferromagnetic zones in the spin system independent of the rest
of the system and if these regions are arbitrarily large then, in these regions, we can use
the results of ferromagnetic systems (see [7,27,21–23]) to find a slow convergence to the
equilibrium measure. Although our proof only works for very smallT , this argument
suggest that the conclusions should remain valid for allT < Tc.

In a disordered model (with random interactions between the spins) the independence
of a region from the rest of the system is obtainable by putting very small (or
zero) interactions on its boundary. By taking a sequence of squares, with increasing
side length, satisfying the previous property, we would obtain a slow convergence to
equilibrium of Glauber dynamics. If, as in our case, all the interactions have equal
absolute value, we have a more difficult problem; but also in this case we can get a
regionalmost independent of the rest using a particular realization of the interactions
that we present in Section 2.

The techniques of this work appear to be promising and generalizable to frustrated
Potts models [3] and dimensions larger than two. The reader can see Section 1.1 for the
main ideas and can find precise definitions in Section 2.

1.1. Main ideas

In this section we present the main ideas and results from Section 3 through
Appendix A. In Appendix A we will prove Lemmas A.4 and A.5; in these two lemmas
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it is shown that if there is an interface (see definition in Section 2) in a particular region,
denoted byBO,l , then there will exist a dual circuitγ3 in which the percentage of
unsatisfied edges is larger than the percentage of satisfied edges. We denote with(γ3)n

(resp.(γ3)r ) the unsatisfied (resp. satisfied) edges of the dual circuitγ3 and with|A| the
cardinality of a setA. Lemmas A.4 and A.5 are combined in Proposition 1.1.

PROPOSITION 1.1. – If there is an interface inBO,l then there exists a dual circuitγ3

in Bl such that: |(γ3)n| − |(γ3)r |� |γ3|/10.

This proposition has a pure geometrical flavor, but it becomes relevant in conjunction
with a result of Section 3. In Section 3, it is shown that the probability of a configuration
σ in which there is a circuitγ3 with these characteristics is exponentially decreasing
with |γ3|. Now using the strong Markov property and other arguments (see Lemma A.6)
it is quite simple to show that the auto-correlation time for a spin insideBO,l remains
large for times that are increasing with the side length of� (see Theorem 2). We
introduce a new distance between measures defined on a regular lattice that will
be denoted byDρ . In Theorem 3 we will use this distanceDρ with its induced
topology to study the convergence of the measure at timet of the Markov chain,
calledµ

(t)
�,σ,Jβ , to its stationary measure; we show that at high temperature there is an

exponential convergence ofµ
(t)
�,σ,Jβ to the stationary measure independent of the size

of � (ergodicity). But at low temperature, the time to converge to the stationary measure
grows to infinity with increasing|�|.

In Section 5 we present a result on the spectral gap of the associated reversible Markov
chains that follows from the slow convergence results of the earlier section. We give
some basic definitions now to be able to present that result. In all of this paper we deal
with irreducible and aperiodic Markov chains. We assume in the last section that the
transition matrixQL,β associated with our Markov chain is reversible relative to the
Gibbs measureµ�L,Jβ of the Ising model on the box�L = [−L, L]2∩Z2; that means:

µ�L,Jβ(σ )QL,β(σ, ω)= µ�L,Jβ(ω)QL,β(ω, σ ) (5)

for all σ, ω in the space&�L
= {−1, 1}�L . This implies that the Gibbs measure is

the stationary distribution forQL,β and also thatµ�L,Jβ(σ ) > 0 for all σ ∈ &�. The
transition matrixQL,β can be thought as the multiplication of single spin flip transition
matrices. Let us defineT x

L,β as a reversible transition matrix that leaves unchanged the
configuration out of the vertexx ∈ V and that satisfies the detailed balanced with respect
to the Gibbs measure conditioned to the configurationσ\x out of x. Let us define

QL,β =
∏
x∈�

T x
L,β; (6)

trivially QL,β is dependent on the order of the multiplication of the matricesT x
L,β but the

result will be independent of this order. The operatorQL,β is a self-adjoint contraction
on L2 of the Gibbs measure; so all its eigenvalues are in(−1, 1] and the eigenvectors
have all the components inR. We order the eigenvaluesρi,L,β of QL,β

1= ρ0,L,β � ρ1,L,β � · · ·� ρn−1,L,β >−1. (7)
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Let us defineρ∗,L,β = max{ρ1,L,β, |ρn−1,L,β|} and let ‖µ − ν‖Var be the distance in
variation between the measuresµ andν; then Dobrushin’s bound says

ρ∗,L,β � max
σ,ω

∥∥QL,β(σ, ·)−QL,β(ω, ·)∥∥Var. (8)

As a consequence of our hypotheses it is easy to show the equality

lnρ∗,L,β = lim
n→∞

1

n
ln

[
max
σ,ω

∥∥Qn
L,β(σ, ·)−Qn

L,β(ω, ·)∥∥Var

]
. (9)

The equality (9) follows by Dobrushin and Diaconis–Stroock inequalities (see [7,
pp. 42–43]). In an interval(0, TB) the process has a slow relaxation to equilibrium; but in
a high temperature interval(TA,∞) we obtain a mixing property for the process (also for
the process onZd with d � 2) and so a rapid convergence of the process to equilibrium.
We consider a sequence of boxes�L = [−L, L]2 ∩ Z2 and we have a bound on the
spectral gapλ∗,L,β := 1− ρ∗,L,β of the transition matrixQL,β .

We prove in Section 5 the following proposition for appropriateβA and βB with
0 < βA < βB <∞.

PROPOSITION 1.2. – (i)For all β < βA there isCβ > 0 such that for allL we have:

λ∗,L,β > Cβ > 0. (10)

(ii) For all β > βB there exist a constantAβ > 1 such that almost surely in the
realization of the interactionsJ for all large L we have:

λ∗,L,β < A−√lnL
β . (11)

The conclusion (i) is an old result of Aizenman and Holley (see [1]), and the
conclusion (ii) will be proved in Section 5 as a consequence of Theorem 3 and
Proposition 4.1 via the variational characterization ofλ1,L,β (see [7]). We believe that
the spectral gapλ∗,L,β converges to zero faster than we are able to show.

2. The model and some definitions

The graph. We consider a graphG = (V , E) in which the vertices are the points
of Z2 ∩ � where� is a finite subset ofR2. The edgesE are pairs of vertices{v, w}
wherev = (v1, v2), w = (w1, w2) and|v1−w1| + |v2−w2| = 1; the vertices belonging
to the same edge are calledneighbors. We, sometimes, denote the set of edges byE(�)

to make clear the dependence on�; V or V (�) is the set of vertices. With abuse of
notation, in the following, we will denote a graph only by writing the set of its vertices.

An edgee is incidentwith a vertexv if v ∈ e; two distinct edgese1, e2 are incident if
there exists a vertexv with v ∈ e1 andv ∈ e2.

Paths and circuits. A path π is a sequence of vertices and edges, sayx0, b1, x1,

b2, . . . , bl, xl wherebi = {xi−1, xi}, 1� i � l, and all its edges are distinct;π is apath
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betweenx0 andxl and itslengthis l. A path whose end-vertices coincide (a close path)
is called acircuit. A path is calledself-avoidingif all its vertices are distinct, i.e. given
a pathα with vi, vj ∈ α then vi �= vj if i �= j . A circuit γ = x0, b1, x1, b2, . . . , bl, x0

is calledself-avoiding or acycle if γ1 = x0, b1, x1, b2, . . . , bl−1, xl−1 is a self-avoiding
path. It is easy to see that one can identify a path or a circuit with the set of its edges. The
cardinality of a setA is indicated by|A| and for the length of a pathπ we also write|π |.

Some sets. Given a setB ⊂E we define thevertex set ofB, V (B), as all the vertices
v ∈ V such that there existsw ∈ V with {v, w} ∈ B; for a vertex setA we putV (A)=A.
Given a set of verticesA we defineEdges(A) as the set of edgese ∈ E such that
V ({e}) ∈A; we remark that given a set of verticesV1 ⊂ V we haveV (Edges(V1))⊂ V1

and given a set of edgesE1 ⊂ E we haveEdges(V (E1)) = E1. In the following if we
are doing a set operation using a vertex setA and an edge setB then the two sets are
thought as vertex sets; for exampleA∩B corresponds toA∩ V (B).

