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ABSTRACT. – In this paper we consider a triangular array whose rows are composed of
finite exchangeable random variables. We prove that, under suitable conditions, the sequence
defined by the empirical measure process of each row satisfies a large deviation principle. We
first study the particular case where the rows are given by sampling without replacement from
fixed urns. Then we prove a large deviation principle in the general setting, by identifying
finite exchangeable random variables and sampling without replacement from urns with random
composition. 2002 Éditions scientifiques et médicales Elsevier SAS
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RÉSUMÉ. – Nous considérons un tableau triangulaire dont les lignes sont composées de
variables aléatoires fini-échangeables. Nous prouvons sous certaines conditions que la suite
définie par le processus de mesure empirique de chaque ligne vérifie un principe de grandes
déviations. Dans un premier temps nous traitons le cas particulier où chaque ligne résulte du
tirage sans remise dans une urne de composition donnée. Nous en déduisons ensuite un principe
de grandes déviations dans le cas général, en identifiant les variables aléatoires fini-échangeables
avec le tirage sans remise dans des urnes de composition aléatoire. 2002 Éditions scientifiques
et médicales Elsevier SAS
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1. Introduction

We say that a sequence of Borel probability measures(P n)n∈N on a topological space
obeys a Large Deviation Principle (hereafter abbreviated LDP) with rate functionI and
in the scale(an)n∈N if (an)n∈N is a real-valued sequence satisfyingan →∞ andI is a
non-negative, lower semicontinuous function such that

− inf
x∈Ao

I (x) � lim inf
n→∞

1

an

logP n(A) � lim sup
n→∞

1

an

logP n(A) � − inf
x∈Ā

I (x)

for any measurable setA, whose interior is denoted byAo and closure byĀ. Unless
explicitly stated otherwise, we will takean = n. If the level sets{x: I (x) � α} are
compact for everyα < ∞, I is called a good rate function. With a slight abuse of
language we say that a sequence of random variables obeys a LDP when the sequence
of measures induced by these random variables obeys a LDP. For a background on the
theory of large deviations, see Dembo and Zeitouni [6] and references therein.

In this paper, we are interested in the LD behavior offinite exchangeablerandom
variables. The wordexchangeableappears in the literature for bothinfinite exchangeable
sequences of random variables, andfinite exchangeablerandom vectors. A sequence of
random variables(X1, . . . , Xn, . . .) defined on a probability space(�,A,P) is infinite
exchangeableif and only if for every permutationτ on N such that|{i, τ (i) 
= i}| < ∞
the following identity in distribution holds

(X1, . . . , Xn, . . .)
D= (Xτ(1), . . . , Xτ(n), . . .).

An n-tuple (X1, . . . , Xn) of random variables defined on the same probability space is
finite exchangeableor n-exchangeable(to indicate the number of random variables) if
and only if for all permutationsσ on {1, . . . , n} it satisfies the identity in distribution

(X1, . . . , Xn)
D= (Xσ(1), . . . , Xσ(n)).

Finite and infinite exchangeability are related since anyn-tuple extracted from an
infinite exchangeable sequence of random variables isn-exchangeable. While LD for
infinite exchangeable sequences have been entirely studied by Dinwoodie and Zabell [9],
much less is known in the more intricate case of finite exchangeable random variables.
After introducing our setting, we shortly review below known facts about exchangeable
random variables. We refer to Aldous [1] for a large survey on this topic.

Throughout the sequel(�, d) will denote a Polish space, andM+(�) [resp.M1(�)]
the space of Borel non-negative measures [resp. probability measures] on�. These
spaces will always be equipped with the topology of weak convergence, and we shall
denote convergence in this topology byµn w→ µ. Let us recall that the dual-bounded-
Lipschitz metric β on M+(�) is compatible with this topology (see Dembo and
Zajic [4], Appendix A.1).

De Finetti’s well-known theorem (see, for example, [12]) states that any� valued
infinite exchangeable sequence of random variables(X1, . . . , Xn, . . .) defined on
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(�,A,P) is a mixture of independent and identically distributed sequences of random
variables, i.e. for any Borel setA of �n

P
(
(X1, . . . , Xn) ∈ A

)= ∫
�

Pθ

(
(X1, . . . , Xn) ∈ A

)
γ (dθ),

whereγ is a probability measure on a closed subset� of M1(�), and for everyθ ∈ �,
Pθ is a probability measure defined on(�,A) such thatX1, . . . , Xn, . . . are independent
and identically distributed underPθ . Using this result, Dinwoodie and Zabell [9] have
shown that if� is compact, the distribution of1

n

∑n
i=1 δXi

underP satisfies a LDP with
good rate function

I (ν) = inf
θ∈�

H(ν | πθ),

whereπθ = Pθ ◦ X−1
1 andH(· | ·) stands for the usual relative entropy (see Dupuis and

Ellis [10] for a nice account on relative entropy).
Nevertheless, de Finetti’s theorem is not valid for finite exchangeable random

variables, as can be seen in the following simple example that arises in sampling.
Consider an urn withn labelled balls(x1, . . . , xn). The result(X1, . . . , Xn) of n draws
without replacement among(x1, . . . , xn) is ann-exchangeable random vector that cannot
be represented as a mixture of independent and identically distributed random variables.
In this special case, Dembo and Zeitouni [5] have showed that if1

n

∑n
i=1 δxi

w→ µ then,

for fixed t0 ∈]0, 1[, the distribution of 1
[nt0]

∑[nt0]
i=1 δXi

follows a LDP in the scale[nt0] and
with good rate function

I (ν, t0, µ) =
{

H(ν | µ) + (1−t0)

t0
H
(

µ−t0ν

1−t0
| µ
)

if µ−t0ν

1−t0
∈ M1(�),

∞ otherwise.

Another well-known fact is that a family ofn-exchangeable random variables can be
approximated byn independent and identically distributed random variables in the
variation norm (see Diaconis and Freedman [8]). However, this property does not give
any hint for the LDP.

Here we consider afinite exchangeable triangular array((Xn
i )1�i�n)n∈N of �

valued random variables defined on(�,A,P), i.e., each row(Xn
1, . . . , Xn

n) is finite
exchangeable. We define the associated sequence of empirical measure processes by

Ln
t =

1

n

[nt ]∑
i=1

δXn
i

(1)

for everyt ∈ [0, 1]. The process(Ln
t )t∈[0,1] belongs to the spaceD[[0, 1], (M+(�), β)]

of all maps defined on[0, 1] that are continuous from the right and have left limits. This
space is endowed with the topology defined by the uniform metric

β∞(y·, z·) = sup
t∈[0,1]

β(yt , zt), (2)

wherey· is a shortcut for(yt )t∈[0,1].



652 J. TRASHORRAS / Ann. I. H. Poincaré – PR 38 (2002) 649–680

The experience we are interested in can be heuristically described this way: From
any n-tuple (Y n

i )1�i�n of random variables one can simply obtain ann-exchangeable
random vector(Xn

i )1�i�n by sampling without replacement from an urn withn labelled
balls (Y n

1 , . . . , Y n
n ). Equivalently, we let in this caseXn

i = Y n
σ(i), for i = 1, . . . , n, with

σ = σ n a random permutation on{1, . . . , n} which is independent from(Y n
i )1�i�n and

uniformly distributed. Our purpose in this paper is to derive the LDP for(Ln
t )t∈[0,1]

from the LDP for 1
n

∑n
i=1 δY n

i
. Now, let us describe our setting rigorously. LetB�n

be the Borelσ -algebra on�n and P n be any probability measure on(�n,B�n). We
denote by(Y n

1 , . . . , Y n
n ) the coordinate maps on(�n,B�n) when we consider them

distributed according toP n. Let Pn be the probability measure defined on every product
A1 × · · · × An of measurable subsets of� by

P
n(A1 × · · · × An) = 1

n!
∑
σ∈Sn

P n(Aσ(1) × · · · × Aσ(n)), (3)

whereSn is the symmetric group of ordern. We denote by(Xn
1, . . . , Xn

n) the coordinate
maps on(�n,B�n) when its joint law isPn. Clearly, the random variables(Xn

i )1�i�n

aren-exchangeable. Let(�,A,P) be the probability space associated to the sequence
((�n,B�n,P

n))n∈N. Note that the mapping from�n to D[[0, 1], (M+(�), β)] defined
by (Ln

t )t∈[0,1] is continuous, hence Borel measurable. As mentioned before, our goal is
to derive the LDP [resp. the weak law of large numbers] for the distribution of(Ln

t )t∈[0,1]
underPn from the LDP [resp. the weak law of large numbers] for the distribution of
1
n

∑n
i=1 δY n

i
underP n. Remark that [9] does not apply in this case.

