Ann. |. H. Poincaré — PR8, 5 (2002) 681-710
0 2002 Editions scientifiques et médicales Elsevier SAS. Al rights reserved
S0246-0203(02)01106-8/FLA

GLAUBER DYNAMICS OF SPIN GLASSES AT
LOW AND HIGH TEMPERATURE

Emilio DE SANTIS

Universita di Roma “La Sapienza”, Dipartimento di Matematica “Guido Castelnuovo”,
Piazzale Aldo Moro, 2, 00185 Roma, Italy

Received 5 May 2000, revised 2 August 2001

ABSTRACT. — We consider an increasing sequence of finite baxges™ Z2 and a reversible
stochastic frustrated Ising model having invariant measures satisfying free boundary conditions
We show that the spectral gap associated with the Edwards—Anderson model has a differe
asymptotic behavior in low and in high temperature.

In low temperature, associated with the spectral gap, there is a qualitatively slower relaxatior
to equilibrium than there is in high temperature. Some geometrical lemmas are employed in thi
paper to show that some regions almostindependent from their exterior. We use for this aim
a Peierls’ argument: 2002 Editions scientifiques et médicales Elsevier SAS

AMS classification82C44; 82C26; 82C22

RESUME. — Nous considérons, dans cet article, une suite strictement croissante de boites finie
Ar C Z? et un modeéle d’Ising stochastique réversible non ferromagnétique ayant des mesure
invariantes avec conditions de frontiére libre. Nous montrons que le frou spectral associé a
modéle d’Edwards—Anderson a des comportements asymptotiques différents a haute et bas
température.

A basse température, la relaxation vers I'équilibre est qualitativement plus lente qu’a haute
température. Nous employons dans cet article des lemmes géométriques pour montrer g
certaines régions somresqueindépendantes de leur exterieur. A cette fin, nous utilisons un
argument de type Peierls.2002 Editions scientifiques et médicales Elsevier SAS

1. Introduction

In the past two decades different dynamics have been analyzed for spin models. Th
most popular for physical reasons is the Glauber dynamics [15]. Other dynamics such &
heat bath, Metropolis, etc. all share the characteristic of being single site dynamics, the
is to say only one spin at the time is flipped. In this work we only deal with dynamics of
this type and other local dynamics. Dynamics such as Swendsen—Wang, in which whol
clusters are flipped at once are beyond the scope of the present paper (see [26,24] for t
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ferromagnetic Ising model). A paper is in preparation to prove a similar behavior for the
Swendsen-Wang dynamics of a frustrated Ising model [4].

Some basic results for the Glauber dynamics in the ferromagnetic Ising model are ir
[27,21-23].

A fundamental paper for the ferromagnetic Ising model is [23]. In that paper, it
is proved that for 2-dimensional spin systems with finite ferromagnetic interactions,
the conditions of weak mixing imply strong mixing of Gibbs states. One of the most
interesting consequences, from our point of view, is that for the ferromagnetic Ising
model at all temperature® > T, there is a rapid (i.e. exponential) convergence to
equilibrium using a Glauber dynamics (some results in [21] and [22] are also needed).

Also in the context of Glauber dynamics, the paper [29,28,20] are relevant; in these
works is proved that the Dobrushin—Shlosman mixing conditions are equivalent to the
existence of a logarithmic Sobolev inequality for the associated Gibbs measure. Ir
particular, in [20] itis proved that there is a positive spectral gap for the Kawasaki and for
the Glauber dynamics if the mixing conditions are satisfied. These properties are prove
in a general framework but they are applicable mainly for models at high temperature.

There are also some results concerning the zero-temperature case of Glaub
dynamics, usually studied with a random initial spin configuration; for a review, see [25].

The case we study here is the dynamics of the Edwards—Anderson model in twi
dimensions. In this context some progress has been recently made. In the work of [2
there are upper and lower bounds @V, r) for the Edwards—Anderson model. There
the quantityg(J, 1) is the absolute value of the difference between the expectation at
time ¢ of the spin in the origin, starting with a fixed initial condition, and its value in the
equilibrium (J is the strength of the coupling).

The bounds in [2] are almost optimal and show that the velocity of convergence to the
stationary measure, in the Griffiths’ region [16], for almost all initial conditions (with
respect to the Gibbs measure), have the following bounds if the probability distribution
of interactions decays more than exponentially and if there is a probability greater thar
zero to have interactions different in absolute value.

The lower bound is

q(J. 1) > c1(J) exp[—t exp[—ky(In1)~7]]

and the upper bound

q(J.1) < co(J) expl—1 expl—kz(In 1) (nin oy ~1]].

Also in the context of Glauber dynamics, we mention the work [11], which discusses
the spectral gap for the Random Energy Model. It is proved in there that the gap has th
same dependence on the volume at any temperature, at least in the leading order. Tt
shows that the situation for mean field models can be quite different from the short rang
situation that we discuss here.

Our work deals with Glauber dynamics for Edwards—Anderson spin-glass model
in Z2. It differs in results and methods from [2], first they have results only for the
diluted Ising models and at temperature regions different from ours. Moreover, in [2] the
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dynamics is defined on the infinite gra@h, with 4 > 2, while we analyze a sequence
of boxesA to study the spectral gap of the finite transition matrix.

Another difference from [2] consists in the choice of the interactions; in our case
we can also take all interactions with equal absolute value. Some results for zero
temperature dynamics in the equal absolute valtig)(spin glass model have also been
obtained in [13].

Also in our case it seems natural to think that a temperalyrexists, like in the
ferromagnetic case, separating two regions of the temperature parameter range in whi
there is a qualitatively different relaxation speed to the equilibrium; i.e. we think that for
everyT < Ty there is a slow relaxation to the equilibrium while for ev@ry- Ty a fast
relaxation to the equilibrium takes place. Seeing also the work [23] we conjecturgthat
is equal toT,, the critical temperature for the ferromagnetic Ising modeseems to be
relevant also for spin-glasses because there are arbitrarily large ferromagnetic regions

Our work is similar in construction and in techniques to [27], in which a bound is
proved for the spectral gap at low temperature for the ferromagnetic stochastic Ising
model; more precisely, it shows that in the low temperature regime, the spectral gaj
decreases exponentially fast|ifn| “—b/< for all dimensions? > 2.

We will study the dynamics of a short-ranged Ising model (spin-glass), where the
Hamiltonian is

Hy a(0)=—= > Jixoi0x. 1)
(i,k),i.keA]

Here A, = [—L,L]°> N Z2?, and J denotes a specific realization of the interactions
{Jik}ikez2, the spinso; = £1 and the sum is only over nearest-neighbor pairs, with
i andk belonging to the finite regiom ;. The {J;}; ,cz2 are independent identically
distributed random variables on-1, 1}, with a Bernoulli distribution of parameter
p € (0,1). Starting from (1) we define the Gibbs measure and we consideloaay
irreducible Markov chairhaving the Gibbs measure as stationary measure. The adjective
local means that for any transition there are only finitely many different spins between
the new configuration and the old one, and these different spins are all inside the
translation of a fixed finite region independentAafTo fix ideas we can think of Glauber
dynamics that in every transition can have only a single different spin.

We will also introduce a new kind of distande, (-, -) between two measures that
are defined on a regular lattice. We show that there are some spins for which the autc
correlation time decays slowly to zero (see Theorem 2). In Theorem 3 we will use the
distanceD,, with its induced topology to study the convergence of the measure at time
MX)U ;.7 starting in the configuratioar (of the Markov chain) to the stationary measure
ua.s.r- We will show that for7 large enough there exist> 0 and M > 0 uniformly
bounded inA ando (see Theorem 3) such that

DO(MX?G,J,Tv MA,J,T) <Me™“. (2)

On the other hand fof small enough we will show that there existsag ¢(T) > 0
and a boxA depending only on the timesuch that

supD, (MX?G,J,Tv MA,J,T) > & (3
(e
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almost surely in the realization of the interactichésee Theorem 3). So there are two
regions (0, Tg) — low temperature — andrl’y, co) — high temperature — in which the
relaxation to the equilibrium measure of the Glauber process is qualitatively different.
In Section 5 we deal only with reversible Markov chains on bakgsat temperature
T = 1/8. For the transition matrices associated to these Markov chains all the
eigenvaluesy,, g4, are real because the Markov chain is reversible. In high temperature
(small g) it is known that the spectral gap, ; g of the Markov chain is positive and
uniformly larger than zeroi, ; g > Cg; in low temperature we will prove that there is a
constantdz > 1 such that for all large.:

hen g < AzYME (4)

almost surely in the realization of the interactichsThe most important difference in
results between this work on the stochastic Edwards—Anderson model and the articl
[27] on stochastic ferromagnetic Ising models is on the bounds of relaxation speed &
low temperature. In fact, in the ferromagnetic model with free boundary conditions,
there is an auto-correlation time that increases exponentially with the |&éngjtthe box

Ap =[—L, L1>’NZ?, while in the spin glass models here,we are able only to show that it

increases Witmgm whereAg > 1 for large enougls (see also (4) and Proposition 1.2).