Boundary of a set. Given a setC of vertices we define the boundary∂C to be the
set of edgesb ∈E with b∩C �= ∅ andb∩Cc �= ∅; given a set of edgesA we abbreviate
the notation∂V (A) with ∂A.

Distance in the graph. The distance between two verticesx, y ∈ Z2 is given by
d(x, y) = supi=1,2 |xi − yi| wherex = (x1, x2) andy = (y1, y2); the distance between
two sets of verticesA andB is indicatedd(A, B)= infx∈A,y∈B d(x, y); if we have two
setsA, B of vertices or edges we putd(A, B)= d(V (A), V (B)), so the distance is well
defined also in the case that we have a set of vertices and a set of edges.

Translation. We denote withA + i the translation of the setA with the vector
i = (i1, i2).

Dual graph. The graph of verticesZ2 and edges between the neighbor vertices has
adual graph having vertex set(1

2, 1
2)+Z2 and the edges between all the pairs of vertices

verifying |v∗1 −w∗
1| + |v∗2 −w∗

2| = 1 with v∗ = (v∗1, v∗2) andw∗ = (w∗
1, w∗

2). We calldual
path, dual circuit, etc. a path, a circuit, etc. in the dual graph. This notion can be made
more general for all the planar graph, but for our aim it is not necessary.

Each edgee∗ of the dual graph – seen as a line connecting two vertices – crosses an
edgee of the original graph; so there is a bijection between the edges in the dual graph
and the edges in the original graph, therefore we can also denote a dual path with the set
of its intersected edges. So we consider a dual path or a dual circuitω in two different
ways; sometimes it is regarded as the set of the intersected edges and we will writeω,
some other times it is relevant the order of the dual vertices and of the dual edges and
in this case we will write5(ω) to stress that is an ordered set. We notice that5 is not
a function because given a set of edges related to a dual path or a dual circuit could be
several manners to order them to form a dual path or a dual circuit. So5(ω) means a
particular choice of the allowed orders and if the order will be relevant we will explicitly
write it. Given an edgebi the associated dual edge is denoted withb∗i .

The interior and exterior part of a circuit. We recall that(Z2, E(Z2)) is a planar
graph and that there is a standard unique way to associate a regular curve inR2 with a
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Fig. 1. An example of the interior and the exterior part of a circuit.

(dual) circuitγ for a planar graph. The regular curve associated to a circuitγ divides the
plane into regions that we can color with two colors in such a way that all the bordering
regions have different colors (see [6]). Exactly one of these regions will be infinite; any
vertex inside a region that has the same color as this infinite region is in theexterior part
of γ and it is denoted byExt(γ ). The interior part Int(γ ) is the set of all the vertices
that are inside the other regions (see Fig. 1). This construction is possible because the
regions and the borders can be put in a 1–1 relation with a bipartite graph (see [6]).

The block. Let us define ablockBl(v) as the set of all the edges in a square of side
length 4l and centerv; BO,l(v) ⊂Bl(v) is the set of all the edges in a square of side
length 2l and centerv. We callframe of a blockthe set:

6BO,l(v)= {
b= {u1, u2} ∈E: d(b, v)= l + 1 andd(u1, v)= d(u2, v)

}
. (12)

The spin space. The space&� = {−1, 1}� is endowed with the discrete topology, a
spin configuration is an elementσ ∈&�; for a bounded� theσ -algebraFσ consists of
all the subsets of&�. We denote withσi or σ (i) thespinon the vertexi ∈ V ; we indicate
with σ (i, t) the spin on the vertexi at a timet and withσ (·, t) the spin configuration at
a timet .

Clusters. We consider a subsetE0 of the edge setE as anactive edge set; given a
specification of the active edgesE0 we say that two verticesv1, v2 areconnectedif there
exists a pathπ betweenv1 andv2 made only of active edges. Given the setE0 the vertex
setV is divided into maximal connected components calledclusters.In the following
the active edges set, unless otherwise stated, isE0 = {b= {x, y} ∈E | σx = σy}. We will
always deal with the infinite graphZ2 or with a finite subset of it in which we preserve
the original structure ofZ2. We define the external boundary of a vertex setV1 as

∂EV1= {
b ∈ ∂V1: there exists an infinite pathγ such thatEdges(γ )∩ ∂V1= b

}
. (13)

We say that a clusterA surroundsa vertexv if there is a circuitω with all the vertices
insideA andv ∈ Int(ω).

In the following proposition we consider theclusters of positive spinsor positive
vertex cluster where an edgee = {x, y} ∈ E is active ifσx = σy = 1; we consider also
clusters of a single vertexx if σx = 1 and the incident edges are not active; analogously
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we could define theclusters of negative spins. For a cluster of positive spinsC we have
that if b = {x, y} ∈ ∂C thenσxσy =−1. We recall that a graph is calledEulerian if in
each vertex there is an even number of incident edges. The following result is known

PROPOSITION 2.1. –Let {A+
i }i=1,...,n be a set of distinct finite clusters of positive

spins. Then
(1) ∂A+

i ∩ ∂A+
j = ∅ if i �= j .

(2)
⋃

i ∂A+
i and

⋃
i ∂EA+

i are sets of dual circuits.
(3) Every maximal dual connected set in

⋃
i ∂A+

i or in
⋃

i ∂EA+
i is a dual circuit.

Proof. –(1) See [17, p. 387].
(2) Because all the considered graphs are Eulerian having, in every vertex, 0, 2 or 4

incident edges. This is equivalent to the group structure exposed in [6].
(3) This follows from (2) and the connection of an Eulerian set.✷
The Hamiltonian. We now define the Gibbs measure on the measurable space

(&�,Fσ ) (in a standard way); the Hamiltonian for a finite� is

H�,J(σ )=− ∑
b={i,k}∈E(�)

Jbσiσk (14)

where J{i,k} is the interaction between the spins ini and k; J is the interaction
configuration. Let us define the Gibbs measure, with free boundary conditions, on the
single configurationσ on a finite volume as

µ�,Jβ(σ )= exp(−βH�,J(σ ))

Z
(15)

whereZ = Z�,Jβ is the normalizing factor (partition function) andβ is called inverse
temperatureand it is defined on(0,∞). Following [8] and [18] it can also be defined a
Gibbs measureµJβ on the infinite graphZ2.

Space of interactions. We introduce the space&�,J = {−1, 1}E(�); an interaction
configuration is an elementJ ∈ &J where we omit, as in the following, the index�;
the σ -algebraFJ consists of all the subset of&J. The probability measure on&J is a
Bernoulli distribution with parameterp ∈ (0, 1) andPJ(Jb = 1)= p; we do not study the
casep = 1, 0 that is well known in literature and corresponds to the ferromagnetic and to
the anti-ferromagnetic Ising model. For the symmetric distributionPJ(Jb = 1)= 1/2 we
say that (15) define the Edwards–Anderson model in the finite volume�. In a standard
way it is possible to define the model on the infinite graphZ2. An edgeb is called
negativeor anti-ferromagneticif its interaction isJb = −1 and it is calledpositiveor
ferromagneticif its interaction isJb = 1.

Satisfied edges. We define

ηb = ηb(σ )= sign(Jbσxσy) with b= {x, y} (16)

and we say thatηb is satisfiedif ηb = 1; η ∈ {−1, 1}E(�) is called theconfiguration on the
edges. It is simple to see that givenJ andη it is not always possible to find a configuration
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Fig. 2. An example of a block.

σ that is compatible with the prescriptions given byJ andη, but that if there exists such
a configurationσ then also−σ is compatible and no other configurations have this
property. GivenJ, σ and an edge setA, we denote byAr(σ ) the set of satisfied edges in
A and we setAn(σ )=A \Ar(σ ) the unsatisfied edges; we do not write the dependence
onJ because it is a quenched random variable, soJ is assumed to be fixed once for all;J
is the random environment on which we will construct random measures and stochastic
processes. Sometimes we omit also the dependence onσ and we write simplyAr and
An. We will also useγn andγr to denote the satisfied edges of a circuitγ .