The key to the proof is the following elementary fact. The law of(Xn
1, . . . , Xn

n)

conditioned on{ 1
n

∑n
i=1 δXn

i
= ρ}, whereρ is an atomic measure whose atoms weigh

k
n

(1 � k � n), is the law of sampling without replacement among these atoms counted
with their frequency of appearance inρ. Hence our analysis essentially reduces to the
following particular case. Let((yn

i )1�i�n)n∈N be a fixed triangular array of elements of
�, whose composition is given by(µn = 1

n

∑n
i=1 δyn

i
)n∈N, possibly with ties. For every

n ∈ N, we sample without replacement from the urn containing(yn
i )1�i�n and we denote

by xn
i the ith element drawn. We callPn(· ;µn) the distribution on�n related to this

sampling. For everyn ∈ N it clearly makes(xn
i )1�i�n a finite exchangeable vector. For

all t ∈ [0, 1] we set

ln
t = 1

n

[nt ]∑
i=1

δxn
i
, (4)

and for allµ ∈ M1(�) we letACµ be the space of all mapsνt : [0, 1] → M+(�) such
that:

1. νt − νs ∈ M+(�) is of total masst − s for all 0� s � t � 1.
2. ν0 = 0 andν1 = µ.
3. ν· possesses aweak derivativefor almost everyt ∈ [0, 1]. We call weak derivative

the limit

ν̇t = lim
ε→0

νt+ε − νt

ε
, (5)

provided this sequence converges inM1(�).
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In the sequel, by distribution of(ln
t )t∈[0,1] we will mean its distribution under the

probability measurePn(· ;µn). It is an abuse of language, but there cannot be any
confusion since the triangular array((yn

i )1�i�n)n∈N is fixed. Our first result is the
following.

THEOREM 1. – If µn w→ µ then(ln
t )t∈[0,1] obeys a LDP onD[[0, 1], (M+(�), β)] with

good rate function

I∞(ν·, µ) =
{∫ 1

0 H(ν̇s | µ) ds if ν. ∈ACµ,

∞ elsewhere.
(6)

Theorem 1 can be viewed as a LDP for the so-called microcanonical distributions.
Simple microcanonical distributions are obtained from independent and identically
distributed random variablesX1, . . . , Xn by conditioning on the value of a functional
of their empirical measure. The question of interest is then whether or not there is
convergence of the marginal distribution ofX1 under the conditional probability, when
n → ∞. For general background concerning microcanonical distributions we refer to
Stroock and Zeitouni [18]. What we prove here is a LD result for the distribution of
the contraction(Ln

t = 1
n

∑[nt ]
i=1 δXi

)t∈[0,1] of X1, . . . , Xn, when these random variables are
n-exchangeable, under a strong conditioning.

Next, taking into account the fluctuations of the compositionµn of the urn, we obtain
in this case a more involved result. LetQn be the distribution ofLn

1 = 1
n

∑n
i=1 δXn

i
under

P
n. Note that this probability measure onM1(�) is also the distribution of1

n

∑n
i=1 δY n

i

under P n. Let M1,n(�) be the subset ofM1(�) composed of all atomic measures
1
n

∑n
i=1 δxi

for (x1, . . . , xn) ∈ �n possibly with ties, andAC =⋃µ∈M1(�) ACµ. Since

P
n
(
Ln

· ∈ A
)= ∫

M1,n(�)

P
n
(
ln
· ∈ A;ρ

)
Qn(dρ) (7)

for every borelianA of D[[0, 1], (M+(�), β)], Theorem 1 tells us that(Ln
t )t∈[0,1] is a

mixture of Large Deviation Systems (from now on abbreviated LDS), in the sense of
Dawson and Gartner [3]. Hence, the announced LDP holds by virtue of a result due to
Grunwald [13].

THEOREM 2. –Suppose thatLn
1 follows a LDP onM1(�) with good rate function

J . Then(Ln
t )t∈[0,1] follows a LDP onD[[0, 1], (M+(�), β)] with good rate function

I (ν·) = I∞(ν·, ν1) + J (ν1) =
{∫ 1

0 H(ν̇s | ν1) ds + J (ν1) if ν· ∈AC,

∞ elsewhere.
(8)

Even in the simple case of binary valued finite exchangeable random variables there
is no general result concerning the LD behavior ofLn

1. So Theorem 2 seems to be the
best result that can be stated in this setting.

The paper is organized as follows. In Section 2 we consider a fixed triangular array
((yn

i )1�i�n)n∈N of elements of�. Generalizing a technique from [5], we prove that if
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µn = 1
n

∑n
i=1 δyn

i

w→ µ we have a LDP for(ln
t0

, . . . , ln
td

) on M+(�)d+1, for all d ∈ N
∗

and all strictly ordered(d + 1)-tuples t = (t0 = 0 < t1, . . . , td−1 < td = 1). We derive
the LDP for (ln

t )t∈[0,1] from the LDP for the finite-dimensional marginals(ln
t0

, . . . , ln
td

)

in Section 3. This result is obtained using a projective limit approach taken from [4].
In Section 4 we prove the identity (7) so that(Ln

t )t∈[0,1] is a mixture of LDS. Then
we give the proof of Theorem 2, which is very close to the proof of Theorem 2.3
in [13]. Section 5 is devoted to applications of Theorem 2. We recover two classical
examples of finite exchangeable random variables. We first consider the Curie–Weiss
model, which is a well known toy model in statistical mechanics. Our analysis allows
to consider both its microcanonical version (i.e., the uniform distribution on a set of
allowed configurations), and its macrocanonical version (i.e., the classical Curie–Weiss
model). These two aspects are connected via the principle of equivalence of ensembles.
The Curie–Weiss model is a paradigm for both exchangeable random variables and
LD problems as can be seen, for example, in the fact that its internal fluctuations are
studied by means of a de Finetti representation by Papangelou in [16], and by the
same author using LD techniques in [17]. Another classical example is given by infinite
exchangeable sequences, where Theorem 2 allows us to extend easily the result of [9].
We also show that the LDP’s for(Ln

t )t∈[0,1] whereXn
1, . . . , Xn

n are respectively given
by sampling with and without replacement have closely related rate functions. This
completes, in a way, a result of Baxter and Jain [2]. Our last example concerns the
random permutation of a discrete time stochastic process. Ann-tuple (Y1, . . . , Yn) is
transformed into(Xn

1, . . . , Xn
n) by the mechanism presented above, i.e.,Xn

i = Yσ(i) with
σ = σ n a random permutation on{1, . . . , n}, uniformly distributed and independent from
(Y1, . . . , Yn). This appears to be a model for communication systems. A time-dependent
signal Y n is chopped into pieces of equal length(Y1, . . . , Yn) which are transmitted
independently via different channels to the same destination. The signal is reconstructed
according to the order of arrival intoXn = (Xn

1, . . . , Xn
n), whose LD behavior is given

by Theorem 2.

2. Large deviations for finite marginals of (ln
t )t∈[0,1]

Let ((yn
i )1�i�n)n∈N be a fixed triangular array of elements of� and letd ∈ N

∗ and
t = (t0 = 0 < t1, . . . , td−1 < td = 1). Our objective in this section is to prove that if
µn = 1

n

∑n
i=1 δyn

i

w→ µ then(ln
t0

, . . . , ln
td

) follows a LDP onM+(�)d+1, with ln
t as in (4).

Fixing (ln
t0
, . . . , ln

td
) is equivalent to choosing uniformly a partition of(yn

i )1�i�n among
those withd classes containing[ntj ] − [ntj−1] elements, for 1� j � d. In other words,
we must associate to everyyn

i a valuej , under the strong condition that[ntj ] − [ntj−1]
items are associated to eachj . First we relax the constraint on the cardinals of thed

classes, and look for the LDP satisfied by the sequence of random measures

Ln = 1

n

n∑
i=1

δ(yn
i
,Nn

i
), (9)

where the((Nn
i )1�i�n)n∈N are independent random variables defined on a probability

space(Y,F, P ), with values in a Polish space0, identically distributed according to a



J. TRASHORRAS / Ann. I. H. Poincaré – PR 38 (2002) 649–680 655

law λ. We will derive the LDP for(ln
t0

, . . . , ln
td

) from the latter result by conditioning on
the values ofNn

i , thanks to a coupling.

LEMMA 1. –The distribution ofLn underP obeys a LDP onM1(� × 0) endowed
with the topology of weak convergence, with good rate function

I1(ν, µ, λ) =
{

H(ν | µ⊗ λ) if ν(1) = µ,

∞ otherwise,
(10)

whereν(1) stands for the first marginal ofν.

Proof. –Let φ ∈ Cb(� × 0), where we denote byCb(� × 0) the class of all real
valued bounded continuous functions on� × 0. We have

logE

[
exp
(

n

∫
�×0

φ(u, v)Ln(du × dv)

)]
= logE

[
exp

n∑
i=1

φ
(
yn

i , Nn
i

)]

=
n∑

i=1

log
∫
0

exp
(
φ
(
yn

i , v
))

λ(dv),

then

8(φ)= lim
n→∞

1

n
logE

[
exp
(

n

∫
�×0

φ(u, v)Ln(du × dv)

)]

=
∫
�

log
(∫

0

exp
(
φ(u, v)

)
λ(dv)

)
µ(du) < ∞.