As mentioned, the study of the dynamical or equilibrium properties of spin glasses is
more difficult than the corresponding problems for ferromagnetic systems because sorn
simple and useful inequalities are lost; as examples we mention the FKG inequality an
the attractive property for the Glauber process; for these reasons the results are weake

The idea at the origin of this work is extremely simple and it consists in observing that
whenever there are some ferromagnetic zones in the spin system independent of the re
of the system and if these regions are arbitrarily large then, in these regions, we can u
the results of ferromagnetic systems (see [7,27,21-23]) to find a slow convergence to tt
equilibrium measure. Although our proof only works for very snigjithis argument
suggest that the conclusions should remain valid forad T..

In a disordered model (with random interactions between the spins) the independenc
of a region from the rest of the system is obtainable by putting very small (or
zero) interactions on its boundary. By taking a sequence of squares, with increasin
side length, satisfying the previous property, we would obtain a slow convergence tc
equilibrium of Glauber dynamics. If, as in our case, all the interactions have equal
absolute value, we have a more difficult problem; but also in this case we can get :
regionalmostindependent of the rest using a particular realization of the interactions
that we present in Section 2.

The techniques of this work appear to be promising and generalizable to frustratec
Potts models [3] and dimensions larger than two. The reader can see Section 1.1 for tt
main ideas and can find precise definitions in Section 2.

1.1. Main ideas

In this section we present the main ideas and results from Section 3 througf
Appendix A. In Appendix A we will prove Lemmas A.4 and A.5; in these two lemmas
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it is shown that if there is an interface (see definition in Section 2) in a particular region,
denoted byBj ;, then there will exist a dual circuigs in which the percentage of
unsatisfied edges is larger than the percentage of satisfied edges. We dend@ig)with
(resp.(y3),) the unsatisfied (resp. satisfied) edges of the dual cigguand with|A| the
cardinality of a setd. Lemmas A.4 and A.5 are combined in Proposition 1.1.

PROPOSITION 1.1. — If there is an interface irB, ; then there exists a dual circuit
in B; such that |(y3),,| — [(¥3),| = |ysl/10.

This proposition has a pure geometrical flavor, but it becomes relevant in conjunctior
with a result of Section 3. In Section 3, it is shown that the probability of a configuration
o in which there is a circuits with these characteristics is exponentially decreasing
with |y3]. Now using the strong Markov property and other arguments (see Lemma A.6)
it is quite simple to show that the auto-correlation time for a spin in#ige remains
large for times that are increasing with the side lengthAof{see Theorem 2). We
introduce a new distance between measures defined on a regular lattice that wi
be denoted byD,. In Theorem 3 we will use this distancB, with its induced
topology to study the convergence of the measure at tinoé the Markov chain,
called uﬁ(f(,,,ﬂ, to its stationary measure; we show that at high temperature there is ar

exponential convergence q)d‘ A0.p 10 the stationary measure independent of the size
of A (ergodicity). But at low temperature, the time to converge to the stationary measure
grows to infinity with increasingA |.

In Section 5 we present a result on the spectral gap of the associated reversible Markc
chains that follows from the slow convergence results of the earlier section. We give
some basic definitions now to be able to present that result. In all of this paper we dee
with irreducible and aperiodic Markov chains. We assume in the last section that the
transition matrixQ; s associated with our Markov chain is reversible relative to the
Gibbs measurg,, 5 of the Ising model on the boX;, = [—L, L]* N Z?; that means:

MAL,Jﬂ(U)QL,ﬂ(Uv w):MAL,Jﬂ(a))QL,ﬂ(va) (5)

for all o, w in the space2,, = {—1, 1}Ac. This implies that the Gibbs measure is
the stationary distribution foQ, s and also thaji,, (o) > 0 for all o € Q4. The
transition matrixQ,, s can be thought as the multiplication of single spin flip transition
matrices. Let us defing; ; as a reversible transition matrix that leaves unchanged the
configuration out of the vertexe V and that satisfies the detailed balanced with respect
to the Gibbs measure conditioned to the configuratignout of x. Let us define

QL,ﬂ = H TLx,ﬂ; (6)

xeA

trivially Q, s is dependent on the order of the multiplication of the matriGes but the
result will be independent of this order. The operafly 4 is a self-adjoint contraction
on L? of the Gibbs measure; so all its eigenvalues ar¢-ifh, 1] and the eigenvectors
have all the components R. We order the eigenvalugs ; s of Q; g

l=porp=prLp=-2pu-1r0p>—1 (7)
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Let us definep, ;. g = max{p1. s, lpa—1,0.p1} @and let|u — vilvar be the distance in
variation between the measuesndv; then Dobrushin’s bound says

PxL.p < r’ggxﬂ Orplo,) — Q0 pglw, ')HVar- (8)

As a consequence of our hypotheses it is easy to show the equality

1
INps.1.p= nILmOO p In [rpg>4| 07 5(0,) = O 4@, )||yad- )

The equality (9) follows by Dobrushin and Diaconis—Stroock inequalities (see [7,
pp. 42-43]). In an intervall, T) the process has a slow relaxation to equilibrium; but in
a high temperature intervél'y, co) we obtain a mixing property for the process (also for
the process o@? with d > 2) and so a rapid convergence of the process to equilibrium.
We consider a sequence of boxas = [—L, L]> N Z? and we have a bound on the
spectral gap., 1 g := 1 — p, 1 g Of the transition matrixQ,, 4.

We prove in Section 5 the following proposition for approprigte and gz with
O0< Ba < PBp <o00.

PropPosITION 1.2. — (i)For all B < B4 there isCy > 0 such that for allL we have
)\*,L,ﬁ > Cﬂ > 0. (10)

(i) For all B > B there exist a constanfig > 1 such that almost surely in the
realization of the interactiond for all large L we have
AxL,p < Agm. (11)
The conclusion (i) is an old result of Aizenman and Holley (see [1]), and the
conclusion (ii) will be proved in Section 5 as a consequence of Theorem 3 and

Proposition 4.1 via the variational characterizatiomgf, s (see [7]). We believe that
the spectral gap., ; g converges to zero faster than we are able to show.

2. Themodd and some definitions

The graph. We consider a graply = (V, E) in which the vertices are the points
of Z2N A whereA is a finite subset oR?. The edgesE are pairs of verticegv, w}
wherev = (v, v2), w = (w1, wp) and|vy — ws| + |vo — wo| = 1; the vertices belonging
to the same edge are calledighbors We, sometimes, denote the set of edge# o)
to make clear the dependence anV or V(A) is the set of vertices. With abuse of
notation, in the following, we will denote a graph only by writing the set of its vertices.

An edgee is incidentwith a vertexv if v € e; two distinct edgesgs, e, are incident if
there exists a vertex with v € ¢; andv € es.

Paths and circuits. A path x is a sequence of vertices and edges, &gy, x1,
by, ..., b, x; whereb; = {x;_1, x;}, 1 <i <[, and all its edges are distinet; is apath
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betweenxy andx; and itslengthis /. A path whose end-vertices coincide (a close path)
is called acircuit. A path is calledself-avoidingif all its vertices are distinct, i.e. given

a patha with v;, v; € o thenv; # v; if i # j. A circuit y = xo, by, x1, b2, ..., b1, x0

is calledself-avoiding or acycleif y; = xq, b1, x1, bo, ..., bj_1, x;_1 IS a self-avoiding
path. It is easy to see that one can identify a path or a circuit with the set of its edges. Th
cardinality of a set is indicated by A| and for the length of a patia we also writejr|.

Somesets. Given asetB C E we define thevertex set ofB, V(B), as all the vertices
v € V such that there existis € V with {v, w} € B; for a vertex sefA we putV (A) = A.
Given a set of vertices\ we defineEdgesA) as the set of edges € E such that
V({e}) € A; we remark that given a set of vertics C V we haveV (EdgegVy)) C V1
and given a set of edgds, C E we haveEdgesV (E1)) = E1. In the following if we
are doing a set operation using a vertex 4eand an edge s&® then the two sets are
thought as vertex sets; for example) B corresponds tal N V (B).

