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1. Introduction

We say that a sequence of Borel probability measuPgs, . on a topological space
obeys a Large Deviation Principle (hereafter abbreviated LDP) with rate funtiioml
in the scale(a,),.en If (a,).en IS a real-valued sequence satisfyigg— oo and ! is a
non-negative, lower semicontinuous function such that

. o1 . 1 .
— m/l‘ I(x) <liminf —log P"(A) < limsup—log P"(A) < —inf I (x)
xeA° n—oo an

n—00 n X€eA

for any measurable set, whose interior is denoted by® and closure byA. Unless
explicitly stated otherwise, we will take, = n. If the level sets{x: I(x) < a} are
compact for everyx < oo, I is called a good rate function. With a slight abuse of
language we say that a sequence of random variables obeys a LDP when the sequer
of measures induced by these random variables obeys a LDP. For a background on tl
theory of large deviations, see Dembo and Zeitouni [6] and references therein.

In this paper, we are interested in the LD behavioffinoite exchangeableandom
variables. The woréxchangeablappears in the literature for boiffinite exchangeable
sequences of random variables, dimite exchangeableandom vectors. A sequence of
random variable§Xy, ..., X,, ...) defined on a probability spad&2, A, P) is infinite
exchangeablé and only if for every permutation on N such that|{i, t(i) #i}| < oo
the following identity in distribution holds

D
(le B Xnv .. ) = (Xr(l)y B Xr(n)v .. )

An n-tuple (X4, ..., X,,) of random variables defined on the same probability space is
finite exchangeabler n-exchangeabléto indicate the number of random variables) if
and only if for all permutations on {1, ..., n} it satisfies the identity in distribution

D
(le ceey Xn) = (Xo(l)v ceey Xo(n))'

Finite and infinite exchangeability are related since anyple extracted from an
infinite exchangeable sequence of random variablesegchangeable. While LD for
infinite exchangeable sequences have been entirely studied by Dinwoodie and Zabell [9
much less is known in the more intricate case of finite exchangeable random variables
After introducing our setting, we shortly review below known facts about exchangeable
random variables. We refer to Aldous [1] for a large survey on this topic.

Throughout the sequék, d) will denote a Polish space, aid™* (%) [resp. M1 (2)]
the space of Borel non-negative measures [resp. probability measures] dhese
spaces will always be equipped with the topology of weak convergence, and we sha
denote convergence in this topology by — w. Let us recall that the dual-bounded-
Lipschitz metric 3 on M*(X) is compatible with this topology (see Dembo and
Zajic [4], Appendix A.1).

De Finetti's well-known theorem (see, for example, [12]) states that>amvalued
infinite exchangeable sequence of random varialil€s,..., X,,...) defined on
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(2, A, P) is a mixture of independent and identically distributed sequences of random
variables, i.e. for any Borel seft of X"

P((X1..... X,) € A) =/P9((X1,...,Xn) € A)y(dh),
®

wherey is a probability measure on a closed sul®eaif M*(X), and for eveng € ©,

Py is a probability measure defined ¢, A) such thatX,, ..., X,, ... are independent
and identically distributed unde®,. Using this result, Dinwoodie and Zabell [9] have
shown that if® is compact, the distribution af >°7_, 8x, underP satisfies a LDP with
good rate function

1) = jnf Hv | 7o),

wheren, = Py o Xl‘1 and H (- | -) stands for the usual relative entropy (see Dupuis and
Ellis [10] for a nice account on relative entropy).

Nevertheless, de Finetti's theorem is not valid for finite exchangeable random
variables, as can be seen in the following simple example that arises in sampling
Consider an urn witle labelled balls(xq, ..., x,). The result(Xy, ..., X,) of n draws
without replacement amongy, .. ., x,,) is ann-exchangeable random vector that cannot
be represented as a mixture of independent and identically distributed random variable
In this special case, Dembo and Zeitouni [5] have showed trflaEf:l 8., — u then,

for fixed 1o € 10, 1[, the distribution of- s il sy follows a LDP in the scalgnzo] and
with good rate function

H|p) + S0 H (2 ) if 572 e MY(D),

)
00 otherwise.

I(U7t07 ,bL) ={

Another well-known fact is that a family of-exchangeable random variables can be
approximated by: independent and identically distributed random variables in the
variation norm (see Diaconis and Freedman [8]). However, this property does not give
any hint for the LDP.

Here we consider dinite exchangeable triangular array(X")i<i<n)nen Of 2
valued random variables defined of, A, P), i.e., each row (X7, ..., X?) is finite
exchangeableWe define the associated sequence of empirical measure processes by

n 1
Ly = n Z SX? 1)

for everyr € [0, 1]. The processL”),c0.1) belongs to the spacP[[0, 1], (M (X), B)]
of all maps defined ofD, 1] that are continuous from the right and have left limits. This
space is endowed with the topology defined by the uniform metric

Boo(y.,2.) = sup B(y;, z1), ()

t€[0,1]

wherey. is a shortcut fo(y,);c(0.1;-
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The experience we are interested in can be heuristically described this way: Fron
any n-tuple (Y/")1<i<, Of random variables one can simply obtain raexchangeable
random vecto(X")1<;<, by sampling without replacement from an urn wittabelled
balls (Y7, ..., Y,). Equivalently, we let in this cas&} =Y/, fori =1,...,n, with
o =o" arandom permutation ofi, ..., n} which is independent from;"):<;<, and
uniformly distributed. Our purpose in this paper is to derive the LDP(d}),c(0.1
from the LDP for%Zj’zlst[n. Now, let us describe our setting rigorously. LB§.
be the Borelo-algebra onX” and P" be any probability measure aix”, By»). We
denote by(Y7,...,Y”) the coordinate maps o(x”", Bx») when we consider them
distributed according t®@". LetP" be the probability measure defined on every product
A1 x -+ x A, of measurable subsets Bf by

n 1 n
P(Alx---xAn>=a§SjP(Agmx---xAg(n)), 3)
0 E€dn
wheres, is the symmetric group of order. We denote by X7, ..., X) the coordinate

maps on(X", Bx») when its joint law isP". Clearly, the random variablesX!)1<i<x
aren-exchangeable. L&l2, A, P) be the probability space associated to the sequence
(2", Bsn, P")),en. Note that the mapping frol@” to D[[O, 1], (M (%), B)] defined
by (L).c[0.1; IS continuous, hence Borel measurable. As mentioned before, our goal is
to derive the LDP [resp. the weak law of large numbers] for the distributiql./of, <0, 1;
underP" from the LDP [resp. the weak law of large numbers] for the distribution of
%Z?zl y» underP". Remark that [9] does not apply in this case.

The key to the proof is the following elementary fact. The law(&f, ..., X))
conditioned on{% Yl éx» = p}, wherep is an atomic measure whose atoms weigh
5 (1 < k < n),is the law of sampling without replacement among these atoms counted
with their frequency of appearance in Hence our analysis essentially reduces to the
following particular case. Let(y!)1<i<n)nen be a fixed triangular array of elements of
3, whose composition is given by = ,—1,2?21 8y )nen, possibly with ties. For every
n € N, we sample without replacement from the urn contairtiyjg.<;<, and we denote
by x!* theith element drawn. We cal?"(-; 1) the distribution onX” related to this
sampling. For every € N it clearly makes(x!)1<;<, a finite exchangeable vector. For
all t € [0, 1] we set

1 [nt]

== > 8, (4)
i=1

and for allu € M1(Z) we let AC,, be the space of all maps: [0, 1] - M (X) such
that:
1. v, —v, e MT(Z) is of total mass —s forall 0 < s <1 < 1.
2. vp=0andv; = u.
3. v. possessesweak derivativdor almost every € [0, 1]. We call weak derivative
the limit

. Vipe—V
p, = lim 22— (5)
e—0 &

provided this sequence convergesi(%).
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In the sequel, by distribution of/)),cj0.1; we will mean its distribution under the
probability measureP(-; ©"). It is an abuse of language, but there cannot be any
confusion since the triangular arrayy’)i<i<.)zen is fixed. Our first result is the
following.

THEOREM 1. —If u" 5 then(l"),cj0.1; 0beys a LDP oD[[0, 1], (M (X), B)] with
good rate function

1 . .
Ioo(v.,u):{fo H(b | p)ds ifv e AC,, ©)
00 elsewhere.