Hence for allk ∈ N all φ1, . . . , φk ∈ Cb(� × 0) and allλ1, . . . , λk ∈ R 8(
∑k

i=1 λiφi)

is finite and differentiable inλ1, . . . , λk throughoutRk. Whence, according to parta)

of Corollary 4.6.11 in [6],Ln follows a LDP onX , the algebraic dual ofCb(� × 0),
equipped with theCb(� × 0)-topology, with good rate function

8∗(ν) = sup
φ∈Cb(�×0)

{〈φ, ν〉 − 8(φ)
}
,

where〈·, ·〉 stands as usual for

〈φ, ν〉 =
∫

�×0

φ dν. (11)

As M1(� ×0) is closed inX and8∗(ν) =∞ onX\M1(� ×0), Ln follows a LDP on
M1(� ×0) equipped with the weak convergence topology, with good rate function8∗.

Let us identify8∗. From Theorem A.5.4 in [10] we know that everyν ∈ M1(� × 0)

can be written asν(du × dv) = ν(1)(du) ⊗ ρ(u, dv), whereρ is a regular probability
kernel.

First suppose thatν(1) 
= µ. Then, there exists aφ ∈ Cb(�) such that
∫

� φ(u)ν(1)(du)−∫
� φ(u)µ(du) = 1, so for everyM > 0 we defineψM ∈ Cb(� × 0) by ψM(u, v) =

Mφ(u) such that
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�×0

ψM(u, v)ν(du × dv) −
∫
�

log
(∫

0

exp
(
ψM(u, v)

)
λ(dv)

)
µ(du)

= M

(∫
�

φ(u)ν(1)(du) −
∫
�

φ(u)µ(du)

)
= M.

Whence we obtain in this case8∗(ν) = I1(ν, µ, λ) =∞ by lettingM →∞.
Now suppose thatν(1) = µ. By virtue of Jensen’s inequality, for anyφ ∈ Cb(� × 0)

log
∫
0

∫
�

exp
(
φ(u, v)

)
λ(dv)µ(du) �

∫
�

(
log
∫
0

exp
(
φ(u, v)

)
λ(dv)

)
µ(du).

Thus, ∫
�×0

φ(u, v)ν(du × dv) − log
∫
0

∫
�

exp
(
φ(u, v)

)
λ(dv)µ(du)

�
∫

�×0

φ(u, v)ν(du × dv) −
∫
�

(
log
∫
0

exp
(
φ(u, v)

)
λ(dv)

)
µ(du).

Then, according to the definition ofH(· | ·), we obtainH(ν | µ ⊗ λ) � 8∗(ν). So, if
H(ν | µ ⊗ λ) =∞, we necessarily have8∗(ν) = I1(ν, µ, λ) =∞. Otherwise, we can
define

f (u, v) = d(µ⊗ ρ)

d(µ⊗ λ)
= dρ

dλ
µ⊗ λ a.e.

For everyφ ∈ Cb(� × 0)

H
(
ρ(u, ·) | λ

)
�
∫
0

φ(u, v)ρ(u, dv) − log
∫
0

exp
(
φ(u, v)

)
λ(dv) µ a.e.,

hence∫
�

H
(
ρ(u, ·)|λ)µ(du) �

∫
�×0

φ(u, v)ν(du×dv)−
∫
�

log
(∫

0

exp
(
φ(u, v)

)
λ(dv)

)
µ(du),

so
∫

� H(ρ(u, ·) | λ)µ(du) � 8∗(ν).
But, according to Fubini’s theorem∫

�

H
(
ρ(u, ·)|λ)µ(du)=

∫
�

(∫
0

dρ

dλ
log

dρ

dλ
dλ

)
dµ

=
∫

�×0

d(µ ⊗ ρ)

d(µ⊗ λ)
log

d(µ ⊗ ρ)

d(µ⊗ λ)
d(µ⊗ λ)

=H(ν | µ⊗ λ).

soH(ν | µ⊗ λ) � 8∗(ν) and thenλ∗(ν) = I1(ν, µ, λ). ✷
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We proceed now to the identification of eachNn
i (1 � i � n) with an element of a

random partition ind classes of(yn
i )1�i�n. We suppose that0 = {1, . . . , d}, that theNn

i

are distributed according toλ(j) = tj − tj−1 =: <j t , and we define the continuous and
injective map

F : M1(� × 0) −→ M+(�)d

ν(·, ·) �−→ (
ν
(·, {1}), ν

(·, {1, 2}), . . . , ν
(·, 0

))
.

(12)

For everyn ∈ N we set

Sn = F ◦Ln, (13)

with Ln as in (9). The vector of random measuresSn is defined on(Y,F, P ) as in
Lemma 1. An elementν = (νi)i∈0 of M+(�)d is said to beincreasingwhenνi(A) �
νj (A) for all A ∈ B� and all i, j ∈ 0 such thati � j . For these elements ofM+(�)d we
denote by<iν the positive measureνi − νi−1, with ν0 = 0.

COROLLARY 1. –The distribution ofSn underP obeys a LDP onM+(�)d equipped
with the product topology of weak convergence, with good rate function

I2(ν, µ, t ) =



d∑
i=1

<iν(�)H

(
<iν

<iν(�)

∣∣∣µ)

+
d∑

i=1

<iν(�) log
<iν(�)

<it
if
{

ν is increasing,
νd = µ,

∞ elsewhere.

(14)

Proof. –Let M = F(M1(� × 0)) = {ν ∈ M+(�)d, ν increasing andνd(�) = 1}.
SinceF is continuous and injective, we deduce from Lemma 1 thatSn follows a LDP
on M+(�)d endowed with the product topology of weak convergence, with good rate
function

Ī2(ν, µ, t ) =
{

I1(ν
∗, µ, λ) if ν ∈M andν = F(ν∗),

∞ elsewhere,

whereI1 is the rate function defined in (10).
If ν /∈ M, Ī2(ν, µ, t ) = I2(ν, µ, t ) = ∞. Let ν ∈ M. Then we haveνd = ν∗(1), the

first marginal ofν∗ and if νd 
= µ, I2(ν, µ, t ) = Ī2(ν, µ, t ) =∞. If νd = µ thenν∗ is
absolutely continuous w.r.t.µ⊗ λ and

Ī2(ν, µ, t )= I1(ν∗, µ, λ)

=H(ν∗ | µ⊗ λ)

=
d∑

i=1

∫
�

ν∗(dy, i) log
ν∗(dy, i)

µ(dy)<it

=
d∑

i=1

<iν(�)

∫
�

<iν(dy)

<iν(�)
log

<iν(dy)/<iν(�)

µ(dy)<it/<iν(�)
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=
d∑

i=1

<iν(�)H

(
<iν

<iν(�)

∣∣∣µ)+
d∑

i=1

<iν(�) log
<iν(�)

<it

= I2(ν, µ, t).

Hence we obtain the rate function of the LDP satisfied bySn. ✷
Next we define a coupling procedure that allows us to derive fromSn a random

variable with the same law as(ln
t1

, . . . , ln
td

). Let Un
j be the number ofj -valued Nn

i

(j ∈ {1, . . . , d}), andTn be the typical eventTn =⋂d
j=1{Un

j = [ntj ]− [ntj−1]}. For every

n ∈ N we define(Ñn
i )1�i�n from (Nn

i )1�i�n in the following way:
• If Un

1 is greater than[nt1], we choose randomlyUn
1 −[nt1] i’s among the ones with

Nn
i = 1, and we change the value 1 on thesei’s to the value 2.

• If Un
1 is less than[nt1], we choose uniformly[nt1] − Un

1 indices among those such
that Nn

i = 2, and we change the associatedNn
i into 1. If there are not enoughi’s

such thatNn
i = 2, we choose the needed indices among those withNn

i = 3.
We call N̄n

i,1 ∈ {1, . . . , d} the random variables resulting from this first step of the
procedure. Now we define the random variablesN̄n

i,2 ∈ {1, . . . , d} resulting from the
second step in the same way:

• If the number ofi’s with N̄n
i,1 = 2 is greater than[nt2]− [nt1], we choose uniformly

the indices in excess, and we change the value 2 on thesei’s to the value 3.
• If the number ofN̄n

i,1 = 2 is less than[nt2] − [nt1], we complete it by choosing
uniformly indices among those such thatN̄n

i,1 = 3. If there are not enoughi’s such
thatNn

i = 3, we choose the needed indices among those such thatNn
i = 4.

We carry on up tod − 1, and we setN̄n
i,j ∈ {1, . . . , d} for the ith random variable at

thej th step of the coupling procedure. We put(N̄n
i,0)1�i�n = (Nn

i )1�i�n and we define

the(Ñn
i )1�i�n by Ñn

i = N̄n
i,d−1. For everyn ∈ N we note

L̃n = 1

n

n∑
i=1

δ
(yn

i
,Ñn

i
)
, (15)

and

S̃n = F ◦ L̃n, (16)

with F as in (12).