Boundary of aset. Given a selC of vertices we define the boundady to be the
set of edge$ € E with b N C # @ andb N C¢ # @; given a set of edges we abbreviate
the notationd V (A) with 90 A.

Distance in the graph. The distance between two verticesy € Z? is given by
d(x,y) =SUp_y,|x; — yil wherex = (x1,x2) andy = (y1, y2); the distance between
two sets of verticest and B is indicatedd (A, B) = inf,c4 yepd(x, y); if we have two
setsA, B of vertices or edges we pd(A, B) =d(V(A), V(B)), so the distance is well
defined also in the case that we have a set of vertices and a set of edges.

Trandation. We denote withA + i the translation of the sed with the vector
i = (i1, 12).

Dual graph. The graph of verticeZ? and edges between the neighbor vertices has
adual graph having vertex se([%, %) +Z2 and the edges between all the pairs of vertices
verifying [vi — wi| + [v; — w3| = 1 with v* = (v], v3) andw* = (w7, w3). We calldual

path, dual circuit, etc a path, a circuit, etc. in the dual graph. This notion can be made
more general for all the planar graph, but for our aim it is not necessary.

Each edge* of the dual graph — seen as a line connecting two vertices — crosses ar
edgee of the original graph; so there is a bijection between the edges in the dual grapt
and the edges in the original graph, therefore we can also denote a dual path with the s
of its intersected edges. So we consider a dual path or a dual cirénitwo different
ways; sometimes it is regarded as the set of the intersected edges and we wi,write
some other times it is relevant the order of the dual vertices and of the dual edges an
in this case we will writel" (w) to stress that is an ordered set. We notice tha not
a function because given a set of edges related to a dual path or a dual circuit could b
several manners to order them to form a dual path or a dual circuil.(&p means a
particular choice of the allowed orders and if the order will be relevant we will explicitly
write it. Given an edgé; the associated dual edge is denoted Wjth

Theinterior and exterior part of acircuit. We recall that(Z?, E(Z?)) is a planar
graph and that there is a standard unique way to associate a regular cB/avith a
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Fig. 1. An example of the interior and the exterior part of a circuit.

(dual) circuity for a planar graph. The regular curve associated to a cipcditides the
plane into regions that we can color with two colors in such a way that all the bordering
regions have different colors (see [6]). Exactly one of these regions will be infinite; any
vertex inside a region that has the same color as this infinite region is @xtéegor part

of y and it is denoted b¥xt(y). The interior part In{y) is the set of all the vertices
that are inside the other regions (see Fig. 1). This construction is possible because tt
regions and the borders can be put in a 1-1 relation with a bipartite graph (see [6]).

Theblock. Let us define dlock B;(v) as the set of all the edges in a square of side
length 4 and centew; By (v) CB;(v) is the set of all the edges in a square of side
length 2 and centewn. We callframe of a blockthe set:

ABo,(v) = {b={u1,us} € E: d(b,v) =1 +1andd(uy,v) =d(uz.v)}.  (12)

Thespin space. The space2, = {—1, 1}* is endowed with the discrete topology, a
spin configuration is an elemetite 2, ; for a boundedA the o -algebraf, consists of
all the subsets a2 , . We denote withy; or o (i) thespinon the vertex € V; we indicate
with o (i, t) the spin on the vertekat a timer and witho (-, 1) the spin configuration at
atimer.

Clusters. We consider a subséi, of the edge seE as anactive edge segiven a
specification of the active edgés we say that two verticeg,, v, areconnectedf there
exists a pathr betweerv; andv, made only of active edges. Given the ggtthe vertex
setV is divided into maximal connected components cattedsters.In the following
the active edges set, unless otherwise statef is {b = {x, y} € E | 0, = 0,}. We will
always deal with the infinite graph? or with a finite subset of it in which we preserve
the original structure aZ2. We define the external boundary of a vertexéeis

3%V1 = {b € 3V1: there exists an infinite path such thaEdgesy) N dVy =b}. (13)

We say that a clustet surroundsa vertex if there is a circuitw with all the vertices
insideA andv € Int(w).

In the following proposition we consider theusters of positive spiner positive
vertex cluster where an edge= {x, y} € E is active ifo, = o, = 1, we consider also
clusters of a single vertexif o, = 1 and the incident edges are not active; analogously
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we could define thelusters of negative spinkor a cluster of positive spins we have
that if b = {x, y} € 9C theno,o, = —1. We recall that a graph is calléllerianif in
each vertex there is an even number of incident edges. The following result is known

.....

spins. Then
(1) 0A; NOAT =0ifi# ).
(2) U; A and|y; 9 A" are sets of dual circuits.
(3) Every maximal dual connected setipo A orin |J; 3f A} is a dual circuit.

Proof. —(1) See [17, p. 387].

(2) Because all the considered graphs are Eulerian having, in every vertex, 0, 2 or
incident edges. This is equivalent to the group structure exposed in [6].

(3) This follows from (2) and the connection of an Eulerian setl

The Hamiltonian. We now define the Gibbs measure on the measurable space
(R4, Fy) (in a standard way); the Hamiltonian for a finiteis

Hyy(o)=— > Jyoi0 (14)
b={i,k}eE(A)

where Ji; i is the interaction between the spins inand k; J is the interaction
configuration. Let us define the Gibbs measure, with free boundary conditions, on the
single configuratiorr on a finite volume as

exp(—BHy (o))
zZ

map(0) = (15)
whereZ = Z, ;3 is the normalizing factorpartition functior) and g is called inverse
temperatureand it is defined or0, co). Following [8] and [18] it can also be defined a
Gibbs measurgjs on the infinite graptz?.

Space of interactions. We introduce the spacg, ; = {—1, 1}EM): an interaction
configuration is an elemerd € Q; where we omit, as in the following, the index;
the o -algebraF; consists of all the subset &t;. The probability measure of2; is a
Bernoulli distribution with parametegr € (0, 1) and P;(J, = 1) = p; we do not study the
casep =1, 0 that is well known in literature and corresponds to the ferromagnetic and to
the anti-ferromagnetic Ising model. For the symmetric distribufety/, = 1) = 1/2 we
say that (15) define the Edwards—Anderson model in the finite volaime a standard
way it is possible to define the model on the infinite grah An edgeb is called
negativeor anti-ferromagnetidf its interaction isJ, = —1 and it is calledpositive or
ferromagnetidf its interaction isJ, = 1.

Satisfied edges.  We define
ny = np(0) =sign(Jyo,0y)  With b = {x, y} (16)

and we say thaj,, is satisfiedf n, = 1;n € {—1, 1}*™ is called theconfiguration on the
edgesltis simple to see that givehandp it is not always possible to find a configuration



690 E. DE SANTIS/ Ann. I. H. Poincaré — PR 38 (2002) 681-710

N N N N
- Lo
] 1
— —
[ _._I
| v L
1 1
r- =
L !
1 1
[ ol
1 1
I I I B

- - Denote the edges inside the frame of the block AB |
1
and 1 denote the eges in the boundary of the block B, |

Fig. 2. An example of a block.

o that is compatible with the prescriptions givenbgndn, but that if there exists such

a configurationo then also—o is compatible and no other configurations have this
property. GivenJ, o and an edge set, we denote b, (o) the set of satisfied edges in

A and we setA,,(0) = A\ A, (o) the unsatisfied edges; we do not write the dependence
onJ because it is a quenched random variable] scassumed to be fixed once for all;

is the random environment on which we will construct random measures and stochasti
processes. Sometimes we omit also the dependeneeasmd we write simplyA, and

A,. We will also usey, andy, to denote the satisfied edges of a cirguit

Theevent C;,,. We say thatC; , is the event consisting in the existencefA)
of a block B;(v) in which if b € B;(v) \ dBo(v) thenJ, =1 and ifb € 3By ;(v) then
alternatively J, is equal to 1 and-1. Sometime in the following we omit the index
because in every bax we will fix a unique squard,; (v), if there is one, initially chosen
with the specified properties (see Fig. 2).

Interface. We say that an interfaceis a dual path with all the edges insi@g ;(v)
and the ends vertices @B, ; such that all the edgesc « are unsatisfied anjd| > 2/
(see Fig. 3).

Distance between measures. We write o4 or o|, for the restriction of the
configurationo to a set of verticesA or for the corresponding cylinder event €1y,.
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Fig. 3. An example of an interface.