Theorem 1 can be viewed as a LDP for the so-called microcanonical distributions.
Simple microcanonical distributions are obtained from independent and identically
distributed random variableX, ..., X, by conditioning on the value of a functional
of their empirical measure. The question of interest is then whether or not there is
convergence of the marginal distribution Xf under the conditional probability, when
n — oo. For general background concerning microcanonical distributions we refer to
Stroock and Zeitouni [18]. What we prove here is a LD result for the distribution of
the contraction(L! = %Z,[-”:q 8x,)ie0.1) Of X1, ..., X,,, when these random variables are
n-exchangeable, under a strong conditioning.

Next, taking into account the fluctuations of the composijidrof the urn, we obtain
in this case a more involved result. L@t be the distribution oL} = 2 377, Sx» under
P". Note that this probability measure a#(X) is also the distribution of >, Syn
under P". Let M*"*(X) be the subset oM'(X) composed of all atomic measures

230 18, for (x1, ..., x,) € =" possibly with ties, anddC = U, 15, AC,.. Since

P'(L" € A) = / P'(I" € A; p) Q" (dp) )
ML)

for every borelianA of D[[O, 1], (M*(X), )], Theorem 1 tells us thatL!),c[0,1; is @
mixture of Large Deviation Systems (from now on abbreviated LDS), in the sense of
Dawson and Gartner [3]. Hence, the announced LDP holds by virtue of a result due tc
Grunwald [13].

THEOREM 2. —Suppose thaL? follows a LDP onM!(%) with good rate function
J. Then(L)[0.1) follows a LDP onDI[[0, 1], (Mt (%), 8)] with good rate function

Jo H@s |vi)ds + J(v1)  if v € AC, ®)

T(v)=1x.,v)+J(v) = {
00 elsewhere.

Even in the simple case of binary valued finite exchangeable random variables ther
is no general result concerning the LD behaviorL§t So Theorem 2 seems to be the
best result that can be stated in this setting.

The paper is organized as follows. In Section 2 we consider a fixed triangular array
((y"1<i<n)nen Of elements ofE. Generalizing a technique from [5], we prove that if
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u*=23" 8,5 = u we have a LDP forzy, ..., I7) on M*(X)**, for all d € N*
and aII strlctly orderedd + 1)-tuplest = (1o =0 < tl, ..o tio1 <ty =1). We derive
the LDP for (I"),c[0.1) from the LDP for the finite- dlmensional marginalg, ..., ")
in Section 3. This result is obtained using a projective limit approach taken from [4].
In Section 4 we prove the identity (7) so th@t!);c(0,1; IS @ mixture of LDS. Then
we give the proof of Theorem 2, which is very close to the proof of Theorem 2.3
in [13]. Section 5 is devoted to applications of Theorem 2. We recover two classical
examples of finite exchangeable random variables. We first consider the Curie—\Weis
model, which is a well known toy model in statistical mechanics. Our analysis allows
to consider both its microcanonical version (i.e., the uniform distribution on a set of
allowed configurations), and its macrocanonical version (i.e., the classical Curie—Weis
model). These two aspects are connected via the principle of equivalence of ensemble
The Curie—Weiss model is a paradigm for both exchangeable random variables an
LD problems as can be seen, for example, in the fact that its internal fluctuations are
studied by means of a de Finetti representation by Papangelou in [16], and by th
same author using LD techniques in [17]. Another classical example is given by infinite
exchangeable sequences, where Theorem 2 allows us to extend easily the result of [
We also show that the LDP’s faiL}),c[0.1; Where X7, ..., X} are respectively given
by sampling with and without replacement have closely related rate functions. This
completes, in a way, a result of Baxter and Jain [2]. Our last example concerns the
random permutation of a discrete time stochastic process:-fuple (Y,...,Y,) is
transformed inta X7, ..., X)) by the mechanism presented above, ¥&.= Y, ;, with
o = o™ arandom permutation dd, . .., n}, uniformly distributed and independent from
(Y1, ...,Y,). This appears to be a model for communication systems. A time-dependent
signal Y” is chopped into pieces of equal length, ..., Y,) which are transmitted
independently via different channels to the same destination. The signal is reconstructe
according to the order of arrival int§" = (X7, ..., X”), whose LD behavior is given
by Theorem 2.

2. Large deviations for finite marginals of (1}');¢(o0,11

Let ((y;’)lg,-gn),,eN be a fixed triangular array of elements Bfand letd € N* and
t=(p=0< t1, ..., tq_1 < t; = 1). Our objective in this section is to prove that if
w'=1 LS 18y Su then(y,....17) follows a LDP onM ™ (%)4*, with I as in (4).
lemg (o l") is equivalent to choosing uniformly a partition 6f’)1<;<, among
those withd classes containingut;] — [nt;_1] elements, for K j <d. In other words,

we must associate to everyf a valuej, under the strong condition thaiz;] — [nt;_1]
items are associated to eaghFirst we relax the constraint on the cardinals of the
classes, and look for the LDP satisfied by the sequence of random measures

1 n
Zg(y NI (9)

where the((N]")1<i<n)nen are independent random variables defined on a probability
space(), F, P), with values in a Polish spade identically distributed according to a
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law . We will derive the LDP for(y, ...,
the values ofV/", thanks to a coupling.

LEMMA 1.-The distribution of£" under P obeys a LDP on/1(X x I') endowed
with the topology of weak convergence, with good rate function

I) from the latter result by conditioning on

Hplp®hr) ifv®=upu,

B = { . (10)
00 otherwise,

wherev® stands for the first marginal of.

Proof. —Let ¢ € C,(X x I'), where we denote b¢, (X x I') the class of all real
valued bounded continuous functions Bnx I". We have

epo¢> y', NP ]

IogE{exp(n / ¢>(u,v)£"(du><dv))} log E
xTI

=3 log [ exp( (1. v)) ().
i=1 r
then

Ap) = lim. %IogE[exp<n / & (u, v) L (du x dv)>]

xI

=/|Og</exp(¢(u, v))k(dv)),u(du) < 00.
b

r

Hence for allk € N all ¢1,...,¢x € Co(Z x T') and allAg, ..., Ay € R A Aichh)
is finite and differentiable irk4, ..., A; throughoutR*. Whence, according to padf)
of Corollary 4.6.11 in [6],£" follows a LDP onX, the algebraic dual of, (X x I'),
equipped with the,(X x T')-topology, with good rate function

A= sup {(¢.v) — A},

$eCh(ExT)

where(., -) stands as usual for

(. v) = / . (11)

As M1(Z x I') is closed inY and A*(v) = co on X\ MY (X x I'), £" follows a LDP on
M(Z x I') equipped with the weak convergence topology, with good rate fundtion
Let us identifyA*. From Theorem A.5.4 in [10] we know that everne M1(Z x I')
can be written as(du x dv) = v®(du) ® p(u, dv), wherep is a regular probability

kernel.

First suppose that¥ = 1. Then, there exists@e C, (%) such thatfy, ¢ (u)v® (du) —
Js ¢(w)pu(du) = 1, so for everyM > 0 we defineyy, € Cp(X x I') by ¢y (u,v) =
M¢ (u) such that
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/ Yy (u, v)v(du x dv) — /Iog</exp(1ﬁM(u v)))»(dv))u(du)

xI

=M(/¢wwmmm—/¢wmmm)=
> b))

Whence we obtain in this cage* (v) = I, (v, i, A) = oo by letting M — oo.
Now suppose that¥ = 1. By virtue of Jensen’s inequality, for agye C,(Z x I')

Iogr/z/ exp(¢ (u, v))A(dv)u(du) >E/('Ogr/exp@(u,v))/\(dv))u(du).

Thus,

/ ¢ (u, v)v(du x dv) — IOg//exp (¢ (u, v))A(dv)u(du)

xI

< / ¢ (u, v)v(du x dv) —/(IOg/exp((p(u,v)))\(dv))u(du).
xI p) r
Then, according to the definition df (- | -), we obtainH (v | u ® ) < A*(v). So, if
H®W | un® A) = oo, we necessarily hava*(v) = I (v, u, &) = co. Otherwise, we can
define
_du®p) do
fuv=gien = ak

For everygp € C,(X x I')

HL®A a.e.