LEMMA 2. –For everyn ∈ N the law ofS̃n is the law ofSn conditioned onTn, and
for every measurableB ⊂ M+(�)d we have

P
(
S̃n ∈ B

)= P
n
((

ln
t1

, . . . , ln
td

) ∈ B; µn
)
.

Proof. –Even if the random variables̃Sn and (ln
t1

, . . . , ln
td

) are defined on different
probability spaces, their distribution onM+(�)d have the same finite supportAn, and it
is also the support of the distribution ofSn conditioned onTn. Since(xn

1 , . . . , xn
n) results

from a sampling without replacement all possible(ln
t1

, . . . , ln
td

) are equally-likely, thus for
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everyρ ∈ An

P
n
((

ln
t1

, . . . , ln
td

)= ρ;µn
)= 1

|An| .

The cardinal ofAn might not be

d∏
i=1

(
n − [nti−1]

[nti] − [nti−1]
)

because of possible ties among(yn
1, . . . , yn

n). In the same time, as the law of(Nn
1 , . . . , Nn

n )

conditioned onTn is uniform on its support, for everyρ ∈ An

P
(
Sn = ρ | Tn

)= 1

|An| .

Hence it is then sufficient to prove that̃Sn is uniformly distributed onAn. For allρ, γ ∈
Im(S̃n) there areu = (ui)1�i�n andv = (vi)1�i�n such that we have{S̃n = ρ} = {Ñn

1 =
u1, . . . , Ñn

n = un} and{S̃n = γ } = {Ñn
1 = v1, . . . , Ñn

d = vn}, and there is a permutationσ
on{1, . . . , n} such that for alli ui = vσ(i). Hence,P (S̃n = ρ) = P (S̃n = γ ) if and only if
(Ñn

i )1�i�n is n-exchangeable. In order to prove it we introduce the following notations:
• V

v
u (j) stands for the event:

“The j th step of the coupling procedure changes(N̄n
i,j−1)1�i�n = u to (N̄n

i,j )1�i�n

= v”.
• For all 1� i � n and for all 1� q � d we callY q

i = (N̄n
i,0, . . . , N̄n

i,q−1) ∈ {1, . . . , d}q

the random vector that records the values associated toi during the procedure.
Note that what matters inV v

u (j) is the number ofk-valuedui ’s andvi ’s in u andv for
eachk ∈ {j, . . . , d}, not the value of eachui andvi . Hence, for every permutationσ on
{1, . . . , n} we haveP (V

v
u (j)) = P (V

σ(v)

σ (u) (j)), whereσ (u) = (uσ(1), . . . , uσ(n)).
We prove by induction onq that for every 1� q � d, (Y

q
i )1�i�n is n-exchange-

able. Forq = 1, the (N̄n
i,0)1�i�n are independent and identically distributed, whence

(Y 1
i )1�i�n is n-exchangeable. Suppose the property holds for a fixedq (1� q � d − 1):

(Y
q
i = (N̄n

i,0, . . . , N̄n
i,q−1))1�i�n is n-exchangeable. Let(uj

i ) ∈Mn,q+1(0), we denote by
ui its ith row and byuj its j th column. For every permutationσ on {1, . . . , n}
P
(
Y

q+1
i = ui, 1 � i � n

)
= P

(
N̄n

i,0 = u0
i , . . . , N̄n

i,q = u
q
i , 1� i � n

)
= P

(
N̄n

i,0 = u0
i , . . . , N̄n

i,q−1 = u
q−1
i , V

uq

uq−1(q), 1� i � n
)

= P
(
V

uq

uq−1(q)|N̄n
i,q−1 = u

q−1
i , 1� i � n

)
P
(
N̄n

i,0 = u0
i , . . . , N̄n

i,q−1 = u
q−1
i , 1 � i � n

)
= P

(
V

σ(uq−1)

σ (uq−1)
(q)
)
P
(
N̄n

σ(i),0 = u0
i , . . . , N̄n

σ(i),q−1 = u
q−1
i , 1� i � n

)
= P

(
Y

q+1
σ(i) = ui, 1� i � n

)
.
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Hence we obtain that(Y q+1
i )1�i�n is n-exchangeable, so(Y d

i )1�i�n is alson-exchange-
able, and in particular(Ñn

i )1�i�n is. ✷
The last two results lead to the announced crucial lemma.

LEMMA 3. – (ln
t0

, . . . , ln
td

) obeys a LDP onM+(�)d+1 endowed with the product
topology of weak convergence, with good rate function

I3(ν, µ, t ) =


d∑

i=1

<itH

(
<iν

<it

∣∣∣µ) if


ν is increasing,
νd = µ,

∀i ∈ {0, . . . , d} νi(�) = ti,

∞ elsewhere.

(17)

Proof. –Since for everyn ∈ N (ln
t0

, . . . , ln
td

) ∈ {0} × M+(�)d which is a closed subset
of M+(�)d+1, it is sufficient to prove that(ln

t1
, . . . , ln

td
) follows a LDP onM+(�)d with

good rate function

Ī3(ν, µ, t ) =


d∑

i=1

<itH

(
<iν

<it

∣∣∣µ) if


ν is increasing,
νd = µ,

∀i ∈ {1, . . . , d} νi(�) = ti,

∞ elsewhere.

We first prove the upper bound of this LDP. LetA be a closed part ofM+(�)d . For all
ε > 0 we noteRε = {ν ∈ M+(�)d, supi |νi(�)− ti| � ε}. Forε fixed and large enoughn
{Sn ∈ A} ∩ Tn ⊂ {Sn ∈ A∩ Rε}. Then, according to Corollary 1

lim sup
n→∞

1

n
logP

({
Sn ∈ A

} ∩ Tn

)
� lim sup

n→∞
1

n
logP

(
Sn ∈ A∩Rε

)
�− inf

A∩Rε

I2(ν, µ, t ),

I2 as in (14). SinceI2 is a good rate function

lim
ε→0

inf
A∩Rε

I2(ν, µ, t ) = inf
A∩R0

I2(ν, µ, t ) = inf
A

Ī3(ν, µ, t ).

Furthermore

P (Tn) =
d∏

i=1

(
n− [nti−1]

[nti] − [nti−1]
)

(<it)
[nti ]−[nti−1],

so we obtain lim infn→∞ 1
n

logP (Tn) = 0. Thus, according to Lemma 2

lim sup
n→∞

1

n
logP

n
((

ln
t1

, . . . , ln
td

) ∈ A;µn
)

= lim sup
n→∞

1

n
logP

(
S̃n ∈ A

)
� lim sup

n→∞
1

n
logP

({
Sn ∈ A

}∩ Tn

)− lim inf
n→∞

1

n
logP (Tn)

� − inf
A∩Rε

I2(ν, µ, t ).
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Hence we have the upper bound of the LDP for(ln
t1

, . . . , ln
td

) by lettingε → 0.

Next we prove the lower bound of the LDP. Let us recall that the dual-bounded-
Lipschitz metricβ defined onM+(�) by

β(ρ, ν) = sup
{∣∣∣∣ ∫

�

f dρ −
∫
�

f dν

∣∣∣∣, f ∈ Cb(�), ‖f ‖∞ + ‖f ‖L � 1
}

(18)

with

‖f ‖∞ = sup
x∈�

∣∣f (x)
∣∣ and ‖f ‖L = sup

x,y∈�,x 
=y

∣∣∣∣f (x) − f (y)

d(x, y)

∣∣∣∣
coincides with the weak convergence topology (see Appendix A.1 in [4]). We denote
by βd the supremum metric onM+(�)d associated toβ. Let C be an open subset of
M+(�)d , andν ∈ C be such that̄I3(ν, µ, t ) < ∞. Since for alli ∈ {1, . . . , d}, νi(�) =
ti , there exists, for alln ∈ N, a νn ∈ M+(�)d with νn

i (�) = [nti ]
n

such that the sequence

(νn)n∈N satisfiesνn w→ ν. For everyj ∈ {1, . . . , d} we define

Dj = {i ∈ {1, . . . , n}, (Nn
i � j andÑn

i > j
)

or
(
Nn

i > j andÑn
i � j

)}
,

and for allf with ‖f ‖∞ � 1 we have∣∣∣∣ ∫
�

f dSn
j −

∫
�

f dS̃n
j

∣∣∣∣= 1

n

∣∣∣∣ ∑
yn

i
:Ñn

i
�j

(
yn

i

)− ∑
yn

i
: Nn

i
�j

f
(
yn

i

)∣∣∣∣
� 1

n

∑
i∈Dj

∣∣f (yn
i

)∣∣� |Dj |
n

=
∣∣∣∣Sn

j (�) − [ntj ]
n

∣∣∣∣� βd

(
Sn, νn

)
.