We introduce the following distance between measures

D,(u1, t2) = sup Z Z |1(oa) — pa(oa)| M (17)

1€A AieACA gyef{—1,1}4

where A is a connected vertex set containifign this case all the edges &dgesA)

are active ang € (0, 1) is a parameter. It is easy to check thap iis small enough then
the distanceD (-, -) is uniformly bounded for every couple of probability measures on
(-1, 1}22, F) (whereF is theo -algebra generated by cylinders).

Dynamics. We consider a Glauber process acting on the spins variables; a Glaube
process changes one spin at a time. We call Glauber (process) different kinds ©
processes with discrete or continuous time that update each single spin in a fixed c
in a random order.

Now we give the notions that allow to define a Markov process with a continuous time
for a spin system on a finite or infinite graph. We follow the exposition in [2] and [19].
Let us define thgradientof a function f as

(Vi f)(0) = f (o) = f(0)

where(c*), = —o, and(c¥), = oy if y #x; by || flloc Wwe mean the supremum norm of
f. We also define the norm

AN =" 1V flloo- (18)
xezd

The dynamics of the Markov process ¢r1, 1}* for a finite A is defined by the
generator

(Laaf)(0)=> ci(x,0)(Vif)(o), oe{-11", (19)
xXeA

where the non-negative quantitiex, o) are thetransition ratesfor the process. We
assume that for they(x, o)’s the following holds:
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(1) Nearest neighbor interactionsf o(y) = o’(y) for all y adjacent tox then
ci(x,0)=cy(x, o).
(2) Reversible processr detailed balance

exp[—Ha 3(0)]cy(x,0) =exp[—Hy 5(0%)]es(x, o). (20)
(3) Positivity and boundednesghere exist positive real numbearsandc, such that

c1 <infey(x, o) <supey(x, o) < co. (21)

The most frequently used transition rates are those oMieopolis dynami@nd of
theheat-bathdynamic, both have the Gibbs measure as stationary measure. The first ha
the following transition rate:

ci(x,0) = min{e_v-"HA’J(”), 1}; (22)
the second is defined by the following transition rate:

ca(x,0)=pagp(0]) oay) =[1+ eV*HA'J(U)]_l- (23)

At this point we can define the generator for finite or infinite spaces as for example
{—1, 1}Zd. If the nearest neighbor interactions condition holds ane co we obtain
that the generator is well defined on the space of all functions having firfite For
the construction of the generator, weaker hypotheses are needed as, for example, fin
range interaction (see [2] and [19]). It has been proved that the closurésigz) of
the generator (19) is also a Markov generator (see [19]). If we consider also the detaile
balance (20) then it is natural to consider the closure of the generaiG({ey2, dijp)
(where uyp is a reversible measure for the process); also in this case it has beer
proved that the closure of the generator is a Markov generator (see [19]). Moreover
the generator on all the infinite graph can be obtained as limit of the generators on finit
A’s.

In the following A is a finite box or is equal t@2. We call S, 55 the semigroup of our
Markov process and by construction we have

Y —1
lim ZA28  °

t—0t

= L 3. (24)

We setyuy, = pa 0S5, where ), is the induced measure in timewith initial
measureu, o. In the case in whichu, o = §(o) (the initial measure is concentrated

on the configuration = ;) we write ufy, ;5 = 8(0)S% 5.

3. Theexponential decay of the probability of large interfaces at low temperature

Let us consider a change of sign, calfgain flip of the configuratior on a vertex set
A; it is easy to see that this corresponds to change the configuration on the edges wil
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the following rules:
(0A), = (0A), and (dA), = (0A),. (25)

The spin flip in the regiomrA does not change the configuration on the edges which
have two vertices iA in fact J, yo0,0, = J,(—0,)(—0oy); similarly for A°. The variable

ny,y Change only if a vertex is iM and the other inA. The vice versa holds, the
transformation (25) on a dual circuit corresponds to a spin flip in the regid@p )l
Ext(y). Note that the dual circuiy can be either self-avoiding or not self-avoiding.
Using this property it is easy to prove the following lemma (see also [5] where a similar
technique is applied for the percolation in frustrated systems).

LEMMA 3.1. -Givene > 0 and the probability measure, j5 of the Ising model in
dimension2 we have that for every dual circujt the probability to havéy,| — |y, | >
e|y | is exponentially decreasing with the length and the parameteg, uniformly inA.

Proof. —Let us fix a dual circuity. We have:
tas({val = lyel > elyl}) < rg\aXMA,J,e({IVnI — |yl > ely Hmy) (26)
Y

wheren,, is a configuration in E'\ y that has to be compatible with a spin configuration
o, i.e. there exists such that, /o0, > 0 withb = {x, y} € E \ y. For everyn,, there

are four spin configurations that are compatible. By (25) for every spin configuration
compatible withn,, having|y.| — |y.| > ¢|y| there is a spin configuration compatible
with #,,, obtained flipping the regiom, with |y,| — [y:| > ely|. We can write the
Hamiltonian of the Ising model as a functionpfWe write the Hamiltonian:

H=— % (27)

beE(A)
so we have
H=[(EW),| - [(EWn)),| (28)

whereE (A) are the edge in the baX. On a single dual circui, fixing n,,, there is an
energy difference between the compatible spin configuration that is

AH:2(|Vn|_|Vr|); (29)

so adding on the compatible configurations we have:

e_,B(|Vn|_|}’r|)
- <
maxiea,p Iyl =1l > ely i) S Caqn e s (30)
1
< ~261yle
ST1r ek -

which is the announced exponential boundi
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4. Auto-corréation time for the Edwar ds-Ander son spin-glass model for finite
volume at low temperature

In this section we give the results on the dynamics. From the symmetry of the
Hamiltonian, at zero magnetic field with free boundary condition, we haves(os) =
wa,i8(—0,) for every vertex sefd. For a single vertex, given the initial configuration,
we will find that the probability to have (v, t) # o (v, 0) will be for long time, with
A invading Z?, separated by the equilibrium valug2L We will prove these results
using the strong Markov property and the FKG inequality which in a ferromagnetic
Ising model, with measurp,ﬁ,ﬂ, give the inequality

1hslo@)=1lo@) =1) = ulh(cw=1) 31)

whereu is the ferromagnetic Ising measure with positive boundary conditipisa
circuit that surround with all positive spins; obviously, by symmetry, we can consider
the same relation putting all the spins in formula (31) equaitancluding the boundary
conditions.

We define Py as the measure at temperatuygs bn the trajectories for the process
in discrete time that update the single spin variabl@ iwith a lexicographic order and
we choose the Gibbs measure as initial measure; at every tinié only one spin is
updated. Py s is the same measure on the trajectories with re-scaled time; in a unit
time we update all the spins iN. P is the analogous measure on the trajectories in a
continuous time.

THEOREM 1. —Let us take as initial distribution of the process the Gibbs measure. If
B > 101In 3then the probability that in the time intervgD, o] there is an interface in the
block B;(v) can be bounded as follows

Prg(3 an interface inB; for somer < 1p) < 8l(1p+ 1) Z e " <0 (32)
n=21

wherec = cg = /10> In3.

Proof. —We remark that the probability to have an interface is time-invariant, in fact
we suppose that the process has as initial distribution the Gibbs measure which is als
the stationary measure of the process. We have

Pr(EI an interface inB; with r < 1g)

fo
<) _Prg(3 aninterface inB, at timer) = (1o + 1)11.4,34(3 an interface inB,).

t=0
By Lemmas A.4 and A.5 we know that an interfaceBnimplies that there is a dual
circuit y with |y| > 21 in which is verified:|y,| — |y.| < —|y|/10. Then, by Lemma 3.1,
(settinge = B/10) we deduce that the probability that there exists such a cirdsitess
than #1719, Now we need only to bound the number of circuits of fixed lengtind
to sum ovem. From a standard calculation we have that the circuits starting in a fixed
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vertex and with lengt are less than”3on Z2. Taking into account that at least one
of the vertex of the considered circuits is ®B, and remembering thad B, | = 8 we
obtain the desired bound (32)0

The following theorem shows that there is a positive time auto-correlation for the spin
v in the center of the squa® (v), i.e. the auto-correlation remains far away from zero
for times that are exponentially increasing withThis means that if there is a block
B;(v) in A that respect¥’; », then we can have a bound for the correlation for long
times. We recall that By Pr, g and Ps are trajectory measures with Gibbs measure as
initial distribution on two discrete time processes and a continuous time process.