H(p@u,-)| 1) > /¢(u, v)p(u, dv) — |Og/exp(¢(u, v))A(dv) pae,
r r

hence

/H o, )A)pu(du) > / ¢ (u, v)v(du x dv) — /Iog(/exp(¢(u v)))»(dv)),u(du),

xI r

SO [5 H(p(u, ) | M)pu(du) = A*(v).
But, according to Fubini’s theorem

/H (p(u, )|A),u(du)_/</d—log—d)\> du

d(M@P) log d(u ® p)
eru®m d(n®A)

=HW|u®2ir).
SOH(W | u®A) = A*(v) and them*(v) = I (v, u, A). O

d(u® 1)
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We proceed now to the identification of eadti (1 <i < n) with an element of a
random partition in/ classes ofy!")1<;<,. We suppose thdt = {1, ..., d}, that theN
are distributed according to(j) =¢; —t;_1 =: A;t, and we define the continuous and
injective map

F:MYE xT) — M (%)?

v, ) — (v(-{1}),v(-{1,2}),...,v(-, T)).

(12)

For everyn € N we set
S"=FolL", (13)

with £" as in (9). The vector of random measui®s is defined on(), F, P) as in
Lemma 1. An element = (v;);cr of MT(X)¢ is said to bencreasingwhenv;(A) >
vj(A)forall Ae By andalli, j e I' such that > j. For these elements M () we
denote byA;v the positive measure — v;_1, with vg = 0.

COROLLARY 1. —The distribution ofS” under P obeys a LDP o/ *(X%)? equipped
with the product topology of weak convergence, with good rate function

d A,’U
ZA,-U(E)H(A_V(E) u)
Aiv(X) . [visincreasing,
ZA v(T)log 'f{vd=u,

00 elsewhere.

(v, p, 1) = (14)

i

Proof. —Let M = F(M*(Z x ) = {v e MT(2)?, v increasing and, (%) = 1}.
Since F is continuous and injective, we deduce from Lemma 1 &fafollows a LDP
on M*(2)? endowed with the product topology of weak convergence, with good rate
function
- L(v*, w,2) ifveMandv = F(Q*),
L(v, u,t)= {
elsewhere,
wherel; is the rate function defined in (10).
If veé M, L(v,u,t)=Ir(v,u,t)=o00. Letv e M. Then we have, = v*®, the
first marginal ofv* and if vy # w, (v, u,t) = (v, ., t) = oo. If vy = u thenv* is
absolutely continuous w.r.tt ® A and

L, pu,t)=L* 1, 1)

=HQO" |p®1)
d

= /v*(dy, i)log

i=1ly

i=1

v*(dy, i)
w(dy) At

Y

A U(E) pdy)Ait/Aiv(X)



658 J. TRASHORRAS / Ann. I. H. Poincaré — PR 38 (2002) 649-680

A; v(z)

zd:A (Z)H( Aiv >+ZA () lo

= iV V

2 A " J
=L, p, 1.

Hence we obtain the rate function of the LDP satisfiedSBy O

Next we define a coupling procedure that allows us to derive f&na random
variable with the same law agy,...,[}). Let U} be the number ofj-valued N}
(j €{1,...,d}), andT, be the typical event,, = ﬂ?zl{U]’.’ = [nt;]—[nt;_1]}. For every
n € Nwe define(1\7{’)1<i<n from (N")1<i<, in the following way:

e If U] is greater thain1], we choose randomly/} — [n11] i’s among the ones with
N!' =1, and we change the value 1 on the'sdo the value 2.

e If U] is less tharint;], we choose uniformlynz;] — U7 indices among those such
that N = 2, and we change the associat&fl into 1. If there are not enougts
such thatV = 2, we choose the needed indices among those Mjith- 3.

We call 1\7,.71 € {1,...,d} the random variables resulting from this first step of the
procedure. Now we define the random variabfé,’?2 e {1,...,d} resulting from the
second step in the same way:

o If the number of's with N”l =2 is greater thafnt,] — [nt1], we choose uniformly
the indices in excess, and we change the value 2 on iteethe value 3.

o If the number of]\_/l.’jl = 2 is less tharnt,] — [nt;], we complete it by choosing
uniformly indices among those such thﬁ,.’;l = 3. If there are not enougts such
that N/' = 3, we choose the needed indices among those suciVthat4.

We carry on up taf — 1, and we sef\_li’fj € {1,...,d} for the ith random variable at
the jth step of the coupling procedure. We mla_z;f’o)lgign = (N"1<i<n and we define

the (N!)1<i<, by NI = N!',_,. For everyn € N we note

~ 1.2
E” = Zé(yfl,[\;_”)’ (15)
n i1 i i
and
§” =Fo En’ (16)

with F asin (12).
LEMMA 2.—For everyn € N the law ofS" is the law ofS" conditioned onf;,, and
for every measurabl® c M+ (%)? we have

P(S" e B) =P"((I"

hoeea ) € Byt

Proof. —Even if the random variables" and ({5, ....17) are defined on different
probability spaces, their distribution dd*(X)¢ have the same finite suppott, and it
is also the support of the distribution §f conditioned ort},. Since(x7, ..., x!) results
from a sampling without replacement all possitlg, ..., /') are equally-likely, thus for
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everyp € A"

1
|A"|

P (I, .. L) = ps ") =
The cardinal ofA” might not be
ﬁ n— ntl 1]
o \Inti]l = nti 1]

because of possible tiesamong, ..., ). Inthe same time, as the law@¥7, ..., N)')
conditioned orf}, is uniform on its support, for every € A"

P(S§"=pI|T,) = A

Hence it is then sufficient to prove that is uniformly distributed om™. For all p, V€
Im(S") there are: = (u )i<i<n @Ndy = (v;)1<i<, SUCh that we hav(aS‘" =p}= {N1

N’Z =u,} and{S" = y}= {Nl =y,.. Nd =v,}, and there is a permutatien
on{l, ..., n} such that for alf u; = v, ). Hence,P(g” =p) = P(S" = y) ifand only if
(1\7{’)1<,<,1 is n-exchangeable. In order to prove it we introduce the following notations:

e Vi (j) stands for the event:

“The jth step of the coupling procedure chan@®$; ;)1<i<» =u to (N}))1<i<n
= U .

e Forall1<i <nandforall1< g <dwecally/ = (N/,,.... N, ) €{1,....d}

the random vector that records the values associatedudng the procedure.
Note that what matters i#; () is the number ok-valuedu;’s andv;’s in u andv for
eachk € {j, ..., d}, not the value of each; andv,. Hence, for every permutatian on
(1....,n) we haveP (Vi(j)) = P(Vew (j)), whereo () = (o1, - - - » o).

We prove by induction ory that for every 1< g < d, (Y{)1<i<n IS n-exchange-
able. Forg = 1, the (N/o)1<i<, are independent and identically distributed, whence
(YY) 1<i<n is n-exchangeable. Suppose the property holds for a fixed< ¢ < d — 1):

(Y! =N/, ..., ]\_/;jq_l))lg,-g,, is n-exchangeable. L&) € M, ,,1(I"), we denote by
u; its ith row and byu/ its jth column. For every permutatianon {1, ..., n}

1

—~

1<i<n)

_lv

n O N
lo l""’N
O
u;

1q ?’1<l<n)
-1

I’l

n
yoos N

l

ud .
V1@, 1<i<n)

iq

0(14" 1
oui—1) (CI)> ( (l)o—u Nn(l)q l_u ,1<i < )

q+1
Yo =u, 1<i<n).

Il
"U"U"U"U"U

(N
(N
(V& i 1(q)|N,-’fq_1:uf_l, 1<i <n)P(1\_/,-’f0:u?,...,1\_/-" _1:uf_l, 1<i<n)
(v,
(
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Hence we obtain thﬁ(mq+l)1<i<n is n-exchangeable, s¢’?)1<; <, is alson-exchange-
able, and in particulafN;")1<i<, iIs. O

The last two results lead to the announced crucial lemma.
LEMMA 3.—(" I}) obeys a LDP onM*(X)4*1 endowed with the product

g2t

topology of weak convergence, with good rate function

d Aiv v is increasing,
_ Z AitH<—l M) if ¢ va=p,
I3(v, 1) = i=1 At Vie{0,...,d} vi(Z) =1, (17)

l
00 elsewhere.