Henceβd(Sn, S̃n) � βd(Sn, νn). Combining the preceding inequality and the triangular
inequality we obtain, for allδ > 0 andn large enough

P
(
βd

(
S̃n, ν

)
< 5δ

)
� P

(
βd

(
Sn, S̃n

)
< 2δ, βd

(
Sn, νn

)
< 2δ

)
=P

(
βd

(
Sn, νn

)
< 2δ

)
� P

(
βd

(
Sn, ν

)
< δ
)
.

Let δ > 0 be such thatBβd
(ν, 5δ) ⊂ C, whereBβd

stands for an open ball defined with
the metricβd . Corollary 1 and Lemma 2 tell us that

lim inf
n→∞

1

n
logP

n
((

ln
t1

, . . . , ln
td

) ∈ C;µn
)= lim inf

n→∞
1

n
logP

(
S̃n ∈ C

)
� lim inf

n→∞
1

n
logP

(
S̃n ∈ Bβd

(ν, 5δ)
)

� lim inf
n→∞

1

n
logP

(
Sn ∈ Bβd

(ν, δ)
)

�−I2(ν, µ, t ) =−Ī3(ν, µ, t ).
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Hence we get the lower bound of the LDP followed by(ln
t1

, . . . , ln
td

).
Last we prove that̄I3 is a good rate function. For every 0� α < ∞

φĪ3
α = {ν ∈ M+(�)d, Ī3(ν, µ, t ) � α

}
= {ν ∈ M+(�)d, I2(ν, µ, t ) � α

}∩ {ν ∈ M+(�), <iν(�) = <it
}
.

SinceI2 is a good rate function,φĪ3
α is the intersection of a compact and a closed subset in

the weak convergence topology. Hence it is compact andĪ3 is a good rate function. ✷
3. Large deviations for the process(ln

t )t∈[0,1]

Our aim in this section is to derive the LDP for(ln
t )t∈[0,1] from the LDP for the finite-

dimensional marginals(ln
t0

, . . . , ln
td

). We use a projective limit approach, as in the proof
of Theorem 1 in [4]. Since our setting, and then our proof, is slightly different, we give
it completely for the sake of clarity.

Let C[[0, 1], (M+(�), β)] be the space of all maps that are continuous from[0, 1] to
M+(�). Unless explicitly stated otherwise, it is equipped with the uniform metricβ∞ as
in (2). We still consider a fixed triangular array((yn

i )1�i�n)n∈N of elements of� which
composition given by(µn = 1

n

∑n
i=1 δyn

i
)n∈N satisfiesµn w→ µ. We define by

l̄n
t = ln

t +
(

t − [nt]
n

)
δxn

[nt]+1
(19)

the linear interpolation(l̄n
t )t∈[0,1] of (ln

t )t∈[0,1], ln
t being as in (4). Remark that(l̄n

t )t∈[0,1] ∈
C[[0, 1], (M+(�), β)]. Let us recall that we consider the distribution of(l̄n

t )t∈[0,1] and
(ln

t )t∈[0,1] under the probability measurePn(· ;µn) associated to the sampling without
replacement among(yn

1, . . . , yn
n). First we prove a LDP for(l̄n

t )t∈[0,1] for which we
give an explicit rate function. We need to consider the linear interpolation because it
is the only way to pass from results on the pointwise convergence topology to results
on the uniform convergence topology. Since(ln

t )t∈[0,1] and (l̄n
t )t∈[0,1] are exponentially

equivalent, we deduce the LDP satisfied by(ln
t )t∈[0,1] from the preceding result.

LEMMA 4. – 1. (ln
t )t∈[0,1] and (l̄n

t )t∈[0,1] are exponentially equivalent onD[[0, 1],
(M+(�), β)].

2. (l̄n
t )t∈[0,1] is exponentially tight on the Polish space(C[[0, 1], (M+(�), β)], β∞).

Proof. –1. With probability 1, we have

β∞
(
ln
· , l̄n

·
)= sup

t∈[0,1]
β

(
ln
t , ln

t +
(

t − [nt]
n

)
δxn

[nt]+1

)

� sup
t∈[0,1]

(
t − [nt]

n

)
� 1

n
.

Then(ln
t )t∈[0,1] and(l̄n

t )t∈[0,1] are exponentially equivalent onD[[0, 1], (M+(�), β)].
2. According to Lemma 3, for every fixedt ∈ [0, 1], l̄n

t follows a LDP on the
Polish space(M+(�), β) with a good rate function. Hence it is exponentially tight.
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Furthermore

β
(
l̄n
t , l̄n

s

)
� [nt] − [ns]

n
,

so we can conclude thanks to Appendix A.2 in [4].✷
Let G be the set of all the subdivisions 0= t0 < · · · < td = 1 of [0, 1]. We define on

G the partial orderi = (s0, . . . , sp) � j = (t0, . . . , tq) if and only if for all su ∈ i there
is a tv ∈ j such thatsu = tv , which makesG a right-filtering set. Fori = (s0, . . . , sp) �
j = (t0, . . . , tq) we definepij (νt0, . . . , νtq ) = (νs0, . . . , νsp

). EndowingM+(�)|j | with the
product topology associated toβ makes(M+(�)|j |, pij )i�j a projective system which
projective limit isE = {ν : [0, 1] → M+(�)} equipped with the topology of pointwise
convergence. For everyj = (t0, . . . , tq) ∈ G, we note pj the canonical projection ofE
on M+(�)|j |, and we define onE the mapIj(ν·, µ) = I3(pj ν·, µ, j), with I3 as in (17).
Next we prove a LDP for(l̄n

t )t∈[0,1] in E .

LEMMA 5. – (l̄n
t )t∈[0,1] follows a LDP onE with good rate function

I∞(ν·, µ) = sup
j∈G

Ij (ν·, µ). (20)

Proof. –Since (l̄n
t )t∈[0,1] and (ln

t )t∈[0,1] are exponentially equivalent onD[[0, 1],
(M+(�), β)], we deduce from Lemma 3 that for everyj ∈ Gpj (l̄n· ) follows a
LDP on M+(�)|j | with good rate functionIj (ν·, µ). Hence, according to Dawson–
Gartner’s theorem,(l̄n

t )t∈[0,1] obeys a LDP onE with good rate functionI∞(ν·, µ) =
supj∈G Ij (ν·, µ). ✷

We recall thatACµ is the space of all mapsνt : [0, 1] → M+(�) such that:
1. νt − νs ∈ M+(�) is of total masst − s for all 0� s � t .
2. ν0 = 0 andν1 = µ.
3. ν· possesses a weak derivative for almost everyt ∈ [0, 1] as defined in (5).

The following result gives an explicit expression ofI∞(·, µ) on D[[0, 1], (M+(�), β)].
LEMMA 6. – 1. For every ν· ∈ D[[0, 1], (M+(�), β)], if I∞(ν·, µ) < ∞ then ν· ∈

ACµ.
2. For all ν· ∈ACµ, I∞(ν., µ) = ∫ 1

0 H(ν̇s | µ) ds.

Proof. –1. Let ν· ∈ D[[0, 1], (M+(�), β)] be such thatI∞(ν·, µ) < ∞. For every
j = (0, s, t, 1) we necessarily haveIj (ν·, µ) < ∞. Henceνt − νs ∈ M+(�) is of total
masst − s, ν0 = 0 andν1 = µ.

As I∞(ν., µ) < ∞, we have for allj = (t0, . . . , td) ∈ G

Ij (ν·, µ) =
d∑

i=1

(ti − ti−1)H

(
νti − νti−1

ti − ti−1

∣∣∣µ).

For everyn ∈ N we define the processgn : [0, 1] → M1(�) by

gn(t) = 2n
[
ν [2nt]+1

2n
− ν [2nt]

2n

]
.
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We get

I∞(ν., µ) �
2n∑

i=1

2−nH
(
2n
(
ν i

2n
− ν i−1

2n

) | µ
)= 1∫

0

H
(
gn(t) | µ

)
dt

and,H(· | µ) being convex,

i
2n∫

i−1
2n

H
(
gn+1(t) | µ

)
dt � H

(
gn

(
i

2n

)∣∣∣µ)

for all i = 1, . . . , 2n. The previous inequality tells us that the sequence of real valued
random variables(H(gn | µ))n∈N defined on[0, 1] endowed with the Lebesgue measure
and the dyadic filtrationFn = σ ([ j−1

2n ,
j

2n ), 1 � j � 2n) is a submartingale. Since we

have supn∈N

∫ 1
0 H(gn(t)µ) dt < ∞, we know that

b(t) = 1+ lim sup
n→∞

H
(
gn(t) | µ

)
< ∞

for a.e. t ∈ [0, 1] by virtue of Doob’s theorem. But, for a.e.t ∈ [0, 1], {ν: H(ν | µ)

� b(t)} is precompact becauseH(· | µ) is a good rate function. Thus, in particular,
{gn(t), n ∈ N} is precompact. Let{ξi, i ∈ N} be a class of continuous bounded
convergence-determining functions defined on�. For every i ∈ N we consider the
martingale(〈ξi, gn〉,Fn)n∈N defined on the probability space given above, with〈·, ·〉 as
in (11). Since for everyt ∈ [0, 1] gn(t) ∈ M1(�) we have

sup
n∈N

1∫
0

〈
ξi, gn(t)

〉
dt � sup

x∈�

∣∣ξi(x)
∣∣< ∞,

so the real valued sequence(〈ξi, gn(t)〉)n∈N converges for alli and a.e.t . This and the
fact that{gn(t)}n∈N is precompact for a.e.t imply that(gn(t))n∈N is convergent for a.e.t .
Hence we can modifygn on a negligible part of [0,1] in a way that the modified sequence
converges inM1(�) for all t . We denote by(ν̇t )t∈[0,1] this limit. Let 0� j < k � 2n. For
everyl � n we have

ν k
2n
− ν j

2n
=

k
2n∫

j

2n

gl(s) ds.