THEOREM 2. —Given B;(v) C A, for everys € (0, 1) there arefy = Bo(8) > 0 and
a =a(8) > 1 (independent of\) such that for allg > 8, we have

Prs (o (v,00 (v, 1) =-1) <8 forallr <d, teN, (33)
Prys(o(, 00, n)=-1) <8 forallr<d, t= |Z—| andn e N, (34)
Ps(o(v,0)0(v,t)=—-1) <8 forallt<d, teR. (35)

Proof. —Define the event€’, ,,(v) andC_ ,(v) as
Cy 4, (v) = {Vt < 19 3 a circuit£ surroundingy}. (36)

By Lemma A.6 in appendix we have the following inclusion
CS ,,(v) C {3t <10 in which there is an interface iB; (v) }. (37)

We can write (we omit the parametgy:

Pr(o (v, 0)o (v, 1) = —1) = Pr(o (v,0)0 (v, 1) = =1 | (Cx.,,(v))*) Pr((Cx.1,(v))°)
+ Pr(o(v,0)0 (v, 1) = —1| Cy 1,(v)) Pr(Cq 1, (v))
< Pr(3 an interface inB;(v) for t < 1p)
+ Pr(o (v,0)0 (v, 1) = —1| Cy 1,(v)) Pr(Cy ,(v)) (38)

where we used the inclusion (37). By Lemma A.6 we know that, until there is not an
interface, at every time we can find a circuit that surroundshaving the same sign

of the initial one. We can equivalently choose the ev@ntv) or C_(v) and the proof
follows the same idea. Using also Theorem 1, we find the following upper bound for
(38):

< [Pro(v,00=—1] Cy 1 (v)) + Pr(o(v,1) = —=1| C4 ,(v))] Pr(Cy 1, (V)

+8l(to+1) Y 3'e 0 (39)
n=21

Formula (39) becomes:
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8l(to+1) > 3'e 04 Pr({o(v,00 = =1} N Cy ()
n=21

+Pr({o(v,1) =1} NC4 1, (v)) < (40)
and for allr < 1g:

<8l(p+1) ) 3eh/t0
n=21

+ Pr({o (v,0) = —1} N {for t = 0 there is a positive circuit surrounding)
+ Pr({o (v,t) = —1} N {for ¢ there is a positive circuit surrounding).  (41)

Using the FKG inequality (31), the property that the Gibbs measure is stationary with
respect to the Glauber process and the strong Markov property (i.e. independence fro
the configuration external te™ which is the random circuit defined in Lemma A.6
that has all spin equal te-1 and is inside the ferromagnetic regi®y ;) we find the
following bound for (41)

<8lto+1) Y 3e 04 2ul* (0 (v) =-1) (42)
n=21

and we have /2£’+(a(v) =—1) =1—-mg_ wheremg > 0 is the magnetization of

the Ising model with positive boundary condition and temperaluge1/8. Increasing

B, we can make X mg . smaller than every positive constant and series in (42) is
exponentially small with for large enouglg. This is enough to complete the proof of
the first assertion of the theorem. To prove the second assertion it is enough to obsen
that at a timeg there arg A |rg updated spins but the interface can appear only updating
a spin inV(By,) and we remember thaV (By ;)| = 4/%. The spins are updated in a
lexicographic order, so we obtain the inequality (42) multiplying b ahd taking the
integer part offy + 2. To prove formula (35) we only need to find an upper bound of
the number of updated spins; in fact the lexicographic order is used only to estimate thi
number. From théoundednessf the process we have:

supe;(x, o) < c2.

X,0

We defineC (¢) as the random variable of the number of updated spins in the time interval
[0, ¢] in the blockB;. We write

Pg(o(v,0)0 (v, 1) = —1)
= Pg(0(v,0)0 (v, 1) = —1] C(t) < 40cptl?) Pg(C(t) < 40c,tl?)
+ Pg(0 (v,0)0 (v, 1) = —1| C(1) > 40cptl?) Pg (C(t) > 40c,tl?),  (43)

wherec, is the constant in (21). For the first addendum of (43) we can use the same
bound of formula (34) and for the second addendum we can use a large deviatiol
estimate to write

Py (C(1) > 40cp11?) < €21
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with A > 0. So, collecting all the results, we have a correlation time that increases
exponentially with the parametérof the block B; and (35) is verified. This completes
the proof. O

We take a sequence of boxas = [—L, L]% we will give an upper bound for the
time in which the system remains auto-correlated as a function of the box.Sjthes
result isPj-a.e. in the limit ofL — o).

We say that{J;},c¢ is agauge transformation of the interactiod,},cx if there
exists a spin configurationr € Q such that for every edge = {x, y} we haveJ; =
Jy0,0y.

Given the eventC; , we say thatC;, is the event that there exists a gauge
transformation of the interaction§/,},cx verifying C; 4. The eventsC;, and C; 5
are isomorphic with respect to the Glauber process. We remembep thahote the
probability that an edge is ferromagnetic. We define the following function

1 /InL
4\ In4

LEMMA 4.1. -Givenp e (0, 1) and a sequencé ; = [—L, L]? then

f(L) =

wherel[-] is the integer part.

P, s (lim sup(C[*f(L)],AL)c) =0.
L—o0

Proof. ~We give the proof for allp € [1/2, 1) therefore, observing that? is a
bipartite graph, we can deduce the proof foe (0, 1/2); sinceZ? is a bipartite graph
the transformation] —~ —J is a gauge transformation and it is equivalent to change
the parameter of the Bernoulli distribution with the ryle—~ 1 — p, so we will study
only the interval[1/2, 1). We will use the Borell-Cantelli lemma to show that only a
finite number of times the eveudl; ;) , fails. Now we will study separately the case
pe(1/2,1)andp =1/2.

We divide the boxA; = [—L, L]? into squares of sidé = 4[%1\/%] (so for the
blocks B, we havely = 4l); the number of these squares i, is approximately
L?In4/InL; for p € (1/2, 1), for everye € (0, p) and for large enougli. (so that also
lo large) the probability that a blocR, verifies the even€; , is larger than

(p—e)2, (44)

where 2,2 is the number of edges in a square of gigdén fact we are omitting a factor of
order(1— p)o < 1 which is a surface factor but we are also misging—¢)/p]-20" > 1
which is a volume factor. Therefore usiiig — ¢) in place of p we can bound the
probability that a blockB; verifies the evenc; , with formula (44). So we can write:

o0 o0 o0 —n4
> P ((Clrna)) <D Pp((Crrana)) <MY (1—p™ ) ™F <00 (45)

L=1 L=1 L=1
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where p1 € (1/2, p), e = p — p1 and M a positive constant. Fop = 1/2 we have
that all the interaction configurations on a square of gideave probability equal to
(1/2)%"; there are #° configurations (gauge transformation) that verfy,, ,, sothe
probability of the even€7 ;) ,, is equal to(1/2)1°2; adding up as in (45) the convergence
of the sum is easily proved also in this case.

By the first Borell-Cantelli lemma we have that only a finite number of tigigs, ,,
is falsePj-a.e. O

So far all the assertions are true independently of the boundary conditions; instea
for the following results we have to use free boundary conditions because we wan
the symmetryp, j5(0a) = pa,gp(—0o4). Theorem 3 below has a deep connection
with the ferromagnetic systems in which it is possible to find the average time to
have an interface. It is known that, at low temperatures for ferromagnetic systems
the average time to find an interface is exponentially increasing wi{side of the
box A ). Collecting the results of Lemma A.8 and of Theorem 2 we have the following
proposition.

PropPosITION 4.1. —For all g large enough there exisi&e (0,1/2) and Ag > 1

such that definitively ir. (P;-a.e) and for allr < A;{m we have

Prg.a(o(v,0)o (v, 1) =—-1) <8 <1/2.

In the following theorem we use definition (17) for the distance between measures
D,. The parametep > 0 can get any positive value but if we welfi, in the following
theorem, to be finite we need to put< (1/24)2. Let us define

Aa,t) = [_ea(lnt)z’ ea(lnt)2]2 NnZz2 (46)
In the following theorem we index the measure with the paraniterl/s; sous. , r
is the measure at a timeinduced by the process Py or the measure induced by the
processPy; in fact the proof is the same using both the definitions.