Proof. —Since for everyr e N (I, ..., [) € {0} x M+ (2)? which is a closed subset

of M*(x)4*1, itis sufficient to prove thatl}., ..., ) follows a LDP onM*(£)? with
good rate function

d A v is increasing
- ZA-IH( i ,u) if vy=pn
I t) = l ’
R = Ait Vie{l,....d}v(2) =1,

i
00 elsewhere.

We first prove the upper bound of this LDP. L&tbe a closed part afZ*(X)¢. For all
e > 0wenoteR, = {v e MT(2)4, sup |v;(X)—t;| < e}. Fore fixed and large enough
{S"e A}NT, Cc {S" € AN R,}. Then, according to Corollary 1

1 1
limsup=logP({S" € A} NT,) <limsup=logP(S" € ANR,)

n—oo N n—oo N

<—inf L(v, u,t),
X ANR, 2( ,bL_)

I, as in (14). Sincd;, is a good rate function
!@0%1;5 L(v, pu,t) = A'Q,feo L, 1) =infI3(v, w, 1).

Furthermore
d

P(Tn) — H ([ n— [nti—l] ) (Ait)[nti]_[nt[_l],

— \[nti] = [nti 1]
i=

so we obtain liminf_ % log P(T,) = 0. Thus, according to Lemma 2

1
limsup—logP" ((1;,,....1}) € A; u")

11°
n—oo N !

= lim sup} log P(S" € A)

n—oo N
< lim sup} logP({S"€A}NT,)—lim infE log P(T,)
n—oco N n—0oo n

< —inf L, u,t).
X ANR, 2(1),“_)
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Hence we have the upper bound of the LDP(r, ..., /') by lettinge — O.

Next we prove the lower bound of the LDP. Let us recall that the dual-bounded-
Lipschitz metricg defined oM * (%) by

ﬂ(p,V)Zsup{’/fdp—/fdu,
D) D)

FeC(X), Ifllee +11fllL < 1} (18)

with
J) = f(y)
d(x,y)
coincides with the weak convergence topology (see Appendix A.1l in [4]). We denote
by B, the supremum metric o/ (X)? associated t@. Let C be an open subset of

M* ()4, andv € C be such thafs(v, i1, t) < co. Since for alli € {1, ...,d}, vi(Z) =
;, there exists, for alk € N, av" € MT()? with v(Z) = ’”'] such that the sequence

(V"),en Satisfiess” = v. For everyj € {1, ..., d} we define

IIflloozsuErif(x)| and |fll.= sup

X, yeX, x#y

Dj={ie{l,...,n}, (N'<jandN"> j)or (N'> jandN" < j)},

and for all f with || f]le < 1 we have

‘/fds;—/fdg;?
)] )

\z W= X700

nfin g YN

l

Z|f

lED

IDI

n [nt] n n
= 8]-(2)—7”<ﬂd(8 ).

HenceB,(S", S") < B4(S", v™). Combining the preceding inequality and the triangular
inequality we obtain, for al§ > 0 andn large enough
P(Ba(S",v) <58) = P(Ba(S",S") <28, Ba(S", V") < 25)
=P(Ba(S", V") < 25)
P(,Bd(S”, l)) < 8)
Let § > 0 be such thaBg, (v, 55) C C, whereBjg, stands for an open ball defined with
the metricg,. Corollary 1 and Lemma 2 tell us that

1 .
lim inf — IogIP’"((l” L) ecip") = Iirrlinf —logP(S"€C)

11°

> liminf = IogP(S" € Bg,(v,59))

n—oo n

1
> liminf —log P (S" € Bg, (v, §))

n—oo np

_12(])7 /J'v L) = _13(])7 /J'v L)
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Hence we get the lower bound of the LDP followed @y, ..., ).
Last we prove thals is a good rate function. For every<Qo < oo

¢f ={veM*(2)!, L, u1)<a)
={ve M (D), L(v,pu,t) <a}N{ve M (D), Av(Z) = Ait}.

Sincel, is a good rate functiorqa(f} is the intersection of a compact and a closed subset in
the weak convergence topology. Hence it is compact/aigia good rate function. O

3. Large deviations for the process!})se(o0,1]

Our aim in this section is to derive the LDP f@f'),c[0,1; from the LDP for the finite-
dimensional marginalg/y, ..., /). We use a projective limit approach, as in the proof
of Theorem 1 in [4]. Since our setting, and then our proof, is slightly different, we give
it completely for the sake of clarity.

Let C[[0, 1], (M*(X), B)] be the space of all maps that are continuous ffén] to
M™(X). Unless explicitly stated otherwise, it is equipped with the uniform mgtias
in (2). We still consider a fixed triangular arragy!)1<i<,)»en Of elements of which

composition given byu" = %27:1 8y )nen Satisfiesu” = u. We define by

= m [nt]
l[ﬂ = lt + (I — 7)8)({1’”“1 (19)

the linear interpolatiori”), <f0.1) Of (I");c0.15, I being as in (4). Remark thét"),cj0.1; €

C[[0, 1], (M (Z), B)]. Let us recall that we consider the distribution(li’f),e[o,l] and
(I1):e0,1) under the probability measui®' (- ; 1) associated to the sampling without
replacement amongy?, ..., y"). First we prove a LDP for(i"),c.1 for which we

give an explicit rate function. We need to consider the linear interpolation because i
is the only way to pass from results on the pointwise convergence topology to results
on the uniform convergence topology. Sin@®)c0.1; and (l_t”),e[o,l] are exponentially
equivalent, we deduce the LDP satisfied(§y),<[0.1) from the preceding result.

LEMMA 4.—1. (I");e0.1) and (l_,"),e[o,l] are exponentially equivalent oP[[0, 1],
(M*(2), B)1.
2. (IM),¢10.11 Is exponentially tight on the Polish spa@€[[0, 1], (M (), B)1, Be)-

Proof. —1. With probability 1, we have

- [nt]
(", 1") = su mn t——= |8
IB ( . ) te[O,F;]ﬂ( t t + ( n ) [nt]+1)
( [nt]) 1
<suplt——) <—-.
1€[0,1] n n

Then(("),ci0.17 and(1),¢p0.1; are exponentially equivalent an[[o0, 1], (M* (%), B)].
2. According to Lemma 3, for every fixede [0, 1], I follows a LDP on the
Polish spacg M*(X), B) with a good rate function. Hence it is exponentially tight.
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Furthermore

oy ntl —[ns]
Bl I < T,

so we can conclude thanks to Appendix A.2 in [4]0

Let G be the set of all the subdivisions=0ry < --- < t; =1 of [0, 1]. We define on
G the partial ordetl = (so, ...,s,) < j = (fo,..., ;) if and only if for all 5, € i there
is at, € j such thats, = r,, which makesG a right-filtering set. Fof = (so, ..., s,) <
Jj =, ....t,) wedefinep;; (v, ..., v;,) = (Vo - .., vs5,). EndowingM * ()17 with the
product topology associated pomakes(M* ()Y, p;;)i<; a projective system which
projective limit is€ = {v:[0,1] - M™(X)} equipped with the topology of pointwise
convergence. For every= (o, ..., t,) € G, we note p; the canonical projection of
on M*(2)V!, and we define 0& the mapl;(v., u) = Is(p;v., i, j), with I3 as in (17).
Next we prove a LDP fotl”),cj0.1 in €.

LEMMA 5. —(l_,”),e[o,l] follows a LDP on€ with good rate function

Ioo(v., 1) = S'Uc?lj(vw ). (20)
Jje

Proof. —Since (l_,"),e[o,l] and (I'),cj0.1) are exponentially equivalent o®[[0, 1],
(M*(2), B)], we deduce from Lemma 3 that for everye Gpj(if’) follows a
LDP on M* (%)Y with good rate function/; (v., u). Hence, according to Dawson-—
Gartner’s theorem(l_t”),e[o,l] obeys a LDP or€ with good rate function/o,(v., u) =
SupjeG Ij(U.,/,L). O

We recall thatAC,, is the space of all maps : [0, 1] — M*(X) such that:
1. v, —v, e MT(Z) is of total masg — s forall 0 < s < r.
2. vy=0andy, = n.
3. v. possesses a weak derivative for almost every0, 1] as defined in (5).
The following result gives an explicit expressiongf(-, i) on D[[0, 1], (M*(Z), B)].