Sincegl(t)
w→ ν̇t for a.e.t , it follows from Lebesgue’s theorem that for everyf ∈ Cb(�)

lim
l→∞

k
2n∫

j

2n

〈
f, gl(s)

〉
ds =

k
2n∫

j

2n

〈f, ν̇s〉ds.
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Furthermore

k
2n∫

j

2n

〈f, ν̇s〉ds =
〈

f,

k
2n∫

j

2n

ν̇s ds

〉
,

where
∫ k

2n

j

2n

ν̇s ds is interpreted set-wise, i.e., for allA ∈ B�

( k
2n∫

j

2n

ν̇s ds

)
(A) =

k
2n∫

j

2n

ν̇s(A) ds,

and
∫ k

2n

j

2n

〈f, ν̇s〉ds is the limit asl →∞ of

k
2n∫

j

2n

〈
f, gl(s)

〉
ds = 〈f, ν k

2n
− ν j

2n

〉
.

Hence

ν k
2n
− ν j

2n
=

k
2n∫

j

2n

ν̇s ds.

Since(νt − νs)(�) = t − s for everyt � s � 0, (νt )t∈[0,1] is continuous in the variation
norm, so we get

νt − νs =
t∫

s

ν̇u du.

Let {ηi, i ∈ N} be a dense countable subset ofM+(�). Since the metricβ is derived
from a norm (see (18)),β(·, ηi) is convex for everyi ∈ N, and for a.e.s ∈ [0, 1]

1

h

s+h∫
s

β(ν̇t , ηi) dt � β

(
1

h

s+h∫
s

ν̇t dt, ηi

)
,

then

lim sup
h→0

β

(
1

h

s+h∫
s

ν̇t dt, ηi

)
� lim sup

h→0

1

h

s+h∫
s

β(ν̇t , ηi) dt = β(ν̇s, ηi).
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But we can choosei such thatβ(ν̇s, ηi) � ε/2, so

lim sup
h→0

β

(
1

h

s+h∫
s

ν̇t dt, ν̇s

)
� lim sup

h→0

1

h

<+h∫
<

β(ν̇t , ηi) dt + β(ηi , ν̇s) � ε.

Hence(νt )t∈[0,1] admits a weak derivative for a.e.t ∈ [0, 1], and we can conclude.
2. Let (νt )t∈[0,1] ∈ACµ. For a.e.s, t ∈ [0, 1] such thats < t , Jensen’s inequality tells

us that
t∫

s

H (ν̇u | µ) du= (t − s)

t∫
s

1

t − s
H(ν̇u | µ) du

� (t − s)H

( t∫
s

ν̇u

du

t − s

∣∣∣µ)

� (t − s)H

(
νt − νs

t − s

∣∣∣µ).

WhenceI∞(ν., µ) �
∫ 1

0 H(ν̇u | µ) du.
Since for a.e.u ∈ [0, 1] gn(u)

w→ ν̇u, we obtain according to Fatou’s lemma,

I∞(ν·, µ) � lim inf
n→∞

1∫
0

H
(
gn(u) | µ

)
du �

1∫
0

H(ν̇u | µ) du.

Thus for allν· ∈ACµ I∞(ν·, µ) = ∫ 1
0 H(ν̇u | µ) du. ✷

By combining the preceding 3 lemmas we obtain the expected result.

THEOREM 1. – If µn w→ µ then(ln
t )t∈[0,1] satisfies a LDP onD[[0, 1], (M+(�), β)]

with good rate function

I∞(ν·, µ) =
{∫ 1

0 H(ν̇s | µ) ds if ν· ∈ACµ,

∞ elsewhere.
(21)

Proof. –We haveP
n(l̄n

t ∈ C[[0, 1], (M+(�), β)];µn) = 1 and for allν· /∈ C[[0, 1],
(M+(�), β)] I∞(ν·, µ) = ∞. We deduce from Lemma 5 that(l̄n

t )t∈[0,1] follows
a LDP on C[[0, 1], (M+(�), β)] endowed with the topology of pointwise con-
vergence, with good rate functionI∞(ν·, µ). As (l̄n

t )t∈[0,1] is exponentially tight
on C[[0, 1], (M+(�), β)] equipped with the metricβ∞ (Lemma 4), it also sat-
isfies a LDP onC[[0, 1], (M+(�), β)] with the same good rate function. Since
C[[0, 1], (M+(�), β)] is closed onD[[0, 1], (M+(�), β)] equipped withβ∞, (l̄n

t )t∈[0,1]
follows a LDP onD[[0, 1], (M+(�), β)] with good rate functionI∞(ν·, µ). Finally,
(l̄n

t )t∈[0,1] and(ln
t )t∈[0,1] being exponentially equivalent onD[[0, 1], (M+(�), β)] we can

conclude, the expression of the rate function resulting from Lemma 6.✷
From this LDP we can derive a weak law of large numbers related to microcanonical

distributions, as we announced in the introduction.
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COROLLARY 2. – If µn w→ µ then(ln
t )t∈[0,1] tends in probability to(tµ)t∈[0,1] for the

metricβ∞.

Proof. –Let ε > 0. According to Theorem 1

lim sup
n→∞

1

n
logP

n
(
β∞
(
ln
t , tµ

)
� ε;µn

)
� − inf

Bβ∞ (tµ,ε)C∩ACµ

1∫
0

H(ν̇s | µ) ds.

But
∫ 1

0 H(ν̇s | µ) ds = 0 if and only if ν̇s = µ for a.e.s ∈ [0, 1], i.e.,νs = sµ for a.e.s.

Hence limn→∞ P
n(β∞(ln

t , tµ) � ε;µn) = 0. ✷
4. Large deviations for (Ln

t )t∈[0,1]

Our aim in this section is to extend the setting of Theorem 1 to general triangular
arrays of exchangeable random variables as described in the introduction. The LDP
for (Ln

t )t∈[0,1] defined in (1) follows from the fact that, according to Theorem 1, it is
a mixture of LDS. Then we can state Theorem 2 by means of a slight modification of
Theorem 2.3 in [13].

First we prove that(Ln
t )t∈[0,1] is a mixture of LDS. Let us recall that we denote by

M1,n(�) the subset ofM1(�) of all atomic measures1
n

∑n
i=1 δxn

i
for (xn

1, . . . , xn
n) ∈ �n,

possibly with ties, and byQn the distribution of1
n

∑n
i=1 δXn

i
underPn. Note thatQn is

also the distribution of1
n

∑n
i=1 δY n

i
underP n. We sometimes use the shortcutf (A) =

infx∈A f (x).

LEMMA 7. –For all n ∈ N and allµ ∈ M1,n(�), P
n((xn

1, . . . , xn
n) ∈ · ;µ) is a regular

version of the distribution of(Xn
1, . . . , Xn

n) underPn conditioned on{ 1
n

∑n
i=1 δXn

i
= µ}.

In particular, for all measurable subsetsA of D[[0, 1], (M+(�), β)] we have

P
n(Ln

· ∈ A) =
∫

M1,n(�)

P
n(ln

· ∈ A;µ)Qn(dµ). (22)

Proof [From [1], Lemma 5.4]. – Let µ ∈ M1,n(�) andρn(µ; ·) be a regular version
of the distribution of(Xn

1, . . . , Xn
n) underPn conditioned on{ 1

n

∑n
i=1 δXn

i
= µ}. Since

(Xn
1, . . . , Xn

n) is n-exchangeable, we have for all permutationsσ on {1, . . . , n}(
Xn

1, . . . , Xn
n,

1

n

n∑
i=1

δXn
i

)
D=
(

Xn
σ(1), . . . , Xn

σ(n),
1

n

n∑
i=1

δXn
σ(i)

)
.