THEOREM 3. —For the Glauber process at discrete time of the Edwards—Anderson
model inZ? we have
(I) (High temperature)There isT, > 0 for which it is true the following. For all
T > T, there exists > 1 andc > 0 such that for allA, for all o1, 0, € {—1, 1}*
andforallr >0

) ) —
DP(/’Lz(ftl,A,T’ /'Lotz,A,T) <Me ™. (47)

(1) (Low temperature)There isTp > 0 for which it is true the following. For all
T € [0, Tg] there ise > 0 anda > 0 such that for allz large enough we have
V11 < t that there exists; e {—1, 1}2©? such that

(1) (1)
D, (/J'oll,A(a,t),Tv M—%rl,A(a,t),T) > ¢ Pjy-a.e. (48)

Part (1) is known in literature (see [23]). For this first point we can actually find an
estimate off, in Z¢ and not only inZ?. It can be shown that, < 44 max, |J,| for all
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p small enough. In our analyzed case all the interactions have absolute value equal to
so we obtairll’, < 4d?. We will not give the proof of this point that can be found in [14]
and we concentrate our attention on the proof of the second point.

Proof of (II). -We know by the Lemma A.8 that definitively inand P;j-a.e. there
exists inA(a, t) a block B;(v) that verify the evenCy ) 5, with I =In¢/In(ay), and
ay > 1 a constant which is independent®ta, ¢). By Theorem 2 we have

Prys(o(v,00 (v, 1) =-1) <8 forallt <d' (49)
with a > 1; we can partition the probability (49) conditioning on the initial configura-
tionso (-, 0) and writing:

Prag(o(v,0)o (v, 1) = —1)

= Z PrA,ﬂ(O'(U,O)O—(U,t)=—1|O—(,0))[/LA,\]/3(O'(,O)),
o (-,00eQp

then there must be at least one initial configuratian, 0) € 2, for which at a time
1 <t we have

Prag(oc(v,00(v,t1) =—1|0(-,0)) <3

but, by definition, we have
Prys(0(v.0)0 (v, 11) = =110 (-, 0)) = 115, o) a7 (0 (v, 00 (v, 1) = 1)

with T = 1/8.
Using Lemma A.8 and the previous result, we notice that definitivetyfam all 7, < ¢
there exists &7 such that:

]ugllg)A(a’t),T(al(v)a(v, n=1)— ugllg)A(a’t),T(ol(v)a(v, n=-1)|>1-25>0 (50)

and using the symmetry of the Gibbs measure with respect to the charge-o we
obtain

D, (/'Lc(rtll,)A(a,t),T’ M(—tgl,A(a,z),T)
> p’l’l’c(rtll,)A(a,t),T(G(v’ =1 - M(—t%r)l,A(a,t),T(o(v’ 1) =1)|
= p|ie s 1 (010, 00 (v, 1) = 1) — Y, (. 7(01(v, 00 (v, 11) = 1)
>p(l—-25)>0 (51)
with § given by Theorem 2. This complete the proofa

We remark that in the second point of Theorem 3 the configuratierean depend
on Ay ; to be precise the configurations ; € {—1, 1} andoy y € {—1, 1}, which
verify point (II) of Theorem 3, can not coincide af, N A, but we can choose a
sub-sequencgoy 1, }, Of {o1..}., Since the space is finite-dimensional, in which the
configurationsry ;,, andoy,;, coincide onA;, N Ay,.
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5. Boundson the spectral gap for thetransition matrix

In this paragraph we study a reversible Markov chain associated to the Gibbs measul
on the finite graph.

We only analyze the Markov chain which follows by the re-scaling of the time but the
same considerations can be made, with the same aim, also for the process at continuc
time. As just remarked the process is uniquely identified with the transition matrix which
is a stochastic matrix.

In general the maximal eigenvalue of the Markov process is equal to 1; for all the
irreducible chain the maximal eigenvalue is unique and the minimal eigenvalue is largel
than —1 if, as in our case, the transition matrix is aperiodic. The eigenvalues of the
irreducible transition matrix are ordered with respect to their size (magnitude), in fact
they take only real values; usually the larger eigenvalue is denotegbywtil; we write
the eigenvalues

l=po=1>p1>---2>py

with p; that denote the second eigenvalue. A very important question is the study of
P« = MaxX p1, |p,|} that drives the speed of relaxation to the stationary measure (see [7]).
There are some advantages to consider the LaplatianP) and its eigenvalues; =
1 — p; also called thgyap of the transition matriXin our case we investigate a sequence
of transition matrices and we look for some asymptotic bounds as function of the matrix
dimension (the matrix dimension is the number of configuration ir). We denote
with Q; 4 the transition matrix associated to the process, Rrwith A, = [—L, L]?
that is taken reversible as respect to the Gibbs measure. We indicate the eigenvalu
of (1 — Q. p) with 4, g and the eigenvalues @, s with p; ; 4; the eigenvalues are
parameterized by the side and the inverse temperatuge we will show two different
asymptotic bounds in low and high temperature.
The usual minimax characterization of eigenvalues gives

E(®,9) .
Var(¢)

A= inf{ o is nonconstan} (52)

where Vare) is the variance o relative to the stationary measure (or invariant measure
of the process) which is, by construction, the Gibbs measur&#pnde) is theDirichlet
form

1 ~
E@.9)=7 Y (9(0)—$(6)°0(0.5) (53)
0,6€Q
where
0(0,6) = u(0)Q(0, &) (54)

andQ(-, -) denote the transition matrix of the Markov process. With this characterization
we get an interesting estimate of the spectral gap using as function ip €&2),(c) =

a, with v given by the definition of the block; (v) verifying the evenCy , . We use, in
place ofQ, the transition matrixQ’ which is therth power of Q and we mark with the
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indext the quantity related t@’. We have

1- Ei (¢, dv)

—PLLp W:ZPrA’ﬁ(O'(U,O)O’(U,t):—l) <28<1 (55)

for B large enough and < A,;m whereAg is an opportune constant larger then 1. In

fact Var,(¢,) = 1 because we are using free boundary conditions, and

1
E/@u9) =5 > (@, =0)°n25(0) P'(0.6") = 2Pty s (0/(v. 00 (v.1) = 1),

0,0'eQ
(56)
Now using Proposition 4.1 we find that the (56) can be bounded with the constarit 2
wheres§ is the same constant of Proposition 4.1. HeRga.e. and definitively ir. for
everyp large enough we have

kg ,
PLL.B Z exp(— Agm> with kg > 0 andAg > 1.

So we have the following bound for the spectral gap

kg
)\*,L,ﬂ =1- Px,L,B < <—W>

At large enough temperatu®e= g~ we quote the result of [14] where we have:
)\.*,L’ﬁzl—p*’L,ﬂ>Cﬁ with Cﬂ > 0; (57)

hence the spectral gap is uniformly larger ti@n One has two different behaviors; for
B1 large enough angd, small enough we find, for example:

. InA, 1
lim ——*LF2

=0. 58
L—oo IN )‘*,L,ﬁl ( )

This different behavior of the spectral gap in high and low temperature is the cause o
the different convergence to the stationary measure. In fact the relation

Inp, = lim =1 P! P! 59

np.= lim ~In(max|P'(o, ) = P'(@. )|\a) (59)
is asymptotically satisfied for an aperiodic irreducible Markov chain. We remark that
also in this last paragraph we could obtain similar results for a no-reversible dynamic:s
using [10].

Appendix A. Geometrical results

In this appendix we present the main geometrical results. For the sake of simplicity
we deal only with Glauber processes but it is quite simple to generalize the results tc
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local non-reversible processes. In this appendix we will prove some geometrical result
that are needed to use Peierls’ arguments, as in [27], in Section 3.

We recall that given a dual path (or a dual circyitwe denote withy directly the
set of intersected edges and we denote With) the ordered set of dual edges and dual
vertices. We recall the important result that a graph is a circuit if and only if it is Eulerian
(see [6] for general properties of graphs). We will wiitfor the symmetric difference.

LEMMA A.1.— Given the(dual) circuits (or union of circuits without edges in
common y, and y, then y,Ay, is a family of (dual) circuits and each connected
component is &dual) circuit.

Proof. —If two graphs are Eulerian they remain Eulerian also after the symmetric
difference that can change the number of incident edges on a vertex only by an eve
number; so the symmetric difference of circuits is a set of circuits (see [6]).

For the sake of brevity we will indicate witB,;(v) the square that verifies the event
C;.» (see definition in Section 2). Given the regidi(B;(v)) \ V(Bo(v)) we call C;
the maximal connected regions W(B;(v)) \ V(Bo (v)) with all spin+1 or —1 that
have nonempty intersection withB, ;(v) and withd B;(v); the setsC; are clusters in
this restricted region. The set of all tlig’s is indicated withC; C* is the family of all
the clusterdC;}; made of positive spins and analogously we defineWe call A, the
number of clusterg’; in the fixed blockB; (v), i.e. A; = |C].