The event Cl,�. We say thatCl,� is the event consisting in the existence inE(�)

of a blockBl(v) in which if b ∈ Bl(v) \ ∂BO,l(v) thenJb = 1 and ifb ∈ ∂BO,l(v) then
alternativelyJb is equal to 1 and−1. Sometime in the following we omit the indexv
because in every box� we will fix a unique squareBl(v), if there is one, initially chosen
with the specified properties (see Fig. 2).

Interface. We say that an interfaceα is a dual path with all the edges insideBO,l(v)

and the ends vertices on∂BO,l such that all the edgese ∈ α are unsatisfied and|α|� 2l

(see Fig. 3).

Distance between measures. We write σA or σ |A for the restriction of the
configurationσ to a set of verticesA or for the corresponding cylinder event on&�.
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Fig. 3. An example of an interface.

We introduce the following distance between measures

Dρ(µ1, µ2)= sup
i∈�

∑
A,i∈A⊂�

∑
σA∈{−1,1}A

∣∣µ1(σA)−µ2(σA)
∣∣ρ |A| (17)

whereA is a connected vertex set containingi; in this case all the edges ofEdges(A)

are active andρ ∈ (0, 1) is a parameter. It is easy to check that ifρ is small enough then
the distanceD(·, ·) is uniformly bounded for every couple of probability measures on
({−1, 1}Z2

,F) (whereF is theσ -algebra generated by cylinders).

Dynamics. We consider a Glauber process acting on the spins variables; a Glauber
process changes one spin at a time. We call Glauber (process) different kinds of
processes with discrete or continuous time that update each single spin in a fixed or
in a random order.

Now we give the notions that allow to define a Markov process with a continuous time
for a spin system on a finite or infinite graph. We follow the exposition in [2] and [19].
Let us define thegradientof a functionf as

(∇xf )(σ )= f
(
σ x

)− f (σ )

where(σ x)x =−σx and(σ x)y = σy if y �= x; by ‖f ‖∞ we mean the supremum norm of
f . We also define the norm

‖|f |‖ = ∑
x∈Zd

‖∇xf ‖∞. (18)

The dynamics of the Markov process on{−1, 1}� for a finite � is defined by the
generator

(L�,Jf )(σ )=∑
x∈�

cJ(x, σ )(∇xf )(σ ), σ ∈ {−1, 1}�, (19)

where the non-negative quantitiescJ(x, σ ) are thetransition ratesfor the process. We
assume that for thecJ(x, σ )’s the following holds:
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(1) Nearest neighbor interactions,if σ (y) = σ ′(y) for all y adjacent tox then
cJ(x, σ )= cJ(x, σ ′).

(2) Reversible processor detailed balance.

exp
[−H�,J(σ )

]
cJ(x, σ )= exp

[−H�,J
(
σ x

)]
cJ

(
x, σ x

)
. (20)

(3) Positivity and boundedness. There exist positive real numbersc1 andc2 such that

c1 � inf
x,σ

cJ(x, σ ) � sup
x,σ

cJ(x, σ ) � c2. (21)

The most frequently used transition rates are those of theMetropolis dynamicand of
theheat-bathdynamic, both have the Gibbs measure as stationary measure. The first has
the following transition rate:

cJ(x, σ )=min
{
e−∇x H�,J(σ ), 1

}; (22)

the second is defined by the following transition rate:

cJ(x, σ )= µ�,Jβ

(
σ x

x | σ�\x
)= [

1+ e∇x H�,J(σ )
]−1

. (23)

At this point we can define the generator for finite or infinite spaces as for example
{−1, 1}Zd

. If the nearest neighbor interactions condition holds andc2 < ∞ we obtain
that the generator is well defined on the space of all functions having finite‖|f ‖|. For
the construction of the generator, weaker hypotheses are needed as, for example, finite
range interaction (see [2] and [19]). It has been proved that the closure inC(&Z2) of
the generator (19) is also a Markov generator (see [19]). If we consider also the detailed
balance (20) then it is natural to consider the closure of the generator inL2(&Z2, dµJβ)

(where µJβ is a reversible measure for the process); also in this case it has been
proved that the closure of the generator is a Markov generator (see [19]). Moreover,
the generator on all the infinite graph can be obtained as limit of the generators on finite
�’s.

In the following� is a finite box or is equal toZ2. We callS�,Jβ the semigroup of our
Markov process and by construction we have

lim
t→0+

St
�,Jβ − I

t
= L�,Jβ. (24)

We setµ(t)
�,Jβ = µ�,0St

Jβ where µ
(t)
�,Jβ is the induced measure in timet with initial

measureµ�,0. In the case in whichµ�,0 = δ(σ ) (the initial measure is concentrated
on the configurationσ = σ�) we writeµ

(t)
�,σ,Jβ, = δ(σ )St

�,Jβ .

3. The exponential decay of the probability of large interfaces at low temperature

Let us consider a change of sign, calledspin flip, of the configurationσ on a vertex set
A; it is easy to see that this corresponds to change the configuration on the edges with
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the following rules:

(∂A)n → (∂A)r and (∂A)r → (∂A)n. (25)

The spin flip in the regionA does not change the configuration on the edges which
have two vertices inA in fact Jx,yσxσy = Jb(−σx)(−σy); similarly for Ac. The variable
ηx,y change only if a vertex is inA and the other inAc. The vice versa holds, the
transformation (25) on a dual circuit corresponds to a spin flip in the region Int(γ ) or
Ext(γ ). Note that the dual circuitγ can be either self-avoiding or not self-avoiding.
Using this property it is easy to prove the following lemma (see also [5] where a similar
technique is applied for the percolation in frustrated systems).

LEMMA 3.1. –Givenε > 0 and the probability measureµ�,Jβ of the Ising model in
dimension2 we have that for every dual circuitγ the probability to have|γn| − |γr |>

ε|γ | is exponentially decreasing with the length|γ | and the parameterβ, uniformly in�.

Proof. –Let us fix a dual circuitγ . We have:

µ�,Jβ

({|γn| − |γr |> ε|γ |}) � max
η\γ

µ�,Jβ

({|γn| − |γr |> ε|γ |}|η\γ )
(26)

whereη\γ is a configurationη in E\γ that has to be compatible with a spin configuration
σ , i.e. there existsσ such thatηbJbσxσy � 0 with b = {x, y} ∈E \γ . For everyη\γ there
are four spin configurations that are compatible. By (25) for every spin configuration
compatible withη\γ having |γr | − |γn| > ε|γ | there is a spin configuration compatible
with η\γ , obtained flipping the regionA, with |γn| − |γr | > ε|γ |. We can write the
Hamiltonian of the Ising model as a function ofη. We write the Hamiltonian:

H =− ∑
b∈E(�)

ηb; (27)

so we have

H = ∣∣(E(�)
)

n

∣∣− ∣∣(E(�)
)

r

∣∣ (28)

whereE(�) are the edge in the box�. On a single dual circuitγ , fixing η\γ , there is an
energy difference between the compatible spin configuration that is

6H = 2
(|γn| − |γr |); (29)

so adding on the compatible configurations we have:

max
η\γ µ�,Jβ

({|γn| − |γr |> ε|γ |}|η\γ )
� e−β(|γn|−|γr |)

e−β(|γn|−|γr |) + e−β(|γr |−|γn|) (30)

� 1

1+ e2β|γ |ε < e−2β|γ |ε

which is the announced exponential bound.✷
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4. Auto-correlation time for the Edwards–Anderson spin-glass model for finite
volume at low temperature

In this section we give the results on the dynamics. From the symmetry of the
Hamiltonian, at zero magnetic field with free boundary condition, we haveµ�,Jβ(σA)=
µ�,Jβ(−σA) for every vertex setA. For a single vertex, given the initial configuration,
we will find that the probability to haveσ (v, t) �= σ (v, 0) will be for long time, with
� invading Z2, separated by the equilibrium value 1/2. We will prove these results
using the strong Markov property and the FKG inequality which in a ferromagnetic
Ising model, with measureµf

�,β , give the inequality

µ
f
�,β

(
σ (v)= 1 | σ (ω)= 1

)
� µ

f,+
�,β

(
σ (v)= 1

)
(31)

whereµ
f,+
�,β is the ferromagnetic Ising measure with positive boundary conditions,ω is a

circuit that surroundv with all positive spins; obviously, by symmetry, we can consider
the same relation putting all the spins in formula (31) equal to−1 including the boundary
conditions.