Then ρn(µ; ·) is an n-exchangeable measure for almost everyµ ∈ M1,n(�). Fur-
thermore, the empirical measure of ann-tuple distributed according toρn(µ; ·) is
necessarily 1

n

∑n
i=1 δXn

i
= µ. Hence ρn(µ; ·) ∈ M1(�n) is the distribution of sam-

pling without replacement from an urn which composition is given byµ. Whence
P

n((xn
1, . . . , xn

n) ∈ · ;µ) is a regular version ofρn(µ; ·). Let A be a measurable sub-
set ofD[[0, 1], (M+(�), β)], andÂn be the Borel subset of�n defined by{Ln

. ∈ A} =
{(Xn

1, . . . , Xn
n) ∈ Ân}. We have
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P
n
(
Ln

· ∈ A
)= P

n
((

Xn
1, . . . , Xn

n

) ∈ Ân

)= ∫
M1(�)

ρn
(
µ, Ân

)
Qn(dµ)

=
∫

M1(�)

P
n
(
ln
· ∈ A;µ

)
Qn(dµ)

that is the desired formula.✷
The following lemma gives the crucial inequalities in order to prove a LDP for

(Ln
t )t∈[0,1].

LEMMA 8. – 1.Let G be a closed subset ofD[[0, 1], (M+(�), β)] and µ ∈ M1(�)

be such thatI∞(G, µ) = infν·∈G I∞(ν·, µ) < ∞. For each δ > 0 there exists a
neighborhoodUδ of µ such that

lim sup
n→∞

1

n
log
(

sup
ρ∈Uδ∩M1,n(�)

P
n
(
ln
· ∈ G;ρ

))
� −I∞(G, µ) + δ.

If I∞(G, µ) =∞, then there exists for eachL ∈ R a neighborhoodUL of µ such that

lim sup
n→∞

1

n
log
(

sup
ρ∈UL∩M1,n(�)

P
n
(
ln
· ∈ G;ρ

))
�−L.

2. Let O be an open subset ofD[[0, 1], (M+(�), β)] and µ ∈ M1(�) be such that
I∞(O, µ) = infν·∈O I∞(ν·, µ) < ∞. For eachδ > 0 there exists a neighborhoodUδ of µ

such that

lim inf
n→∞

1

n
log
(

inf
ρ∈Uδ∩M1,n(�)

P
n
(
ln
· ∈ O;ρ

))
� −I∞(O, µ) − δ.

If I∞(O, µ) =∞, then there exists for eachL ∈ R a neighborhoodUL of µ such that

lim inf
n→∞

1

n
log
(

inf
ρ∈UL∩M1,n(�)

P
n
(
ln
· ∈ O;ρ

))
�−L.

Proof. –We prove the first assertion of the lemma. Suppose for a contradiction that
there exist a closed subsetG of D[[0, 1], (M+(�), β)] and µ ∈ M1(�) such that
I∞(G, µ) < ∞ and there exists aδ > 0 such that for all neighborhoodsU of µ

lim sup
n→∞

1

n
log
(

sup
ρ∈U∩M1,n(�)

P
n
(
ln
· ∈ G;ρ

))
> −I∞(G, µ) + δ.

Hence, for all neighborhoodsU of µ there exists a sequence(nk)k∈N such that
limk→∞ nk =∞ and fork large enough

sup
ρ∈U∩M1,nk (�)

P
nk
(
lnk
. ∈ G;ρ

)
> exp

(
nk

(−I∞(G, µ) + δ
))

.
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Whence, there exists a sequence(mk)k∈N such that limk→∞ mk =∞ and for everyk ∈ N

sup
ρ∈B(µ, 1

k )∩M1,mk (�)

P
mk
(
lmk
. ∈ F ;ρ

)
> exp

(
mk

(−I∞(F, µ) + δ
))

.

For all k ∈ N there exists aρk ∈ B(µ, 1
k
) such that

P
mk
(
lmk
. ∈ G;ρk

)
> sup

ρ∈B(µ, 1
k )∩M1,mk (�)

{
P

mk
(
lmk
. ∈ G;ρ

)}− exp
(−m2

k

)
> exp

(
mk

(−I∞(G, µ) + δ
))− exp

(−m2
k

)
.

Hence

lim sup
k→∞

1

mk

log
(
P

mk
(
lmk
. ∈ G;ρk

)+ exp
(−m2

k

))
� −I∞(G, µ)+ δ. (23)

But, according to Lemma 1.2.15 in [6] and Theorem 1, we should obtain

lim sup
k→∞

1

mk

log
(
P

mk
(
lmk
. ∈ G;ρk

)+ exp
(−m2

k

))
= max

(
lim sup

k→∞
1

mk

logP
mk
(
lmk
. ∈ G;ρk

)
, lim sup

k→∞
1

mk

log exp
(−m2

k

))
= lim sup

k→∞
1

mk

logP
mk
(
lmk
. ∈ G;ρk

)
� −I∞(G, µ).

Clearly, the last display cannot hold simultaneously with (23). The proof of the three
other inequalities follows the same pattern.✷

We recall thatAC is the space of all mapsνt : [0, 1] → M+(�) such thatνt − νs ∈
M+(�) of total masst − s for all 0 � s < t , ν0 = 0, and which possess a weak derivative
for a.e.t ∈ [0, 1] as defined in (5).

THEOREM 2. –Suppose thatLn
1 obeys a LDP onM1(�) with good rate functionJ .

Then(Ln
t )t∈[0,1] obeys a LDP onD[[0, 1], (M+(�), β)] with good rate function

I (ν·) = I∞(ν·, ν1) + J (ν1) =
{∫ 1

0 H(ν̇s | ν1) ds + J (ν1) if ν· ∈AC,

∞ elsewhere.
(24)

Proof. –We first prove the upper bound of the LDP. LetG be a closed subset of
D[[0, 1], (M+(�), β)], ε > 0 andL � 0. Let φJ

L = {ν ∈ M1(�), J (ν) � L}, which is
compact sinceJ is a good rate function. Lemma 8 tells us that for everyµ ∈ M1(�)

there exists a neighborhoodUµ of µ such that

lim sup
n→∞

1

n
log
(

sup
ρ∈Uµ∩M1,n(�)

P
n
(
ln
. ∈ G;ρ

))
�−Kµ + ε

2
,
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where

Kµ =
{

I∞(G, µ) if I∞(G, µ) < ∞,

L otherwise.
SinceJ is lower semicontinuousUµ can be modified such that it also satisfies

inf
ρ∈Ūµ

J (ρ) � J (µ)− ε

2
.

As φJ
L is compact, there existµ1, . . . , µk such thatφJ

L ⊂ ⋃k
i=1 Uµi

= CL. Hence, there
exists anN0 such that for alln � N0

P
n
(
Ln

. ∈ G
)= ∫

M1(�)

P
n
(
ln
. ∈ G;µ

)
Qn(dµ)

� Qn
(
Cc

L

)+ k∑
i=1

∫
Uµi

∩M1,n(�)

P
n
(
ln
. ∈ G;µ

)
Qn(dµ)

� Qn
(
Cc

L

)+ k∑
i=1

exp
(
−n

(
Kµi

− ε

2

))
Qn(Uµi

).

Whence

lim sup
n→∞

1

n
logP

n
(
Ln

. ∈ G
)
� max

i=1,...,k

{−L,−Kµi
− J (µi)+ ε

}
� max

i=1,...,k

{{−I∞(G, µi) − J (µi)+ ε
}
,−L

}
.

We obtain the upper bound of the LDP by lettingL →∞ and thenε → 0.
Now we prove the lower bound of the LDP. LetO be an open subset ofD[[0, 1],

(M+(�), β)] and ε > 0. Let ν· ∈ O be such thatI (ν·) < ∞. According to Lemma 8
there exists a neighborhoodU of ν1 such that

lim inf
n→∞

1

n
log
(

inf
ρ∈U∩M1,n(�)

P
n
(
ln
· ∈ O;ρ

))
�−I∞(O, ν1) − ε.

Whence

P
n
(
Ln

. ∈ O
)
�

∫
U∩M1,n(�)

P
n
(
ln
· ∈ O;ρ

)
Qn(dρ)

� exp
(−n

(
I∞(O, ν1)+ ε

))
Qn(U).

Then

lim inf
n→∞

1

n
logP

n
(
Ln

. ∈ O
)
�−I∞(O, ν1) − inf

ρ∈U
J (ρ) − ε

�−I∞(ν·, ν1) − J (ν1)− ε.

We obtain the desired lower bound by lettingε → 0.
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Next we prove thatI is a good rate function. We denote byπ the projection that
mapsD[[0, 1], (M+(�), β)] to M1(�) by (νt )t∈[0,1] �→ ν1. Suppose for a contradiction
that there exists anα > 0 such thatφI

α = {ν· ∈ D[[0, 1], (M+(�), β)], I (ν·) � α} is not
compact. Then there is a sequence(νn· )n∈N ∈ φI

α ⊂ C[[0, 1], (M+(�), β)] that does not
have any convergent subsequence. As(νn

1)n∈N ∈ φJ
α , it admits a convergent subsequence

(ν
nk

1 )k∈N and we put limk→∞ ν
nk

1 = η1. Let (ν̄
nk

1 )k∈N be such that̄νnk

1 ∈ M1,nk (�) for
all k ∈ N and ν̄

nk

1
w→ η1. We have stated in the proof of Theorem 1 that the family

P
nk (l̄nk· ∈ · ; ν̄

nk

1 ) follows a LDP on the Polish spaceC[[0, 1], (M+(�), β)] with a
good rate function. Hence it is exponentially tight, i.e. there exists a compactKη1 in
C[[0, 1], (M+(�), β)] such that

lim sup
k→∞

1

nk

logP
nk
(
l̄nk· ∈ (Kη1)

c; ν̄
nk

1

)
� −3α.