RemarkA.l. — The cluster§C;};—;
dual circuitd By ;.

» can be ordered by their intersection with the

.....

For a formal proof of the remark see [17].

Given a dual circuil“(aEC,.*) = (x§, b5, - .., x3), with x§ that is a dual vertex external
to B;, we defineb, (i) (resp.b,(i)) as the first (resp. the last) edged®,; N IEC,
where the elements @fB,,; N dEC;" are ordered as il (32 C;"). We remark that if
there is a unique cluster; then can happen that there is not any etlgg) andb, (1)
but it is not a problem and we only have to ignore the following construction setting
U; 7 =9 in (A.1). We also observe that, (i) andb, (i) can be the same edge and we
set

Fo=|J{bu() Ub, ()},
so that| Fp| < 2|C|. We write the dual circuit (9£C;) as
(X0, -+ X5 (D), by (D), ., b (E), x5 (D), - ., Xg)

and this implicitly defines the dual verticeg(i) andx; (i). We callT"(¢;) the dual path
in 3By that has as initial vertex; (i), edgeb;(i) and is connected t®’(i); 6; is the
set of the intersected edges. CBllr;) the path that results from the circuit(d* C;)
eliminating all the dual edges and the dual vertices betwggn and by (i) (taking
x;(i) as the first vertex of the path). Let us definey; as the dual circuit union of the
pathsr; andé; (see Fig. 4). It is easy to check the following properties of dual paths
andg;, seen as edge sets.
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[+ + + + + + +:

T - -]+ +--+:

--——++———E -

t - =+ -=-=-- —[+]-

[+ ++-+-- —[+ +|-

T - -+ + -+ — —+—+
|+ + + — |+ +]= A cluster M
_+_ [E—

A cluster C,

Indicate a pathr, and the boudary of a cluster M,

....... Indicate a path 6,

Block B | (v) with 1=8

Fig. 4. A block B; (v) with a clusterC;.

RemarkA.2. —

(1) Nor; has edges ia By ;, by construction.

(2) Everyr; has only two edges im\B,; and they must be incident tb, (i) or
to b, (i); otherwiser; should use also edges #B,; and this is impossible by
Remark A.2(1).

(3) There are only two dual vertices that belond™te;) andI" (6;), namelyx;(i) and
x;(i). This follows directly by construction and from Remark A.2(1).

(4) Giveny; :=r; Ug; then eacl (y;) is a dual self-avoiding circuit. In fadt(r;) is a
dual self-avoiding path having only; (i) andx;; (i) as dual vertices il (3 Bo ;).
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(5) We havewy; Ny; =0 Vi # j. From the Remark A.1 on the order of cluster<’in
we deduce thad; N6; =@ if i # j and, moreoven; Nr; = @ by Proposition 2.1.
(6) y: N Bp,; =, by construction.

We define{M;F} j=1,...» as the sets of vertices clusters restricted to the reyioB)
having each vertex in V(B)), 0, =1 ande+ NV(BpUdBp,;) #0. Set

Yo 1= (Uan>A<LiJJ7,->. (A.1)

By Proposition 2.1 the intersection of the boundarfﬂel\zﬁr is empty, solJ; 8Mj+ is
equivalent to the symmetric difference of these sets of edges, the same remark is trt
also for the union of the dual circuify;}. By Lemma A.1 we have that is a family of

dual circuits. If there is an interface the whole interface is i, becausex C U, Mj+
and(J; y; are edges out 0B, ;. Moreovera, being a dual path, is connected and so it
is inside one maximal connected component/pthat is a circuit by the second part

of Lemma A.1. If in By, there exists an interface we callone of these interfaces, we
define the dual circuiis as the maximal connected subsetygfcontaininga. Let us

note thatys is a dual circuit but it is not necessarily self-avoiding.

LEMMA A.2.— The dual circuitys has all the edges iB, and all its satisfied edges
areinysNdBo,.

Proof. —We first show that all the edges ja N B, can be satisfied only if they are in
9B ;. We know that the edges inN B, \ d B ; are in some M;" or in somer; C 3°C;F.

All these sets are boundaries of clusters of positive spins and they have the property t
have as satisfied edges only the negative ed@ies 1) because on each such a edge
b={x,y}iso, = —o,, but we know that the negative edgesifare only ind By ;.

Now we show that all the edges belongingytpare in B,. The only edges iny; that
are not inB; can only be the edges B, in fact all the considered clusters areBn
Supposerss N 3 B; # @ this can be true only in the following two cases:

@) a8, N (U, oMy ¢ U 7).

() 3B N ;7 ¢ (U M ).
We will show that (2) cannot hold; in fact we ha®&; N (; 7)) € 9B, N (; d5C;) that
is a subset 08B, N (|J; 9C;"). We know by hypothesis that;" belong to somé/;" so
if a vertexx is in C; it belong also taV;” and if x € b with b € 9B, thenb € 3C;" being
the edgeb connected to a vertex outsidg that do not belong ta4;" or to C;*.

Now we show that the point (1) cannot be true; we suppose that anedgn
3B, N (U; 0M;") with b = {x, y} andx € M;, we show thatx is in someC;’, in fact
the vertexx is connected (by definition (M;F) to the circuito By ; so it belong to a
clusterCy that is a subset c11f/1;r being a cluster intersectingB, ; andd B;, and, as in
the previous pointh € 9C;". But also it isb € 3£ C; being possible construct an infinite
path intersecting B, only in » and having as initial vertex. O

In the following lemma we see that in the circyi there cannot be two consecutive
satisfied edges if they are not i or on the corners o By ;.
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LEMMA A.3.— Letb; and b, be two edges that are consecutive in the dual circuit
dBo,; and on the same one of its four sides, then it is impossible for the following three
conditions to be simultaneously valid

(a) the edge®, and b, are both satisfied

(b) neitherby nor b, is in Fy;

(c) the edge®, andb, are both iny,.

Proof. —For notation refer to Fig. 5. Let us suppose thag AB( ; andbs € By ; and
that, moreoveb,, b, are ind By ; with by a positive edge anb, a negative edge. Let us
remark that all the vertices,, x», x3, x4 are inV (3 Bp ;) and that therefore each positive
cluster containing one of these vertices isMfi. There are only 4 spin configurations
with the edgesh, and b, satisfied (see Fig. 5). For the configuration ¢k)e By,
belongs to som@M;" because it is in the boundary of a positive cluster with a vertex
in V(dBo,). One need only notice that the edggehas two different spins so it belongs
to a boundary of a positive cluster. Moreover it cannot belong toyalmecause the;’s
have not edges B, ;, by construction as stressed in Remark A.2(6)p506s in y».

The edgeb, is not in anyan+ or dC;" therefore it is not ins,. But y; is, by definition,

b

4

=2
=2

Configurations of Lemma 3.3

b is the antiferromagnetic edge and the others are ferromagnetic.

Fig. 5. The four configurations of Lemma A.3.
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Eulerian because it is union of distinct dual circuits, sd'ify,) there cannot be three
dual edges;, b5 andbj incident in the dual vertex;; this implies that either the edge
b1 or the edgeb; is not in y, becauses € y, andb, ¢ y,. The same argument solve
the configuration (3). So for the configurations (1) and (3) it is impossible to verify
simultaneously points (a) and (c) without any regard for point (b).

For the configuration (2) we argue in the same way to observebthat,. We can
hold b4 ¢ y, only if by is in somey; but this can be true only ib; or b, are in Fy,
see Remark A.2(2), which contradicts the hypotheses; therefore we should have an oc
number of incident dual edges in the dual vertgxwhich is impossible becauge is
Eulerian. The same argument solve the configuration (4). We notice that we have use
also the point (b) for the configurations (2) and (4)1

Obviously Lemma A.3 is true also if in point (c) we changewith its subsetys.
Given an interfacd™ («) = xo, e1, X1, €2, . . ., €,, x, We callinterior part of the interface
the path

(o) = x1, €2, X2, €3, ..., €51, Xp_1.

RemarkA.3. — Given the dual circuil (y3) = yo, b1, y1b2, ..., b,, yo if b; € yz3 N
dBo, thenb; 1 ¢ ap. In fact inwg there are no edges that areAB or in 9By ;.