We define Prβ as the measure at temperature 1/β on the trajectories for the process
in discrete time that update the single spin variable in� with a lexicographic order and
we choose the Gibbs measure as initial measure; at every timet ∈ N only one spin is
updated. Pr�,β is the same measure on the trajectories with re-scaled time; in a unit
time we update all the spins in�. Pβ is the analogous measure on the trajectories in a
continuous time.

THEOREM 1. –Let us take as initial distribution of the process the Gibbs measure. If
β > 10 ln 3then the probability that in the time interval[0, t0] there is an interface in the
blockBl(v) can be bounded as follows:

Prβ(∃ an interface inBl for somet � t0) � 8l(t0+ 1)

∞∑
n=2l

3ne−cn <∞ (32)

wherec= cβ = β/10> ln 3.

Proof. –We remark that the probability to have an interface is time-invariant, in fact
we suppose that the process has as initial distribution the Gibbs measure which is also
the stationary measure of the process. We have

Pr
β

(∃ an interface inBl with t � t0)

�
t0∑

t=0

Prβ(∃ an interface inBl at timet)= (t0+ 1)µ�,Jβ(∃ an interface inBl).

By Lemmas A.4 and A.5 we know that an interface inBl implies that there is a dual
circuit γ with |γ |� 2l in which is verified:|γr |− |γn|<−|γ |/10. Then, by Lemma 3.1,
(settingε = β/10) we deduce that the probability that there exists such a circuitγ is less
than e−β|γ |/10. Now we need only to bound the number of circuits of fixed lengthn and
to sum overn. From a standard calculation we have that the circuits starting in a fixed
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vertex and with lengthn are less than 3n on Z2. Taking into account that at least one
of the vertex of the considered circuits is on∂BO and remembering that|∂BO | = 8l we
obtain the desired bound (32).✷

The following theorem shows that there is a positive time auto-correlation for the spin
v in the center of the squareBl(v), i.e. the auto-correlation remains far away from zero
for times that are exponentially increasing withl. This means that if there is a block
Bl(v) in � that respectsCl,�, then we can have a bound for the correlation for long
times. We recall that Prβ , Pr�,β andPβ are trajectory measures with Gibbs measure as
initial distribution on two discrete time processes and a continuous time process.

THEOREM 2. –GivenBl(v) ⊂ �, for everyδ ∈ (0, 1) there areβ0 = β0(δ) > 0 and
a = a(δ) > 1 (independent of�) such that for allβ > β0 we have

Prβ
(
σ (v, 0)σ (v, t)=−1

)
� δ for all t < al, t ∈N, (33)

Pr�,β

(
σ (v, 0)σ (v, t)=−1

)
� δ for all t < al, t = n

|�| andn ∈N, (34)

Pβ

(
σ (v, 0)σ (v, t)=−1

)
� δ for all t < al, t ∈R. (35)

Proof. –Define the eventsC+,t0(v) andC−,t0(v) as

C±,t0(v)= {∀t � t0 ∃ a circuit± surroundingv}. (36)

By Lemma A.6 in appendix we have the following inclusion

Cc
±,t0

(v)⊂ {∃t � t0 in which there is an interface inBl(v)
}
. (37)

We can write (we omit the parameterβ):

Pr
(
σ (v, 0)σ (v, t)=−1

)=Pr
(
σ (v, 0)σ (v, t)=−1 | (C±,t0(v)

)c)
Pr

((
C±,t0(v)

)c)
+Pr

(
σ (v, 0)σ (v, t)=−1 | C±,t0(v)

)
Pr

(
C±,t0(v)

)
� Pr(∃ an interface inBl(v) for t � t0)

+Pr
(
σ (v, 0)σ (v, t)=−1 | C±,t0(v)

)
Pr

(
C±,t0(v)

)
(38)

where we used the inclusion (37). By Lemma A.6 we know that, until there is not an
interface, at every timet we can find a circuit that surroundsv having the same sign
of the initial one. We can equivalently choose the eventC+(v) or C−(v) and the proof
follows the same idea. Using also Theorem 1, we find the following upper bound for
(38):

�
[
Pr

(
σ (v, 0)=−1 | C+,t0(v)

)+Pr
(
σ (v, t)=−1 | C+,t0(v)

)]
Pr

(
C+,t0(v)

)
+ 8l(t0+ 1)

∞∑
n=2l

3ne−βn/10. (39)

Formula (39) becomes:



696 E. DE SANTIS / Ann. I. H. Poincaré – PR 38 (2002) 681–710

8l(t0+ 1)

∞∑
n=2l

3ne−βn/10+Pr
({

σ (v, 0)=−1
} ∩C+,t0(v)

)
+Pr

({
σ (v, t)=−1

} ∩C+,t0(v)
)
� (40)

and for allt � t0:

� 8l(t0+ 1)

∞∑
n=2l

3ne−βn/10

+Pr
({

σ (v, 0)=−1
}∩ {for t = 0 there is a positive circuit surroundingv})

+Pr
({

σ (v, t)=−1
}∩ {for t there is a positive circuit surroundingv}). (41)

Using the FKG inequality (31), the property that the Gibbs measure is stationary with
respect to the Glauber process and the strong Markov property (i.e. independence from
the configuration external toτ+ which is the random circuit defined in Lemma A.6
that has all spin equal to+1 and is inside the ferromagnetic regionBO,l) we find the
following bound for (41)

� 8l(t0+ 1)

∞∑
n=2l

3ne−βn/10+ 2µ
f,+
β

(
σ (v)=−1

)
(42)

and we have 2µf,+
β (σ (v) = −1) = 1− mβ,+ wheremβ,+ > 0 is the magnetization of

the Ising model with positive boundary condition and temperatureT = 1/β. Increasing
β, we can make 1− mβ,+ smaller than every positive constant and series in (42) is
exponentially small withl for large enoughβ. This is enough to complete the proof of
the first assertion of the theorem. To prove the second assertion it is enough to observe
that at a timet0 there are|�|t0 updated spins but the interface can appear only updating
a spin inV (BO,l) and we remember that|V (BO,l)| = 4l2. The spins are updated in a
lexicographic order, so we obtain the inequality (42) multiplying by 4l2 and taking the
integer part oft0 + 2. To prove formula (35) we only need to find an upper bound of
the number of updated spins; in fact the lexicographic order is used only to estimate this
number. From theboundednessof the process we have:

sup
x,σ

cJ(x, σ ) � c2.

We defineC(t) as the random variable of the number of updated spins in the time interval
[0, t] in the blockBl . We write

Pβ

(
σ (v, 0)σ (v, t)=−1

)
= Pβ

(
σ (v, 0)σ (v, t)=−1 | C(t) < 40c2t l2)Pβ

(
C(t) < 40c2t l2)

+ Pβ

(
σ (v, 0)σ (v, t)=−1 | C(t) � 40c2t l2)Pβ

(
C(t) � 40c2t l2), (43)

wherec2 is the constant in (21). For the first addendum of (43) we can use the same
bound of formula (34) and for the second addendum we can use a large deviation
estimate to write

Pβ

(
C(t) � 40c2t l2) < e−6tl2
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with 6 > 0. So, collecting all the results, we have a correlation time that increases
exponentially with the parameterl of the blockBl and (35) is verified. This completes
the proof. ✷

We take a sequence of boxes�L = [−L, L]2; we will give an upper bound for the
time in which the system remains auto-correlated as a function of the box sideL (the
result isPJ-a.e. in the limit ofL→∞).

We say that{J ∗
b }b∈E is a gauge transformation of the interactions{Jb}b∈E if there

exists a spin configurationσ ∈ & such that for every edgeb = {x, y} we haveJ ∗
b =

Jbσxσy .
Given the eventCl,� we say thatC∗

l,� is the event that there exists a gauge
transformation of the interactions{Jb}b∈E verifying Cl,�. The eventsC∗

l,� and Cl,�

are isomorphic with respect to the Glauber process. We remember thatp denote the
probability that an edge is ferromagnetic. We define the following function

f (L)=
[

1

4

√
ln L

ln4

]

where[·] is the integer part.

LEMMA 4.1. –Givenp ∈ (0, 1) and a sequence�L = [−L, L]2 then

Pp,J

(
lim sup

L→∞
(C∗

[f (L)],�L
)c

)= 0.