LEMMA 6.—1.For everyv. € D[[0, 1], (M*(2), B)], if Io(v.,n) < oo thenv. €
AC,.
2.Forall v. € AC,, Ino(v., 1) = [o H (s | @) ds.

Proof. —1. Let v. € D[[0, 1], (M*(Z), B)] be such thatl,,(v., ) < co. For every
j =1(0,s,1,1) we necessarily havé;(v., u) < oco. Hencey, — v, € M*(X) is of total
masst — s, vg =0 andv, = pu.

As I, (v., u) < oo, we have for allj = (tg,...,7,) € G

d
Vi — Vg,
Liv, )= (1 — m)H(% u)-

i1 i —li-1

For everyn e N we define the process, : [0, 1] — M*(Z) by

gn(t) = 2" [V — vy .
on >N
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We get

2n 1
(o) =) 27"H (2" (vy —via) | 1) =/H(gn(t) | p)dr
i=1 0

and, H (- | 1) being convex,

/ H(gua(t) ) dt > H (gn (%) ‘u)

o

foralli =1,...,2". The previous inequality tells us that the sequence of real valued
random variables$H (g, | 1)).en defined o0, 1] endowed with the Lebesgue measure
and the dyadic filtratior, = a([jz‘,,l, L), 1< j <2 is a submartingale. Since we
have sup_y folH(gn(t)pL) dr < oo, we know that

b(t) =1+ limsupH (g, (1) | n) < oo

n—00

for a.e.r € [0, 1] by virtue of Doob’s theorem. But, for a.e.c [0, 1], {v: H(v | u)

< b(1)} is precompact becausE (- | 1) is a good rate function. Thus, in particular,
{g.(t), n € N} is precompact. Lef¢;, i € N} be a class of continuous bounded
convergence-determining functions defined Bn For everyi € N we consider the
martingale({(§;, g.), Fn)nen defined on the probability space given above, with) as

in (11). Since for every € [0, 1] g,(t) € M*(X) we have

1

sup (&, ga(1))dt < suzri&- (x)| < o0,
ne 0 xe

so the real valued sequen¢g;, g, (¢))).en converges for all and a.es. This and the
fact that{g, (¢)}.en is precompact for a.e.imply that (g, (¢)),cn iS convergent for a.e.
Hence we can modify, on a negligible part of [0,1] in a way that the modified sequence
converges in/1(x) for all . We denote bYV;)sep0,1) this limit. Let 0< j < k < 2". For
everyl > n we have

k
2n
Vi —V,; = /gz(S)dS-
n on
J
2/1
Sinceg, (1) = v, for a.e.r, it follows from Lebesgue’s theorem that for evefye C, (%)

k k

l[rgo/<f, a@)ds= [(£0)s.

J
2/1 2n
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Furthermore
K K
n on
[irods= <f, /o ds>,
J i
on on

;
wherefi” v, ds is interpreted set-wise, i.e., for all € By

on

(Jos)r- focme.

A
and [ ? (f, vs) ds is the limit asl — oo of
o

L
on

/<f7 gl(S)>dS = <f7 VZL;' _VZL">

J
on

Hence

N

Since(v, — v,)(X) =1 — s for everyt > s > 0, (v,)¢[0.1) IS continuous in the variation

norm, so we get
t
v,—vs=/f)udu.
S

Let {n;, i € N} be a dense countable subsetf (). Since the metri@ is derived
from a norm (see (18)B(:, ;) is convex for every € N, and for a.es € [0, 1]

s+h s+h
1 ) 1 7.
E/,B(Vt,ni)dt>,3<z/vtdt»ni>,

N

then

s+h

. 17 N .
|Im8up,3 'R / Vy dt7 ni g Ilmsup_ IB(VIa 771) dt = ﬂ(vS7 771)
h—0 h h—0 h

N N
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But we can choosesuch thatB (v, ;) < ¢&/2, so

h—0 h—0

1 S+h A+h
Iimsupﬁ(E/f)tdt, f)s> IImSUp Br, mi) dt + B(n;, Us) <
A

s

Hence(v;),<(0,1; @dmits a weak derivative for a.ec [0, 1], and we can conclude.
2. Let(v)ep01) € AC,. For a.es, t € [0, 1] such thats < ¢, Jensen’s inequality tells
us that

t t 1
/H@Amm=a—m/;:H@Amm
rod
>a—wH</wp1M>
v, — D,
>(z—s)H<

\)
)
Whencel,,(v., u) < fo H(D, | w) du.
Since for a.eu € [0, 1] g, (u) = 7,, we obtain according to Fatou’s lemma,

@M)hmm/H&WHM /H@Amw

Thus for allv. € AC,, Ix(v., u) = fo H®, | w)du. O
By combining the preceding 3 lemmas we obtain the expected result.

THEOREM 1. —If u* 5 u then (IM)ep0.1) Satisfies a LDP orD[[0, 1], (M*(X), B)]
with good rate function

Lo ) = { JEH G, | pyds i v. e AC,, 1)
00 elsewhere.

Proof. -We haveIP’"(i;’ € C[[0,1], Mt (2%),B)]; ") =1 and for allv. ¢ C[[O0, 1],
(M*(2), B)] Io(v.,p) = co. We deduce from Lemma 5 that?),cj0q; follows
a LDP on C[[0,1], M*(X), B)] endowed with the topology of pointwise con-
vergence, with good rate functiof,,(v., ). As (l_,"),e[o,l] is exponentially tight
on C[[0, 1], (M (%), B)] equipped with the metrii8,, (Lemma 4), it also sat-
isfies a LDP onC[[0, 1], (M* (%), )] with the same good rate function. Since
C[[0,1], (M* (%), B)] is closed onD[[0, 1], (M* (%), B)] equipped WithB.., (I]');cf0.11
follows a LDP onDI[[0, 1], (M* (%), B)] with good rate function/,,(v., ). Finally,
(l_,"),e[o,l] and(l").<0.1) being exponentially equivalent da[[0, 1], (M (%), )] we can
conclude, the expression of the rate function resulting from Lemmas.

From this LDP we can derive a weak law of large numbers related to microcanonical
distributions, as we announced in the introduction.
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COROLLARY 2.—If u" 5 p then(I"),¢[0,1) tends in probability ta(z(t),[0,1; for the
metric B

Proof. —Let ¢ > 0. According to Theorem 1

1
1
limsup=10gP" (B (I 11t) > &: ") < —  inf /H b, | 1) ds.
n—>oop7’l g (IB (t M) ¢ 'u) Bﬁoo(tﬂsS)CmAcﬂo (U |M) g

But folH(i)S | w)ds =0 ifand only if v, = i for a.e.s € [0, 1], i.e.,v, = su for a.e.s.
Hence lim oo P" (B (I, t ) =2 e; 1) =0. O

4. Large deviations for (L} );e[o,11

Our aim in this section is to extend the setting of Theorem 1 to general triangular
arrays of exchangeable random variables as described in the introduction. The LDI
for (L?);ci0,1; defined in (1) follows from the fact that, according to Theorem 1, it is
a mixture of LDS. Then we can state Theorem 2 by means of a slight modification of
Theorem 2.3 in [13].

First we prove thatL}),c0.1) is @ mixture of LDS. Let us recall that we denote by
M*"() the subset oM (%) of all atomic measure$ >, 8 for (xf,...,x1) € ",
possibly with ties, and by)" the distribution of% > i—16x» underP". Note thatQ" is
also the distribution o% Yo Sy» under P". We sometimes use the shortctitA) =
infrea f(x).

LEMMA 7.—Foralln e Nand allyu e MY (%), P"((xf,...,x}) e-; n)isaregular
version of the distribution ofX7, ..., X”) underP" conditioned or{% Yo Sxr = p}.