The following lemma shows that il; = |C| > 80 then there is a dual circuit with a
fraction of not satisfied edges bigger than the fraction of satisfied edges. With a differen
construction we can find a circuit with the same characteristic also when there is ar
interface and4,; < 80; we have seen, Section 3, that these circuits have a probability to
be present in the configuration that is exponentially decreasing|wiittior low enough
temperatures); this is important to divide the configuration space in two regions separate
by a zone which has a very low probability to be crossed. This has been relevant, usin
a sequence ak; — Z?2, to prove the low speed of relaxation to the equilibrium for low
temperatures. We remind th@gf "} = C* are the positive vertex clusters belonging’to
and analogouslyC, } = C~ are the negative vertex clusters belonging to

LEMMA A.4.— If A; > 80and! is large enough then there exists a dual circuiin
B,(v) with |y| > 300 and |y, — ly:| = |y1/10.

Proof. —~Assume|C*| > |C~|. For each C;" there exists a dual path € 3C;" of
ferromagnetic not satisfied edges connectily to 0 B, ;. Moreovery; N y; = (seen
as edge set) if # j; in factaC;" NdCT =@ if i # j and all the edges aiC;" are
ferromagnetic because they areBn\ (dBp; U Bp,;) and they are not satisfied. We
can construct a dual circujt joining these paths with parts 6fB; andd By ; and we
remember that each satisfied edge belondsBjaJ d B ;. Therefore the satisfied edges
are at mosta B;| + |0 Bg | = 20/. The number of not satisfied edges;inare at least
|U; vi| and for every path we haye;| > [ — 1 because they linkB,; to d By ;. There are
at least 40 distinct pathg sinceA; > 80 and the cardinality of the circujt is at least
400 — 40. So, forl large enough, we obtaiy,|/|y.| < 4/7 and the thesis follows. The
case|C™| < |C~| can be analogously proved
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In the proof of the next lemma we will indicate the edges of the cornei8, with
Go; it is immediate to see thdaGo| = 8 because in every corner there are two incident
edges.

LEMMA A.5.—If A; < 80,1 is large enough and if there exists an interfacen By ;
then the dual circuitss is in B; with |y3| > 21 and |(y3).] — |(y3),] = |v3l/10.

Proof. —~We notice thatys| > 2/ becausex C y; and|«| > 2I. It is easy to see that
(v3\ ap) is made of one path, called, and eventually some circuits, callggh, ..., yi}.
Using Lemma A.3 we know that in every circyit, with i € {1, ..., k}, |(7)a] = 1(7),]
ifin p; there is not any edge belonging fpU Go. Analogously for the path we obtain
lw,| — |w,| =2 —1 if in w there is not any edge belonging Ko U Go. Now collecting the
inequalities on the patly and the circuitgys, ..., 7} we obtain, by Lemma A.3 and
considering all the edges iy U G satisfied (the worst case), this upper bound

|(Va)n| — |(v3),| =21 — 2(| Fol + |Gol) — 2. (A.2)

By Lemma A.2 we know thatys), C B, SO|(y3),| < 8. The thesis follows by these
calculations

()l _ 2 — 21 Fol +1Go) — 2+ [(va), |

(ra)e |~ |(v)r |
21 — 2(|F, —2+8 5 9+|F
N (IFol +1Go) —2+8/ _5 9+ |Fo| (A.3)
8l 4 4]

What we want to prove is equivalent t6),|/|(y3),| = 11/10 and, by formula (A.3),
this is true for alll large enough. This complete the proofa

We remark that to prove the previous lemma needs the existence of the dual circui
dBo, with interactions that are alternatively positive and negative; in fact in the
ferromagnetic Ising model at zero temperature if we consider Dobrushin boundary
conditions (positive spins on the superior half box and negative spins on the inferior hall
box) there is, with probability one, an interface that divides the hoand in our case
this does not happen. At zero temperature the probability that there exists an inderface
in a box B; is zero because the configuration with an interface has not the minimum of
the energy.

This result has not to be confused with the result in [12] that states that for every
edge inZ? the probability that there is an interface is zero for every boundary condition.
Instead, taking the interactions alternatively 1 artdmake the configuration iB ;(v)
almostindependent from the configuration oBf(v); so the equilibrium configuration
in By (v) is almost independent from the configuration ouBpfv) and trivially from
the boundary conditions.

In the following lemma we find a relation between the absence of an interface in
B;(v) and the event that is surrounded by a circuit with all spins of the same sign. We
call L;(Bo (v)) the vertices sides @By ;(v) withi =1,...,4. We say that a vertex
s € V(Bg,(v)) is connected to a sidé&,; of By ;(v) if there exists a positive (resp.
negative) vertex clustet C By ;(v) such that € A andV (A) NV (L;) # @. Notice that
the clusterA can have a part out &, ;(v) but we consider only the maximal connected
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component inBy ;(v). The same definition can be used for a positive vertex cluster in
place of a single vertex. In Lemma A.6 we use the conceptaafnnection and-cluster;

we say that two vertices = (u1, u»), v = (v1, v2) € Z? arex-connected ib, = o, and
SUP_1,lu; — v;| =1, and ax-cluster is a maximak-connected component, i.e. itis a
cluster in which we use the-connection in place of the connection.

LEMMA A.6. — If there is not an interface B, ;(v) for all ¢ < 7o then for all times
t < 1o there exists at least a circuit of vertices (v, 1) C V(B (v)) (or T~ (v, 1)) of
positive(negative sign that is connected to the four sidesf,;(v); moreoverr (v, t)
(r~ (v, 1)) surroundsv.

Proof. -We prove that if there is not a circuit of vertices with constant sign
surroundingv then there exists an interfagewith an edgeb € o and withd (b, v) = 1.
At least an edgeb with d(b,v) = 1 is not satisfied otherwise the smaller circuit
surroundingy should have all the vertices with the same sign, against the hypotheses. W
find a dual pathy; of not satisfied edges that is connected B, ; and starting from the
edgeb (see [17]), otherwise there is a circuit surroundingiith constant sign. If there
wasy; that connect$ to d By ; then there would exist a second dual pgslcomposed
by not satisfied edges that connebtso 9 By ;, with E(y1) N E(y,) = ¥ and with the
property that; U y» is an interface.

It is evident that for every circuitr C Bo,; the number of not satisfied edges is an
even number; in fact

(—1)ll = H M = sign( H Jp H af”) >0

ber bem xemw

since all the interactiong, > O for b € By ;. If we consider a graph in which the edges

of y, are contracted (see for a formal definition [6]) then, again, there is not any circuit
composed of satisfied edges that intersect only one contracted vertex, otherwise the
should be a single not satisfied edge in a circuit of that kind, but all these circuits surrounc
the same dual vertex that is adjacent té and there existg; that connects* to 9By,
because in these circuits there is at least a not satisfied edge, Baes not intersect

y1 sincey, is contracted. Thereforg;| > I and |y,| > | because they connect a dual
vertex that is distant at leastform 9B, ;. Soy1 U y, is an interface in facy; and y,

have only a dual vertex and no edge in common, they are connected with the two enc
vertices t0d Bp; and |y, U y,| > 21. It is trivial to order by inclusion the vertex circuits
with constant sign, in fact they cannot intersect, they could intersect if we considered ¢
*-connection (see [17]). We catl the most external circuit surroundingthat has all

the vertices with constant sign In(By ;); we suppose that the sign is positive but in the
other case the proof is similar. We consider the positive vertex regj@mmnected to the
circuit T (with T = ™ (v, 1)) and S* the regionx-connected ta. We claim that if there

is not an interface the§ U r has not empty intersection with all the sidesRy ; and

that thereforer is connected to the four sides 8, ;. If t is the most external circuit

in V(Bo,) then(S*Ut)N (Uf.‘:l L;) # ¢, in fact if this was false then there would be

a circuit of opposite sign respect tohavingz in its interior. We note that we can write

S* as the union ok-clustersA; in V(Bp ) \ 7. If (SUT)N (Uf‘:l L;) =@ we have an
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interface made by the boundary ofin the region that is external to the circuitand
from the boundary of one of the sets. So if there is not an interface then we have
Sur)n (Uf‘:l L;) # . The boundand (S U ) is made of not satisfied edges and the
region external tor is the union of dual paths; with all the edges not satisfied and
the end-vertices connected a®,, ;. We havelg;| < 2/ for all i because there is not an
interface and this is possible onlylif ¢; has not empty intersection with the four sides
L; which have length equal to/ 2We deduce that the most external circuihas the
sign equal to the initial sign because the Glauber process is local and cannot change,
a single time, the spins a@fS U t) N (Uf:1 L;) that we know to be at least four and the
spins on the opposite sides that have distance at |éaSio2t is impossible to change
the sign oft without creating an interface.

Lemma A.6 is the unique point in which we have used that our Markov chain is local.
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