Proof. –We give the proof for allp ∈ [1/2, 1) therefore, observing thatZ2 is a
bipartite graph, we can deduce the proof forp ∈ (0, 1/2); sinceZ2 is a bipartite graph
the transformationJ → −J is a gauge transformation and it is equivalent to change
the parameter of the Bernoulli distribution with the rulep → 1− p, so we will study
only the interval[1/2, 1). We will use the Borell–Cantelli lemma to show that only a
finite number of times the eventCf (L),�L

fails. Now we will study separately the case
p ∈ (1/2, 1) andp = 1/2.

We divide the box�L = [−L, L]2 into squares of sidel0 = 4[1
4

√
lnL
ln4 ] (so for the

blocks Bl we have l0 = 4l); the number of these squares in�L is approximately
L2 ln4/ lnL; for p ∈ (1/2, 1), for everyε ∈ (0, p) and for large enoughL (so that also
l0 large) the probability that a blockBl verifies the eventCl,� is larger than

(p− ε)2l0
2
, (44)

where 2l02 is the number of edges in a square of sidel0. In fact we are omitting a factor of
order(1−p)l0 < 1 which is a surface factor but we are also missing[(p−ε)/p]−2l0

2
> 1

which is a volume factor. Therefore using(p − ε) in place ofp we can bound the
probability that a blockBl verifies the eventCl,� with formula (44). So we can write:

∞∑
L=1

Pp

(
(C∗

[f (L)],�L
)c

)
�

∞∑
L=1

Pp

(
(C[f (L)],�L

)c
)
� M

∞∑
L=1

(
1− p

2 lnL
ln4

1

)L2 ln 4
ln L <∞ (45)
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wherep1 ∈ (1/2, p), ε = p − p1 and M a positive constant. Forp = 1/2 we have
that all the interaction configurations on a square of sidel0 have probability equal to
(1/2)2l0

2
; there are 2l0

2
configurations (gauge transformation) that verifyC∗

f (L),�L
so the

probability of the eventC∗
f (L),�L

is equal to(1/2)l0
2
; adding up as in (45) the convergence

of the sum is easily proved also in this case.
By the first Borell–Cantelli lemma we have that only a finite number of timesC∗

f (L),�L

is falsePJ-a.e. ✷
So far all the assertions are true independently of the boundary conditions; instead

for the following results we have to use free boundary conditions because we want
the symmetryµ�,Jβ(σA) = µ�,Jβ(−σA). Theorem 3 below has a deep connection
with the ferromagnetic systems in which it is possible to find the average time to
have an interface. It is known that, at low temperatures for ferromagnetic systems,
the average time to find an interface is exponentially increasing withL (side of the
box �L). Collecting the results of Lemma A.8 and of Theorem 2 we have the following
proposition.

PROPOSITION 4.1. –For all β large enough there existsδ ∈ (0, 1/2) and Aβ > 1

such that definitively inL (PJ-a.e.) and for all t < A
√

lnL
β we have

Prβ,�

(
σ (v, 0)σ (v, t)=−1

)
< δ < 1/2.

In the following theorem we use definition (17) for the distance between measures
Dρ . The parameterρ > 0 can get any positive value but if we wantTA, in the following
theorem, to be finite we need to putρ < (1/2d)2. Let us define

�(a, t)= [−ea(ln t )2
, ea(ln t )2]2∩ Z2. (46)

In the following theorem we index the measure with the parameterT = 1/β; soµ
(t)
σ1,�,T

is the measure at a timet induced by the process Pr�,β or the measure induced by the
processPβ ; in fact the proof is the same using both the definitions.

THEOREM 3. –For the Glauber process at discrete time of the Edwards–Anderson
model inZ2 we have:

(I) (High temperature)There isTA > 0 for which it is true the following. For all
T > TA there existsM > 1 andc > 0 such that for all�, for all σ1, σ2 ∈ {−1, 1}�
and for all t > 0

Dρ

(
µ

(t)
σ1,�,T , µ

(t)
σ2,�,T

)
< Me−ct . (47)

(II) (Low temperature)There isTB > 0 for which it is true the following. For all
T ∈ [0, TB ] there isε > 0 and a > 0 such that for allt large enough we have:
∀t1 < t that there existsσ1 ∈ {−1, 1}�(a,t) such that

Dρ

(
µ

(t1)
σ1,�(a,t),T , µ

(t1)
−σ1,�(a,t),T

)
> ε PJ-a.e. (48)

Part (I) is known in literature (see [23]). For this first point we can actually find an
estimate ofTA in Zd and not only inZ2. It can be shown thatTA � 4d2 maxb |Jb| for all
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ρ small enough. In our analyzed case all the interactions have absolute value equal to 1,
so we obtainTA � 4d2. We will not give the proof of this point that can be found in [14]
and we concentrate our attention on the proof of the second point.

Proof of (II). –We know by the Lemma A.8 that definitively int andPJ-a.e. there
exists in�(a, t) a blockBl(v) that verify the eventC∗

f (L),�L
with l = ln t/ ln(a1), and

a1 > 1 a constant which is independent of�(a, t). By Theorem 2 we have

Pr�,β

(
σ (v, 0)σ (v, t)=−1

)
� δ for all t � al (49)

with a > 1; we can partition the probability (49) conditioning on the initial configura-
tionsσ (·, 0) and writing:

Pr�,β

(
σ (v, 0)σ (v, t)=−1

)
= ∑

σ(·,0)∈&�

Pr�,β

(
σ (v, 0)σ (v, t)=−1 | σ (·, 0)

)
µ�,Jβ

(
σ (·, 0)

);
then there must be at least one initial configurationσ (·, 0) ∈ &� for which at a time
t1 < t we have

Pr�,β

(
σ (v, 0)σ (v, t1)=−1 | σ (·, 0)

)
� δ

but, by definition, we have

Pr�,β

(
σ (v, 0)σ (v, t1)=−1 | σ (·, 0)

)= µ
(t)
σ (·,0),�,T

(
σ (v, 0)σ (v, t)=−1

)
with T = 1/β.

Using Lemma A.8 and the previous result, we notice that definitively int for all t1 < t

there exists aσ1 such that:∣∣µ(t1)
σ1,�(a,t),T

(
σ1(v)σ (v, t)= 1

)−µ
(t1)
σ1,�(a,t),T

(
σ1(v)σ (v, t)=−1

)∣∣ > 1− 2δ > 0 (50)

and using the symmetry of the Gibbs measure with respect to the changeσ →−σ we
obtain

Dρ

(
µ

(t1)
σ1,�(a,t),T , µ

(t1)
−σ1,�(a,t),T

)
> ρ

∣∣µ(t1)
σ1,�(a,t),T

(
σ (v, t1)= 1

)−µ
(t1)
−σ1,�(a,t),T

(
σ (v, t1)= 1

)∣∣
= ρ

∣∣µ(t1)
σ1,�(a,t),T

(
σ1(v, 0)σ (v, t1)= 1

)−µ
(t1)
−σ1,�(a,t),T

(
σ1(v, 0)σ (v, t1)= 1

)∣∣
> ρ(1− 2δ) > 0 (51)

with δ given by Theorem 2. This complete the proof.✷
We remark that in the second point of Theorem 3 the configurationsσ1 can depend

on �L; to be precise the configurationsσ1,L ∈ {−1, 1}�L andσ1,M ∈ {−1, 1}�M , which
verify point (II) of Theorem 3, can not coincide on�L ∩ �M , but we can choose a
sub-sequence{σ1,Ln

}n of {σ1,L}L, since the space is finite-dimensional, in which the
configurationsσ1,Lm

andσ1,Ln
coincide on�Lm

∩�Ln
.
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5. Bounds on the spectral gap for the transition matrix

In this paragraph we study a reversible Markov chain associated to the Gibbs measure
on the finite graph.

We only analyze the Markov chain which follows by the re-scaling of the time but the
same considerations can be made, with the same aim, also for the process at continuous
time. As just remarked the process is uniquely identified with the transition matrix which
is a stochastic matrix.