In particular, for all measurable subsets of D[[0, 1], (M (Z), B)] we have

P(L" € A) = / P (" € A: 1) Q" (dp). (22)
ML (z)

Proof [From [1], Lemma 5.4]—Let u € M*"(%) and p”(u; -) be a regular version
of the distribution of(X?Y, ..., X) underP" conditioned on{,—lZ Yo Sx» = pu}. Since
(X7, ..., X isn-exchangeable, we have for all permutationen {1, ..., n}

1 D SN
(X'{,...,XZ,;Z‘SX:“ = Xﬁ(l)""’XZ(")’;Z(SXZ(” '
= i=1

Then p"(u; ) is an n-exchangeable measure for almost evarye MY"(X). Fur-
thermore, the empirical measure of artuple distributed according t@”(u;-) is
necessarily% Ef’:lsxg = u. Hence p"(u;-) € MY(Z") is the distribution of sam-
pling without replacement from an urn which composition is given hyWhence
P"((xf,...,x}) € - ;) is a regular version op”(u;-). Let A be a measurable sub-
set of D[[0, 1], (M (Z), )], and A, be the Borel subset & defined by{L" € A} =
{(X%,...,X") € A,}. We have
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PUL e A) =P (X XD € A) = [ 0" (A Q")
Mi(%)
= [ P@eane @
M%)

that is the desired formula.Ol

The following lemma gives the crucial inequalities in order to prove a LDP for
(L)rer0.1-

LEMMA 8.—1.LetG be a closed subset @[[0, 1], (M*(X), B)] and u € M1 (%)
be such that/..(G,u) = inf, g I(v., ) < co. For each § > 0 there exists a
neighborhoodUs of i such that

_ 1
lim sup= log ( sup  P'(I"eG: p)) < —1o(G, 1) + 6.
n—oo N ,OEU(;ﬂMl'”(E)

If I.(G, u) = 0o, then there exists for eadh e R a neighborhood/; of u such that

. 1
limsup= log ( sup P'(I"eG; ,0)) <—L.
n—oo N pEULﬂMl'”(E)

2. Let O be an open subset @[[0, 1], (M*(X), )] and u € M*(X) be such that
Io(0, ) =inf, co Io(v., u) < 0o. For eachs > 0 there exists a neighborhodd; of
such that

1
Iiminf—log( inf P"(z_"eo;p))>—loo(0,u)—5.

n—oo pn peUsNML1 (D)

If 1.(0, n) = 0o, then there exists for eadh e R a neighborhood/; of 1 such that

1

liminf —lo inf P*(I" € O; >—L.
n—-oo n g<p€ULﬂMl~”(E) ( p>)

Proof. —We prove the first assertion of the lemma. Suppose for a contradiction that

there exist a closed subsét of DI[[0, 1], (MT(X), )] and u € M*(X) such that
1.(G, n) < oo and there exists &> 0 such that for all neighborhood$ of p

1
limsup— Iog( sup P'(I" eG; ,0)) > —I(G, 1) + 6.

n—oo N pEUﬂMl’n(E)

Hence, for all neighborhood®’ of u there exists a sequena@;).cny such that
limy_  ny = 0o and fork large enough

sup P (I"™ € G; p) > exp(ni(—I(G, ) +8)).

peUNMYk ()
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Whence, there exists a sequelieg).n such that lim_, ., m; = oo and for everyk € N

sup P" (1" € F; p) > exp(my (—1o(F, 1) + 8)).

pEB (1, HNMLTE ()

For allk € N there exists @ € B(u, %) such that

P (1" € G; pr) > sup [P (" € G; p)} — exp(—m?)
PEB (1, HHNMLTk ()
> exp(my (— I (G, 1) +8)) — exp(—m?).
Hence

1
limsup— log(P™ (I"* € G; py) + exp(—mZ)) = —1xo(G, 1) + 8. (23)

k—oo Mg

But, according to Lemma 1.2.15 in [6] and Theorem 1, we should obtain

1
limsup— log(P™ (I"* € G; py) + exp(—m?))

k—oco Mg

. 1 . 1
= max(llm sup— logP"* (I"* € G; py), lim sup— log exp(—m,f))
k—oo Mg k—oo Mg

. 1
= limsup— logP"* (I"* € G; px)
k—oo Mg

Clearly, the last display cannot hold simultaneously with (23). The proof of the three
other inequalities follows the same patterma

We recall thatAC is the space of all maps : [0, 1] — M*(X) such thaty, — v, €
M*(X) of total mass — s for all 0 < s < 7, vp = 0, and which possess a weak derivative
for a.e.r € [0, 1] as defined in (5).

THEOREM 2. —Suppose thaL? obeys a LDP on(%) with good rate function/.
Then(L!),c0.1) Obeys a LDP orD[[0, 1], (M (X), B)] with good rate function

Jo Hg [vp)ds + J(v1) if v € AC,
00 elsewhere.

T(v) =1, v1) +J(v1) = { (24)

Proof. —We first prove the upper bound of the LDP. L&tbe a closed subset of
DI[0, 1], (M*(%),B)], e > 0andL > 0. Letg/ = {v € MX(Z), J(v) < L}, which is
compact sinceJ/ is a good rate function. Lemma 8 tells us that for everg M*(X)
there exists a neighborhodd, of 1« such that

) 1
limsup— Iog( sup P'(I" eG;p)) <—KM+£,
n—oo N pEU”_ﬂMl’n(E) 2
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where
K — { I (G, 1) if Io(G, n) < 00,
L otherwise.
SinceJ is lower semicontinuou#’,, can be modified such that it also satisfies

inf J(p) > J (1) — g
peUy

As ¢/ is compact, there exigts, ..., i such thaw; c U'_, U,, = C.. Hence, there
exists anVy such that for alk > Ny

P'(L" € G) = / P'(I" € G; 1) 0" ()
Mi(z)
k
<oe)+y, [ PreGnei@n

lle,Ll. NMLn(D)

k
<" (Cz> + Zexp(—n (Klti - %)) Qn(UM;)'

i=1
Whence

. 1
limsup=logP"(L" € G) < _max {—L,—K,, — J(u) +¢}

n—»oo n =L, k

< max {{—1o(G, wi) = J (i) + &}, —L}.

We obtain the upper bound of the LDP by lettihg— oo and there — 0.

Now we prove the lower bound of the LDP. Léx be an open subset d?[[0, 1],
(M*(2),B)] ande > 0. Letv. € O be such that’ (v.) < co. According to Lemma 8
there exists a neighborhodd of v; such that

1
liminf —lo inf  P"(I" € O; > _1..(0.v)) —s.
n—oo n g ( ,OEUﬂMlv”(E) ( - € p)) OO( Ul) &

Whence
P'(L"€0) > / P'(I" € 0:p) 0" (dp)
UﬂMlv"(E)
> exp(—n (I (0, v1) +¢)) Q"(U).
Then

1 .
liminf —logP" (L" € 0) > —1(0,v1) — inf J(p) — ¢
n—oo n . peU

= —Io(.,v1) — J(v1) —e.

We obtain the desired lower bound by letting> 0.
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Next we prove that’ is a good rate function. We denote bythe projection that
mapsD[[0, 1], (M*(X), B)] to M1(Z) by (V1)ref0,11 = v1. Suppose for a contradiction
that there exists am > 0 such that! = {v. € D[[0, 1], (M*(Z), B)], I(v.) < a}is not
compact. Then there is a sequeried),.y € ¢! C C[[0, 1], (M*(Z), B)] that does not
have any convergent subsequence(43,.n € ¢;, it admits a convergent subsequence
(V1 )en and we put lim_, o v7* = n1. Let (37%)ren be such thabi* e M1 (X) for
all k e N and ¥ 5 ;. We have stated in the proof of Theorem 1 that the family
P (™ € - v1*) follows a LDP on the Polish spac€[[0, 1], (M*(X), 8)] with a
good rate function. Hence it is exponentially tight, i.e. there exists a conigcin
C[[0, 1], (M (Z), B)] such that

lim supi logP™ (1" € (K,,)"; 11*) < —3a.
k—oo Mk
Since (V) ey has no accumulation point there exists &g such that for allk >
Nov™ ¢ K,,. As {v", k > No} is closed and"[[0, 1], (M " (X), B)] is metric there are
two disjoint open subsets, andUg such thaffv , k > No} C Up andK,,, C Ug. The
results in Lemmas 7 and 8 are still valid if we replaceby its linear interpolation.”,
whence there is a neighborho&dof »; such that

1 _
limsup— logP™ (L™ € (Ug Nz~ (V)))

k—oo Mg

. 1 7
<limsup—log sup P*(I™ cUg;y)
k—oo Nk yevnMi ()

. 1 - _n
< limsup—logP" (I" € Ug; v1*) + o
k—oo Nk

. 1 77 -n,
< limsup—logP" (I"™ € Ky ; v7*) + o < —20.
koo Nk n

According to the lower bound of the LDP followed ty

o1 - .
liminf —logP™ (L™ € (Up Nz (V) >~ inf  I(v)
k—oo ny v.eUpNm=1(V)
> —a.
But these two inequalities cannot hold simultaneously, herjde compact. O
From this LDP we obtain the following weak law of large numbers.