In general the maximal eigenvalue of the Markov process is equal to 1; for all the
irreducible chain the maximal eigenvalue is unique and the minimal eigenvalue is larger
than−1 if, as in our case, the transition matrix is aperiodic. The eigenvalues of the
irreducible transition matrix are ordered with respect to their size (magnitude), in fact
they take only real values; usually the larger eigenvalue is denoted withρ0= 1; we write
the eigenvalues

1= ρ0= 1 > ρ1 � · · ·� ρn

with ρ1 that denote the second eigenvalue. A very important question is the study of
ρ∗ =max{ρ1, |ρn|} that drives the speed of relaxation to the stationary measure (see [7]).

There are some advantages to consider the Laplacian(1−P ) and its eigenvaluesλi =
1− ρi also called thegap of the transition matrix. In our case we investigate a sequence
of transition matrices and we look for some asymptotic bounds as function of the matrix
dimension (the matrix dimension is the number of configurations in&�). We denote
with QL,β the transition matrix associated to the process Pr�L,β with �L = [−L, L]2
that is taken reversible as respect to the Gibbs measure. We indicate the eigenvalues
of (1−QL,β) with λi,L,β and the eigenvalues ofQL,β with ρi,L,β ; the eigenvalues are
parameterized by the sideL and the inverse temperatureβ; we will show two different
asymptotic bounds in low and high temperature.

The usual minimax characterization of eigenvalues gives

λ1= inf
{

E(φ, φ)

Var(φ)
: φ is nonconstant

}
(52)

where Var(φ) is the variance ofφ relative to the stationary measure (or invariant measure
of the process) which is, by construction, the Gibbs measure andE(φ, φ) is theDirichlet
form

E(φ, φ)= 1

2

∑
σ,σ̃∈&

(
φ(σ )− φ(σ̃ )

)2
Q̃(σ, σ̃ ) (53)

where

Q̃(σ, σ̃ )=µ(σ )Q(σ, σ̃ ) (54)

andQ(·, ·) denote the transition matrix of the Markov process. With this characterization
we get an interesting estimate of the spectral gap using as function in (52)φ = φv(σ )=
σv with v given by the definition of the blockBl(v) verifying the eventC∗

l,�L
. We use, in

place ofQ, the transition matrixQt which is thet th power ofQ and we mark with the
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index t the quantity related toQt . We have

1− ρt
1,L,β � Et(φv, φv)

Vart (φv)
= 2Pr�,β

(
σ (v, 0)σ (v, t)=−1

)
� 2δ < 1 (55)

for β large enough andt < A
√

lnL
β whereAβ is an opportune constant larger then 1. In

fact Vart (φv)= 1 because we are using free boundary conditions, and

Et(φv, φv)= 1

2

∑
σ,σ ′∈&

(σv − σ ′
v)2µ�,Jβ(σ )P t(σ, σ ′)= 2Pr�,β

(
σ (v, 0)σ (v, t)=−1

)
.

(56)
Now using Proposition 4.1 we find that the (56) can be bounded with the constant 2δ < 1
whereδ is the same constant of Proposition 4.1. HencePJ-a.e. and definitively inL for
everyβ large enough we have

ρ1,L,β � exp
(
− kβ

A
√

lnL
β

)
with kβ > 0 andAβ > 1.

So we have the following bound for the spectral gap

λ∗,L,β = 1− ρ∗,L,β �
(
− kβ

A
√

lnL
β

)
.

At large enough temperatureT = β−1 we quote the result of [14] where we have:

λ∗,L,β = 1− ρ∗,L,β � Cβ with Cβ > 0; (57)

hence the spectral gap is uniformly larger thanCβ . One has two different behaviors; for
β1 large enough andβ2 small enough we find, for example:

lim
L→∞

lnλ∗,L,β2

lnλ∗,L,β1

= 0. (58)

This different behavior of the spectral gap in high and low temperature is the cause of
the different convergence to the stationary measure. In fact the relation

ln ρ∗ = lim
t→∞

1

t
ln

(
max
σ,ω

∥∥P t(σ, ·)− P t(ω, ·)∥∥var

)
(59)

is asymptotically satisfied for an aperiodic irreducible Markov chain. We remark that
also in this last paragraph we could obtain similar results for a no-reversible dynamics
using [10].

Appendix A. Geometrical results

In this appendix we present the main geometrical results. For the sake of simplicity
we deal only with Glauber processes but it is quite simple to generalize the results to
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local non-reversible processes. In this appendix we will prove some geometrical results
that are needed to use Peierls’ arguments, as in [27], in Section 3.

We recall that given a dual path (or a dual circuit)γ we denote withγ directly the
set of intersected edges and we denote with5(γ ) the ordered set of dual edges and dual
vertices. We recall the important result that a graph is a circuit if and only if it is Eulerian
(see [6] for general properties of graphs). We will write� for the symmetric difference.

LEMMA A.1. – Given the(dual) circuits (or union of circuits without edges in
common) γa and γb then γa�γb is a family of (dual) circuits and each connected
component is a(dual) circuit.

Proof. –If two graphs are Eulerian they remain Eulerian also after the symmetric
difference that can change the number of incident edges on a vertex only by an even
number; so the symmetric difference of circuits is a set of circuits (see [6]).✷

For the sake of brevity we will indicate withBl(v) the square that verifies the event
Cl,� (see definition in Section 2). Given the regionV (Bl(v)) \ V (BO,l(v)) we call Ci

the maximal connected regions inV (Bl(v)) \ V (BO,l(v)) with all spin+1 or−1 that
have nonempty intersection with∂BO,l(v) and with∂Bl(v); the setsCi are clusters in
this restricted region. The set of all theCi ’s is indicated withC; C+ is the family of all
the clusters{Ci}i made of positive spins and analogously we defineC−. We callAl the
number of clustersCi in the fixed blockBl(v), i.e.Al = |C|.

RemarkA.1. – The clusters{Ci}i=1,...,n can be ordered by their intersection with the
dual circuit∂BO,l.

For a formal proof of the remark see [17].
Given a dual circuit5(∂EC+

i )= (x∗0, b∗0, . . . , x∗0), with x∗0 that is a dual vertex external
to Bl, we definebp(i) (resp.bu(i)) as the first (resp. the last) edge in∂BO,l ∩ ∂EC+

i ,
where the elements of∂BO,l ∩ ∂EC+

i are ordered as in5(∂EC+
i ). We remark that if

there is a unique clusterC1 then can happen that there is not any edgebp(1) andbu(1)

but it is not a problem and we only have to ignore the following construction setting⋃
i γ̃i = ∅ in (A.1). We also observe thatbu(i) andbp(i) can be the same edge and we

set

F0 =
⋃
i

{
bu(i)∪ bp(i)

}
,

so that|F0|� 2|C|. We write the dual circuit5(∂EC+
i ) as(

x∗0, . . . , x∗p(i), b∗p(i), . . . , b∗u(i), x∗u(i), . . . , x∗0
)

and this implicitly defines the dual verticesx∗p(i) andx∗u(i). We call5(θi) the dual path
in ∂BO,l that has as initial vertexx∗p(i), edgeb∗p(i) and is connected tox∗u(i); θi is the
set of the intersected edges. Call5(ri) the path that results from the circuit5(∂ECi)

eliminating all the dual edges and the dual vertices betweenb∗p(i) and b∗u(i) (taking
x∗u(i) as the first vertex of the pathri). Let us defineγ̃i as the dual circuit union of the
pathsri andθi (see Fig. 4). It is easy to check the following properties of dual pathsri

andθi , seen as edge sets.



E. DE SANTIS / Ann. I. H. Poincaré – PR 38 (2002) 681–710 703

Fig. 4. A blockBl(v) with a clusterCi .

RemarkA.2. –
(1) No ri has edges in∂BO,l, by construction.
(2) Every ri has only two edges in6BO,l and they must be incident tobp(i) or

to bu(i); otherwiseri should use also edges in∂BO,l and this is impossible by
Remark A.2(1).

(3) There are only two dual vertices that belong to5(ri) and5(θi), namelyx∗p(i) and
x∗u(i). This follows directly by construction and from Remark A.2(1).

(4) Givenγ̃i := ri ∪ θi then each5(γ̃i) is a dual self-avoiding circuit. In fact5(ri) is a
dual self-avoiding path having onlyx∗p(i) andx∗u(i) as dual vertices in5(∂BO,l).
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(5) We have:γ̃i ∩ γ̃j = ∅ ∀i �= j . From the Remark A.1 on the order of clusters inC
we deduce thatθi ∩ θj = ∅ if i �= j and, moreover,ri ∩ rj = ∅ by Proposition 2.1.

(6) γ̃i ∩BO,l = ∅, by construction.

We define{M+
j }j=1,...,n as the sets of vertices clusters restricted to the regionV (Bl)

having each vertexv in V (Bl), σv = 1 andM+
j ∩ V (BO,l ∪ ∂BO,l) �= ∅. Set

γ2 :=
(⋃

j

∂M+
j

)
�

(⋃
i

γ̃i

)
. (A.1)

By Proposition 2.1 the intersection of the boundaries∂M+
j is empty, so

⋃
j ∂M+

j is
equivalent to the symmetric difference of these sets of edges, the same remark is true
also for the union of the dual circuits{γ̃i}. By Lemma A.1 we have thatγ2 is a family of
dual circuits. If there is an interfaceα the whole interface is inγ2 becauseα ⊂ ⋃

j M+
j

and
⋃

i γ̃i are edges out ofBO,l. Moreoverα, being a dual path, is connected and so it
is inside one maximal connected component ofγ2 that is a circuit by the second part
of Lemma A.1. If inBO,l there exists an interface we callα one of these interfaces, we
define the dual circuitγ3 as the maximal connected subset ofγ2 containingα. Let us
note thatγ3 is a dual circuit but it is not necessarily self-avoiding.

LEMMA A.2. – The dual circuitγ3 has all the edges inBl and all its satisfied edges
are in γ3∩ ∂BO,l .

Proof. –We first show that all the edges inγ3∩Bl can be satisfied only if they are in
∂BO,l. We know that the edges inγ3∩Bl \∂BO,l are in some∂M+

i or in someri ⊂ ∂EC+
i .

All these sets are boundaries of clusters of positive spins and they have the property to
have as satisfied edges only the negative edges (Jb =−1) because on each such a edge
b= {x, y} is σx =−σy , but we know that the negative edges ofBl are only in∂BO,l .

Now we show that all the edges belonging toγ3 are inBl . The only edges inγ3 that
are not inBl can only be the edges in∂Bl, in fact all the considered clusters are inBl .
Supposeγ3∩ ∂Bl �= ∅; this can be true only in the following two cases:

(1) ∂Bl ∩ (
⋃

j ∂M+
j ) �⊂ (

⋃
i γ̃i),

(2) ∂Bl ∩ (
⋃

i γ̃i) �⊂ (
⋃

j ∂M+
j ).

We will show that (2) cannot hold; in fact we have∂Bl ∩ (
⋃

i γ̃i)⊂ ∂Bl ∩ (
⋃

i ∂EC+
i ) that

is a subset of∂Bl ∩ (
⋃

i ∂C+
i ). We know by hypothesis thatC+

i belong to someM+
k so

if a vertexx is in C+
i it belong also toM+

k and ifx ∈ b with b ∈ ∂Bl thenb ∈ ∂C+
i being

the edgeb connected to a vertex outsideBl that do not belong toM+
k or to C+

i .
Now we show that the point (1) cannot be true; we suppose that an edgeb is in

∂Bl ∩ (
⋃

j ∂M+
j ) with b = {x, y} andx ∈ Mj , we show thatx is in someC+

k , in fact
the vertexx is connected (by definition ofM+

j ) to the circuit∂BO,l so it belong to a
clusterC+

k that is a subset ofM+
j , being a cluster intersecting∂BO,l and∂Bl , and, as in

the previous point,b ∈ ∂C+
k . But also it isb ∈ ∂ECk being possible construct an infinite

path intersecting∂Bl only in b and having as initial vertexx. ✷
In the following lemma we see that in the circuitγ3 there cannot be two consecutive

satisfied edges if they are not inF0 or on the corners of∂BO,l .
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LEMMA A.3. – Let b1 and b2 be two edges that are consecutive in the dual circuit
∂BO,l and on the same one of its four sides, then it is impossible for the following three
conditions to be simultaneously valid:

(a) the edgesb1 andb2 are both satisfied;
(b) neitherb1 nor b2 is in F0;
(c) the edgesb1 andb2 are both inγ2.

Proof. –For notation refer to Fig. 5. Let us suppose thatb4 ∈6BO,l andb3 ∈ BO,l and
that, moreoverb1, b2 are in∂BO,l with b1 a positive edge andb2 a negative edge. Let us
remark that all the verticesx1, x2, x3, x4 are inV (∂BO,l) and that therefore each positive
cluster containing one of these vertices is anM+

k . There are only 4 spin configurations
with the edgesb1 and b2 satisfied (see Fig. 5). For the configuration (1)b3 ∈ BO,l

belongs to some∂M+
i because it is in the boundary of a positive cluster with a vertex

in V (∂BO,l). One need only notice that the edgeb3 has two different spins so it belongs
to a boundary of a positive cluster. Moreover it cannot belong to anyγ̃i because thẽγi ’s
have not edges inBO,l, by construction as stressed in Remark A.2(6); sob3 is in γ2.
The edgeb4 is not in any∂M+

j or ∂C+
i therefore it is not inγ2. But γ2 is, by definition,

Fig. 5. The four configurations of Lemma A.3.
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Eulerian because it is union of distinct dual circuits, so in5(γ2) there cannot be three
dual edgesb∗1, b∗2 andb∗3 incident in the dual vertexx∗1; this implies that either the edge
b1 or the edgeb2 is not in γ2 becauseb3 ∈ γ2 andb4 /∈ γ2. The same argument solve
the configuration (3). So for the configurations (1) and (3) it is impossible to verify
simultaneously points (a) and (c) without any regard for point (b).

For the configuration (2) we argue in the same way to observe thatb3 /∈ γ2. We can
hold b4 /∈ γ2 only if b4 is in someγ̃i but this can be true only ifb1 or b2 are in F0,
see Remark A.2(2), which contradicts the hypotheses; therefore we should have an odd
number of incident dual edges in the dual vertexx∗1 which is impossible becauseγ2 is
Eulerian. The same argument solve the configuration (4). We notice that we have used
also the point (b) for the configurations (2) and (4).✷

Obviously Lemma A.3 is true also if in point (c) we changeγ2 with its subsetγ3.
Given an interface5(α)= x0, e1, x1, e2, . . . , en, xn we call interior part of the interface
the path

5(α0)= x1, e2, x2, e3, . . . , en−1, xn−1.

RemarkA.3. – Given the dual circuit5(γ3) = y0, b1, y1b2, . . . , bn, y0 if bi ∈ γ3 ∩
∂BO,l thenbi+1 /∈ α0. In fact inα0 there are no edges that are in6B or in ∂BO,l .

The following lemma shows that ifAl = |C| > 80 then there is a dual circuit with a
fraction of not satisfied edges bigger than the fraction of satisfied edges. With a different
construction we can find a circuit with the same characteristic also when there is an
interface andAl � 80; we have seen, Section 3, that these circuits have a probability to
be present in the configuration that is exponentially decreasing with|γ | (for low enough
temperatures); this is important to divide the configuration space in two regions separated
by a zone which has a very low probability to be crossed. This has been relevant, using
a sequence of�L → Z2, to prove the low speed of relaxation to the equilibrium for low
temperatures. We remind that{C+

n } = C+ are the positive vertex clusters belonging toC
and analogously{C−

n } = C− are the negative vertex clusters belonging toC.

LEMMA A.4. – If Al � 80 and l is large enough then there exists a dual circuitγ in
Bl(v) with |γ |> 30l and |γn| − |γr |� |γ |/10.

Proof. –Assume|C+| � |C−|. For each C+
i there exists a dual pathγi ∈ ∂C+

i of
ferromagnetic not satisfied edges connecting∂Bl to ∂BO,l . Moreoverγi ∩ γj = ∅ (seen
as edge set) ifi �= j ; in fact ∂C+

i ∩ ∂C+
j = ∅ if i �= j and all the edges of∂C+

i are
ferromagnetic because they are inBl \ (∂BO,l ∪ BO,l) and they are not satisfied. We
can construct a dual circuitγ joining these paths with parts of∂Bl and∂BO,l and we
remember that each satisfied edge belongs to∂Bl ∪ ∂BO,l . Therefore the satisfied edges
are at most|∂Bl| + |∂BO,l| = 20l. The number of not satisfied edges inγ are at least
|⋃i γi| and for every path we have|γi|� l−1 because they link∂Bl to ∂BO,l . There are
at least 40 distinct pathsγi sinceAl > 80 and the cardinality of the circuitγ is at least
40l − 40. So, forl large enough, we obtain|γr |/|γn|� 4/7 and the thesis follows. The
case|C+|< |C−| can be analogously proved.✷
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In the proof of the next lemma we will indicate the edges of the corners in∂BO,l with
G0; it is immediate to see that|G0| = 8 because in every corner there are two incident
edges.