COROLLARY 3. —If %Z;’lexg = in P"-probability then (L"),c0.1; tends to
(ti):eq0,11 in P"-probability for the distancg.

Proof. —Let e > 0, F, = Bg_(tu, ¢)°, andé > 0 be such that-/,,(F., u) + 6 < 0.
According to Lemma 8 there exists a neighborh@gdf 1 such that

i 1
limsup= log ( sup P"(I"eF; p)) < —Io(Fy, ) +6.

n—oo N ,OEUaﬂMl'”(E)
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Letn > 0 be such thaBg (i, n) C Us. We have

P (Boo (L, 112) > €) =" (Boo (L, 112) > &, B(LY, 1) > 1)
+P"(Boo (L", 110) > &, B(LY, 1) < 1).
Since lim,_, o P"(B(L%, ) > n) = 0 we obtain

im B (B (L 1) > & B(L}. 1) > 1) =0,

n—oo

By virtue of Lemma 8

P"(Boo (L", i) > &, B(LY, 1) < 1) = / P (Boo (I, 11t) > &, B(p, 1) < m; p) Q" (dp)

ML)

= / P" (B (1", t1t) > €; p) Q" (dp)
Bg (1, m)

< sup P"(Bo(l". 1) > €;p)

PEBE(mNML" ()
<expn(—Io(Fp, p) +6),
SO lim,, o P"(Boo(L", tu) 2 ) =0. O

5. Applications
In this section we consider several applications of Theorem 2.
5.1. The Curie-Weiss model

The Curie-Weiss model is a well known toy model of statistical mechanics. Let
¥ ={-1,1} andx, be the Bernoulli measure an with parameternp (p €10, 1[). For
everyn € N, we associate to each configuratiori, ..., x?) € £ of the system the
Hamiltonian

it ens(£2)

i1 1
2

(5(£2)(52)

where Jy and i are constants representing a ferro-magnetic coupling and an externa
magnetic field respectively. The Hamiltonid#, is in fact a functional of the quantity
%E?zl x!' called the total magnetization of the system.

In the setting of equilibrium statistical mechanics two joint probability distributions
appear to be significant. The first one is thigrocanonical ensembighich is obtained
by conditioning the distribution®" on the energy shell

AV ={(x], ..., x]) e H,(x],...,x])) =u}
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whereu € R. In general cases, in order to avoid problems with the existence of regular
conditioned probabilities&f?" is conditioned on the thickened energy shell

AT = () €5 H (o 1f) €Lt 1)

n

with r > 0. In the case we are interested in, conditioning on the event

Bu’n={(.xf,.. GE" Zg’le{ﬂl,ﬂz}}

seems to be more accurate. Here, fities M" (%) are solutions ohg( [y xp(dx)) =

u,, u, being the closest elementiton the sefng (s xpu(dx)), p e M'"(%)}. There are

at most two measures solutions of this problem. Thus, the microcanonical ensemble |
an equally-likely mixture of the probabilitieB" (- ; 1}) associated to sampling without
replacement in the “urn’.}. Our study allows us to give the LDP for the empirical
measure proces8’),co,1; Under the microcanonical ensemble. Indae?.i,—"é X1/2, SO
according to Theorem 1 and Theorems 2.1 and 2.2 in [9] the distributi@ff pf o 1
under the microcanonical distribution follows a LDP with good rate function

1 . .
LoV, A1j2) = { Jo H@g | A2 ds  if v. € AC,, (25)
o0 elsewhere.

The second probability measure that appears in the study of equilibrium is the
canonical ensembjelefined for all subsetB8 of ¥" by

[ exXp(—BH, (], ..., x) {- n
Pop(B)= B/ 75 T (),

whereZ, (B) stands for the normalization constant

Zn(,8)=/exp( BH,(x},...,x Hx

En

The coordinate mapsX?,..., X)) on X" distributed according toP,s are n-
exchangeable random variables. The LDP for the distributionhﬁle X! underpP, g

has been done by Ellis [11]. Orey gives in [15] the LDP satisfied by the distribution of
the empirical field under the canonical ensemble. Our study allows us to give the LDP fol
the empirical measure proceds; ), <(o,1;, under the probability?, 4. This LDP allows to
consider applications involving randomly selected segments aftbple (X7, ..., X)),
having a data dependent location and length. Now we look for this LDP. We know that
the distribution ofX,, = X 3> , X" under P, 4 obeys a LDP ori—1, 1] with good rate
function

1(z) = Ie(@) = Bg(2) = _inf [le(@) = Bs(2)].
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where I¢ is the rate function of Cramer's theorem for Bernoulli random variables
(see [11]). Sincd (1) and X,, are one-to-one linked by, = 2L%(1) — 1, L] follows

a LDP on M'(X) with good rate functionJ(v;) = I(fs xv1(dx)). But, for every
v1 € MX(E) Io(fy xv1(dx)) = H (v1]2,). Hence

s = |3~ pe( [0 = inf [Hn 10 - pe( [ruan)].
) )

vieMi(T

Whence, according to Theorem 2, the distribution(bf),¢[0,1; under the canonical
ensemble follows a LDP oD[[0, 1], (M*(X), B)] with good rate function

Ii(v) = {folH(ts [v)ds + H (v | Ap) — Bg( [ xva(dx)) — C if v. € AC,
P 00 otherwise,

whereC =inf, 15 [H (1| A),) — Bg([5 xv1(dx))]. The following result helps us in
simplifying the expression af.

LEMMA 9. —For everyv. € AC and everyx e M1(X)
1 1
/H(f;s L) ds + H(vy | 2) =/H(1'zs | 3) ds. (26)
0 0

Proof. —Let v. € AC and A € M1 (X). First we suppose that, and A are such that
H(v1 | ) = c0. Hence, according to Jensen’s inequality

1 1
/H(ﬂslk)ds>H</bsds‘k> > H(vy | A) = 00,
0 0

so in this casgy H (i, | v1)ds + H(vy | 1) = fi H(Dy | 1) ds.

Suppose now thatf (v1|1) < oco. Since for allA € By ¢t — v,(A) is an increasing map,
v1(A) = 0 implies thatv;(A) = O for everys € [0, 1]. Hencey, is absolutely continuous
w.r.t. v;, and we obtain for every € [0, 1]

. dl)v . dl)l
H (v, | vl)—l—H(vl|A):/|Og$dvs+/logadvl
) ! )
df)x . dl)l . dl)l dl)l .
_E/Iog d_vl dvg +E/Iog O dv, +E/Ioga dvy —E/Iog O dv,

. d]}s . dl)]_ dVl .
_/Iog a dv, + / log e dvy — /Iog O dv,
D) ) D)

. dVl dl)]_ .
_H(vs|/\)+Z/Iogadvl—z/logadvs.
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Let us denote by the measurable map=log % To complete the proof it is sufficient

to show that
1
/(/fdf)s> ds:/fdvl.
0 x )

For step functionsf = ZLlailA[ this relation follows from the definition of,;. For
generalf’s we let f, be the positive part of and we denote byf,),.cy an increasing
sequence of step functions that convergeg,to\WWe obtain

1 1 1

O/<E/f+di)s> ds:0/<nleooz/fn di)s> ds >O/<E/fn df)s> ds >E/fn duy.

S0 fol(fZ fediy)ds >[5 fi dvg, and according to Fatou's lemma

1

/f+dvl>/fndvl=/(/fndm)ds
) ) 0 )]
1
>“;m>'orlfo/<2/ﬁ’ df)x> ds

1 1

>O/<E/Iinn_1)iorlf f,,df)s> ds:0/<2/fdf)s) ds.

Whencefol(fE frdig)ds =[5 fidvy < o0, sinceH (v1 | A) < oo. So it follows that

1

dvy . dvy
/(2/ log 2 dvs) ds = E/ log < ds,

0

and this ends the proof.O

By virtue of Lemma 9 we obtain

I4(v) = { Jo H(y | 2,)ds — Bg( [y xvi(d)) —C if v. € AC,
o0 elsewhere.