LEMMA A.5. – If Al < 80, l is large enough and if there exists an interfaceα in BO,l

then the dual circuitγ3 is in Bl with |γ3|� 2l and |(γ3)n| − |(γ3)r |� |γ3|/10.

Proof. –We notice that|γ3| � 2l becauseα ⊂ γ3 and |α| � 2l. It is easy to see that
(γ3 \α0) is made of one path, calledω, and eventually some circuits, called{γ̂1, . . . , γ̂k}.
Using Lemma A.3 we know that in every circuitγ̂i, with i ∈ {1, . . . , k}, |(γ̂i)n|� |(γ̂i)r |
if in γ̂i there is not any edge belonging toF0∪G0. Analogously for the pathω we obtain
|ωn| − |ωr |�−1 if in ω there is not any edge belonging toF0∪G0. Now collecting the
inequalities on the pathω and the circuits{γ̂1, . . . , γ̂k} we obtain, by Lemma A.3 and
considering all the edges inF0 ∪G0 satisfied (the worst case), this upper bound∣∣(γ3)n

∣∣− ∣∣(γ3)r

∣∣ � 2l − 2
(|F0| + |G0|)− 2. (A.2)

By Lemma A.2 we know that(γ3)r ⊂ BO,l , so |(γ3)r |� 8l. The thesis follows by these
calculations

|(γ3)n|
|(γ3)r | � 2l − 2(|F0| + |G0|)− 2+ |(γ3)r |

|(γ3)r |
� 2l − 2(|F0| + |G0|)− 2+ 8l

8l
= 5

4
− 9+ |F0|

4l
. (A.3)

What we want to prove is equivalent to|(γ3)n|/|(γ3)r |� 11/10 and, by formula (A.3),
this is true for alll large enough. This complete the proof.✷

We remark that to prove the previous lemma needs the existence of the dual circuit
∂BO,l with interactions that are alternatively positive and negative; in fact in the
ferromagnetic Ising model at zero temperature if we consider Dobrushin boundary
conditions (positive spins on the superior half box and negative spins on the inferior half
box) there is, with probability one, an interface that divides the box� and in our case
this does not happen. At zero temperature the probability that there exists an interfaceα

in a boxBl is zero because the configuration with an interface has not the minimum of
the energy.

This result has not to be confused with the result in [12] that states that for every
edge inZ2 the probability that there is an interface is zero for every boundary condition.
Instead, taking the interactions alternatively 1 and−1 make the configuration inBO,l(v)

almostindependent from the configuration outBl(v); so the equilibrium configuration
in BO,l(v) is almost independent from the configuration out ofBl(v) and trivially from
the boundary conditions.

In the following lemma we find a relation between the absence of an interface in
Bl(v) and the event thatv is surrounded by a circuit with all spins of the same sign. We
call Li(BO,l(v)) the vertices sides ofBO,l(v) with i = 1, . . . , 4. We say that a vertex
s ∈ V (BO,l(v)) is connected to a sideLi of BO,l(v) if there exists a positive (resp.
negative) vertex clusterA⊂ BO,l(v) such thats ∈A andV (A)∩V (Li) �= ∅. Notice that
the clusterA can have a part out ofBO,l(v) but we consider only the maximal connected
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component inBO,l(v). The same definition can be used for a positive vertex cluster in
place of a single vertex. In Lemma A.6 we use the concept ofF-connection andF-cluster;
we say that two verticesu= (u1, u2), v = (v1, v2) ∈ Z2 areF-connected ifσu = σv and
supi=1,2 |ui − vi | = 1, and aF-cluster is a maximalF-connected component, i.e. it is a
cluster in which we use theF-connection in place of the connection.

LEMMA A.6. – If there is not an interface inBO,l(v) for all t � t0 then for all times
t � t0 there exists at least a circuit of verticesτ+(v, t) ⊂ V (BO,l(v)) (or τ−(v, t)) of
positive(negative) sign that is connected to the four sides ofBO,l(v); moreoverτ+(v, t)

(τ−(v, t)) surroundsv.

Proof. –We prove that if there is not a circuit of vertices with constant sign
surroundingv then there exists an interfaceα with an edgeb ∈ α and withd(b, v)= 1.
At least an edgeb with d(b, v) = 1 is not satisfied otherwise the smaller circuit
surroundingv should have all the vertices with the same sign, against the hypotheses. We
find a dual pathγ1 of not satisfied edges that is connected to∂BO,l and starting from the
edgeb (see [17]), otherwise there is a circuit surroundingv with constant sign. If there
wasγ1 that connectsb to ∂BO,l then there would exist a second dual pathγ2 composed
by not satisfied edges that connectsb to ∂BO,l , with E(γ1) ∩ E(γ2) = ∅ and with the
property thatγ1∪ γ2 is an interface.

It is evident that for every circuitπ ⊂ BO,l the number of not satisfied edges is an
even number; in fact

(−1)|πn| = ∏
b∈π

ηb = sign
( ∏

b∈π

Jb

∏
x∈π

σ 2n
x

)
> 0

since all the interactionsJb > 0 for b ∈ BO,l . If we consider a graph in which the edges
of γ1 are contracted (see for a formal definition [6]) then, again, there is not any circuit
composed of satisfied edges that intersect only one contracted vertex, otherwise there
should be a single not satisfied edge in a circuit of that kind, but all these circuits surround
the same dual vertexx∗ that is adjacent tob and there existsγ1 that connectsx∗ to ∂BO,l

because in these circuits there is at least a not satisfied edge. Butγ2 does not intersect
γ1 sinceγ1 is contracted. Therefore|γ1| � l and |γ2| � l because they connect a dual
vertex that is distant at leastl form ∂BO,l. Soγ1 ∪ γ2 is an interface in factγ1 andγ2

have only a dual vertex and no edge in common, they are connected with the two end-
vertices to∂BO,l and|γ1 ∪ γ2|� 2l. It is trivial to order by inclusion the vertex circuits
with constant sign, in fact they cannot intersect, they could intersect if we considered a
F-connection (see [17]). We callτ the most external circuit surroundingv that has all
the vertices with constant sign inV (BO,l); we suppose that the sign is positive but in the
other case the proof is similar. We consider the positive vertex regionS connected to the
circuit τ (with τ = τ+(v, t)) andSF the regionF-connected toτ . We claim that if there
is not an interface thenS ∪ τ has not empty intersection with all the sides ofBO,l and
that thereforeτ is connected to the four sides ofBO,l. If τ is the most external circuit
in V (BO,l) then(SF ∪ τ) ∩ (

⋃4
i=1 Li) �= ∅, in fact if this was false then there would be

a circuit of opposite sign respect toτ havingτ in its interior. We note that we can write
SF as the union ofF-clustersAi in V (BO,l) \ τ . If (S ∪ τ) ∩ (

⋃4
i=1 Li)= ∅ we have an
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interface made by the boundary ofτ in the region that is external to the circuitτ and
from the boundary of one of the setsAi . So if there is not an interface then we have
(S ∪ τ) ∩ (

⋃4
i=1 Li) �= ∅. The boundary∂(S ∪ τ) is made of not satisfied edges and the

region external toτ is the union of dual pathsςi with all the edges not satisfied and
the end-vertices connected to∂BO,l . We have|ςi|< 2l for all i because there is not an
interface and this is possible only if

⋃
ςi has not empty intersection with the four sides

Li which have length equal to 2l. We deduce that the most external circuitτ has the
sign equal to the initial sign because the Glauber process is local and cannot change, at
a single time, the spins of(S ∪ τ) ∩ (

⋃4
i=1 Li) that we know to be at least four and the

spins on the opposite sides that have distance at least 2l. So it is impossible to change
the sign ofτ without creating an interface.✷

Lemma A.6 is the unique point in which we have used that our Markov chain is local.
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