We can prove thatL!),c01; follows a LDP in this set-up another way. According
to Theorem 1 in [4] the distribution ofL});c0.1 under/\;‘?” (i.e., X1,..., X" being
independent and identically distributed according.t9 follows a LDP with good rate
function

JEH@, |2, ds if ve AC,
00 elsewhere.

i(u_,,\,,):{
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Hence, from Varadhan’s lemma we know that the distributio/df),c[0,1; under P, g
follows a LDP with good rate function

Isw) = { Jo H( | 1) ds = Bg( [ xva(dv)) = C if v. € AC,
0

otherwise,
where

¢= v.eDI[[0, 1]ir(]M+(2) N l/H(UY | )‘p) ds — ﬂg( /xvl(dx)>] .

)

It is sufficient, in order to prove the equality of the rate functions, to prove@hatC.
We have

1

C=VED[01].r2M+(E) ) [/H(Vs | )»p)ds —ﬂg( E/xyl(dx)>]

0

1
=M€$‘I(E){v.;i£‘1‘iu</f’("s ) ds + H | 2y) - ﬂg< /xu(dX)>> }
0 z

-t o [

the equality off and follows.
5.2. Infinite exchangeable random variables

Let (X4,...,X,,...) be an infinite exchangeable sequenceXb¥alued random
variables defined on a probability spac@, A,PP). For alln e N (X{,..., X)) =

(X4, ..., X,) is ann-exchangeable random vector, and according to de Finetti’s theorem
for any Borel subset o£”

P((X1..... X,) € A) =/P9((X1,...,Xn) € A)y(dh),

wherey is a probability measure on a closed sul®aif M*(X), and for eveng € O,
Py is a probability measure defined ¢f2, A) such thatX, ..., X, ... are independent
and identically distributed unde®,. From [9] we know that provide® is compact,

; 1 n 1 n
Ll:ﬁ;‘sx" :;;8)(?

follows a LDP onM*(%) with good rate function/ (v) = infyee H (v1 | ), Where
my = Py o X;*. Hence, according to Theorem 2L"),1 follows a LDP on
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D[[0, 1], (M™(X), B)] with good rate function

vy = { S H (b, | vr) ds +infyco H(v | 70)  if v € AC,
00 elsewhere.

Now, we give a direct proof (without Theorem 2) of this result. Since the map-
ping from " to D[[O0, 1], (M* (%), B)] defined byL” is continuous, it is an im-
mediate consequence of de Finetti's theorem that for any measurable sulmdfet
DI[[0, 1], (M™ (%), B)]

PUﬂeAﬁi/%UfeMywm.

Hence, according to Theorems 2.1, 2.2 in [9], it is sufficient to prove that the family
(P} = Py o (L")71,0 € ®) is exponentially continuous to establish the LDP for the dis-
tribution of (L}),¢[0,1; underP. In other words we have to prove that for any converging
sequenc®” — 6 in ® and any measurable subsebf D[[0, 1], (Mt (), )]

— inf_ [(v., 1) < <liminf = IogPQ”,,(A) Ilmsup log P}l (A) < — inf I (v., 1)

n— 00 v.€A

wherel (v., 7rp) is defined onD[[0, 1], (M*(X), )1 b

I(v.,my) = { folH(f)s | mg)ds if v. € AC,
oo elsewhere.

Let(t(p=0<1t,...,15_1 <ty < 1) be a strictly orderedd + 1)-tuple. We first look for
the LDP satlsfled by the distribution ()Lto, ..., L}) under Py.. SinceXy, ..., X, are
independent undeP,. the random empirical measuré$ — Ly, Lf — L7, ..., L] —

19’ 11’

L7 | are also independent. It follows from [2] that the dlstrlbutlon of eagh- L} |

(1<i <d) under Py satisfies a LDP o/ () with good rate function

bw»=0r4FﬂH(n Elha

We deduce from Lemmas 2.7, 2.8 in Lynch and Sethuraman [14] ilfat- L}, L}, —
Ly, ..., L] — L} ) satisfies a LDP oM *(x)¢ with good rate function

n’ fg—1

I(fo _____ ,d)(vl,...,vd) Z(f — i 1)H< ] ’7'[9)

Finally, we deduce from Theorem 1 in [4] that the distribution (&f'),c0.1; under
Py follows a LDP with good rate functiod (v., y). Whence the family P2, 6 € ©)
is exponentially continuous, and we deduce from Theorems 2.1, 2.2 in [9] that the
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distribution of (L)[0,1; underP follows a LDP with good rate function

fw) = { infoco fof H(b, |me)ds if v. € AC,
oo elsewhere.

Next we show that the rate functiodsand/ are equals. From Lemma 9 we know that
for all € ® and for allv. € AC

1 1
/H(f)s | 724 ds =/H(f)s | vy) ds + H (v, | 70)
0 0

1
E/H(i)s | v ds + inf H(vy | 7p).
6e®
0

Hencel > I. For allv. € AC and alls > 0 there exists an € ® such thatH (vy | 77,) <
infoee H(v1 | mp) + €, hence

1 1
[ HE v ds+ Hrlm) < [ He i ds + jnf Hon L)+,
of
0 0
1 1
[ HG m)ds < [ HGs oo ds + inf Hoou o) +e,
et
0 0

1 1
inf/H(f)X|n9)ds</H(f)s|v1)ds—|— inf H (v, | 9) + ¢
He® 0e®

0 0

We obtain/ > I by lettinge — O.
5.3. Sampling with and without replacement

Let ((X7)1<i<n)nen b€ a triangular array ok-valued random variables such that
for everyn e N X/, ..., X are independent and identically distributed according to

w

" € M1(Z). We suppose that” — p € M*(X). From [2] we know that_} obeys a
LDP on M1(%) with good rate function

J(w)=H1| ).

Hence, according to Theorem 2 and Lemma&l9),0.1; 0beys a LDP onD[[0, 1],
(M™*(%), B)] with good rate function

1 . )
I(v_,,u):{fo H®s | n)yds ifv. e AC,
o0 elsewhere.
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This set-up obviously includes the case wh&tg ..., X! are given by samplingvith
replacement in an urn whose composition is givenuby= % > i=10yr. Letus recall that
according to Theorem 1 the rate function of the LDP associated to sampiihgut
replacement in the same urn and under the same congiraifit 1 is

JEH @ | wyds  if v € AC,,
00 elsewhere,

Io(v., ) = {

i.e., the rate function of the samplingth replacement case relativized 4o
5.4. Random permutations of random processes

Let (Y1,Y>,...,Y,,...) be aX-valued process satisfying a Sanov result, and let
((X!1<i<n)nen be afinite exchangeable triangular array of random variables defined as
follows: For everyn € N we uniformly choose a random permutatieh on {1, ..., n}
and we putX! = Y,»(;. The resulting process describes the transmission of the random
signal Y" chopped inton pieces of equal lengttiYy, Y»,...,Y,), each piece being
transmitted to the same destination by different paths. The order of arrival of the piece:
(given byo") is assumed to be uniform and independent’ &f We consider here the
particular case where the spring process is a Markov chainX.et>, ..., Y,,...) be a
>-valued Markov chain with probability transitiop(x, dy). We suppose that(x, dy)
satisfies the Feller property, i.e., for dlle C, (%) the function

xezwu#xw=/fwmuﬂw
b))

is continuous. Itis also assumed that there exist integers § N and a constan > 1
such that for all, x’ € ©

M N
pl(xv ) < N Z pm(x/v ')v
m=1
wherep™(x, -) is them-step transition probability for initial conditiom, given by
P = [P0 dy).
z

We know that for any starting point; = 1 >i_41 8y, satisfies a LDP with good rate

o
function

J(v1) = sup {/Iog<i> dvl},
ueld(x) L J pu

wherel/(X) denotes the set af € C,(X) satisfyingu > 1 on T (see [7]). We let
((X"1<i<n)nen be defined as above. According to TheorelL2), <o 1) follows a LDP
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on D[[0, 1], (M™(X), B)] with good rate function

T = {folH(fzs | v) ds + SR,z L 10924 ) dvs ) if v € AC,
00 elsewhere.
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