Since (νnk· )k∈N has no accumulation point there exists anN0 such that for allk �
N0 νnk· /∈ Kη1. As {νnk· , k � N0} is closed andC[[0, 1], (M+(�), β)] is metric there are
two disjoint open subsetsUD andUK such that{νnk· , k � N0} ⊂ UD andKη1 ⊂ UK . The
results in Lemmas 7 and 8 are still valid if we replaceLn

t by its linear interpolationL̄n
t ,

whence there is a neighborhoodV of η1 such that

lim sup
k→∞

1

nk

logP
nk
(
L̄nk· ∈ (Uc

K ∩ π−1(V )
))

� lim sup
k→∞

1

nk

log sup
γ∈V∩M1,nk (�)

P
nk
(
l̄nk· ∈ Uc

K;γ
)

� lim sup
k→∞

1

nk

logP
nk
(
l̄nk· ∈ Uc

K; ν̄
nk

1

)+ α

� lim sup
k→∞

1

nk

logP
nk
(
l̄nk· ∈ Kc

η1
; ν̄

nk

1

)+ α �−2α.

According to the lower bound of the LDP followed byL̄n·

lim inf
k→∞

1

nk

logP
nk
(
L̄nk· ∈ (UD ∩ π−1(V )

))
�− inf

ν·∈UD∩π−1(V )
I (ν·)

�−α.

But these two inequalities cannot hold simultaneously, henceφI
α is compact. ✷

From this LDP we obtain the following weak law of large numbers.

COROLLARY 3. – If 1
n

∑n
i=1 δXn

i

w→ µ in P
n-probability then (Ln

t )t∈[0,1] tends to
(tµ)t∈[0,1] in P

n-probability for the distanceβ∞.

Proof. –Let ε > 0, Fε = Bβ∞(tµ, ε)c, andδ > 0 be such that−I∞(Fε, µ) + δ < 0.
According to Lemma 8 there exists a neighborhoodUδ of µ such that

lim sup
n→∞

1

n
log
(

sup
ρ∈Uδ∩M1,n(�)

P
n
(
ln
. ∈ Fε;ρ

))
� −I∞(Fε, µ) + δ.
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Let η > 0 be such thatBβ(µ, η) ⊂ Uδ. We have

P
n
(
β∞
(
Ln

. , tµ
)
� ε

)= P
n
(
β∞
(
Ln

. , tµ
)
� ε, β

(
Ln

1, µ
)
� η

)
+ P

n
(
β∞
(
Ln

. , tµ
)
� ε, β

(
Ln

1, µ
)

< η
)
.

Since limn→∞ P
n(β(Ln

1, µ) � η) = 0 we obtain

lim
n→∞P

n
(
β∞
(
Ln

. , tµ
)
� ε, β

(
Ln

1, µ
)
� η

)= 0.

By virtue of Lemma 8

P
n
(
β∞
(
Ln

. , tµ
)
� ε, β

(
Ln

1, µ
)

< η
)= ∫

M1(�)

P
n
(
β∞
(
ln
. , tµ

)
� ε, β(ρ, µ) < η;ρ

)
Qn(dρ)

=
∫

Bβ(µ,η)

P
n
(
β∞
(
ln
. , tµ

)
� ε;ρ

)
Qn(dρ)

� sup
ρ∈Bβ (µ,η)∩M1,n(�)

P
n
(
β∞
(
ln
. , tµ

)
� ε;ρ

)
� expn

(−I∞(Fε, µ)+ δ
)
,

so limn→∞ P
n(β∞(Ln

. , tµ) � ε) = 0. ✷
5. Applications

In this section we consider several applications of Theorem 2.

5.1. The Curie–Weiss model

The Curie–Weiss model is a well known toy model of statistical mechanics. Let
� = {−1, 1} andλp be the Bernoulli measure on� with parameterp (p ∈]0, 1[). For
every n ∈ N, we associate to each configuration(xn

1 , . . . , xn
n) ∈ �n of the system the

Hamiltonian

Hn

(
xn

1 , . . . , xn
n

)= ng

(
n∑

i=1

xn
i

n

)

= n

(
J0

2

(
n∑

i=1

xn
i

n

)2

+ h

(
n∑

i=1

xn
i

n

))
,

whereJ0 and h are constants representing a ferro-magnetic coupling and an external
magnetic field respectively. The HamiltonianHn is in fact a functional of the quantity
1
n

∑n
i=1 xn

i called the total magnetization of the system.
In the setting of equilibrium statistical mechanics two joint probability distributions

appear to be significant. The first one is themicrocanonical ensemblewhich is obtained
by conditioning the distributionλ⊗n

p on the energy shell

Au,n = {(xn
1, . . . , xn

1

) ∈ �n: Hn

(
xn

1 , . . . , xn
n

)= u
}
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whereu ∈ R. In general cases, in order to avoid problems with the existence of regular
conditioned probabilities,λ⊗n

p is conditioned on the thickened energy shell

Au,n,r = {(xn
1 , . . . , xn

1

) ∈ �n: Hn

(
xn

1, . . . , xn
n

) ∈ [u − r, u + r]}
with r > 0. In the case we are interested in, conditioning on the event

Bu,n =
{(

xn
1 , . . . , xn

1

) ∈ �n:
1

n

n∑
i=1

δxn
i
∈ {µn

1, µn
2

}}

seems to be more accurate. Here, theµn
i ∈ M1,n(�) are solutions ofng(

∫
� xµ(dx)) =

un, un being the closest element tou in the set{ng(
∫

� xµ(dx)), µ ∈ M1,n(�)}. There are
at most two measures solutions of this problem. Thus, the microcanonical ensemble is
an equally-likely mixture of the probabilitiesPn(· ;µn

i ) associated to sampling without
replacement in the “urn”µn

i . Our study allows us to give the LDP for the empirical
measure process(ln

t )t∈[0,1] under the microcanonical ensemble. Indeed,µn
i

w→ λ1/2, so
according to Theorem 1 and Theorems 2.1 and 2.2 in [9] the distribution of(ln

t )t∈[0,1]
under the microcanonical distribution follows a LDP with good rate function

I∞(ν·, λ1/2) =
{∫ 1

0 H(ν̇s | λ1/2) ds if ν· ∈ACµ,

∞ elsewhere.
(25)

The second probability measure that appears in the study of equilibrium is the
canonical ensemble, defined for all subsetsB of �n by

Pn,β(B) =
∫
B

exp(−βHn(xn
1, . . . , xn

n))

Zn(β)

n∏
i=1

λp

(
xn

i

)
,

whereZn(β) stands for the normalization constant

Zn(β) =
∫

�n

exp
(−βHn

(
xn

1 , . . . , xn
n

)) n∏
i=1

λp

(
xn

i

)
.

The coordinate maps(Xn
1, . . . , Xn

n) on �n distributed according toPn,β are n-
exchangeable random variables. The LDP for the distribution of1

n

∑n
i=1 Xn

i underPn,β

has been done by Ellis [11]. Orey gives in [15] the LDP satisfied by the distribution of
the empirical field under the canonical ensemble. Our study allows us to give the LDP for
the empirical measure process(Ln

t )t∈[0,1], under the probabilityPn,β . This LDP allows to
consider applications involving randomly selected segments of then-tuple(Xn

1, . . . , Xn
n),

having a data dependent location and length. Now we look for this LDP. We know that
the distribution ofX̄n = 1

n

∑n
i=1 Xn

i underPn,β obeys a LDP on[−1, 1] with good rate
function

I (z) = IC(z)− βg(z)− inf
z∈[−1,1]

[
IC(z)− βg(z)

]
,
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where IC is the rate function of Cramer’s theorem for Bernoulli random variables
(see [11]). SinceLn

1(1) andX̄n are one-to-one linked bȳXn = 2Ln
1(1) − 1, Ln

1 follows
a LDP on M1(�) with good rate functionJ (ν1) = I (

∫
� xν1(dx)). But, for every

ν1 ∈ M1(�) IC(
∫

� xν1(dx)) = H(ν1|λp). Hence

J (ν1) = H(ν1 | λp)− βg

( ∫
�

xν1(dx)

)
− inf

ν1∈M1(�)

[
H(ν1 | λp) − βg

( ∫
�

xν1(dx)

)]
.

Whence, according to Theorem 2, the distribution of(Ln
t )t∈[0,1] under the canonical

ensemble follows a LDP onD[[0, 1], (M+(�), β)] with good rate function

Iβ(ν·) =
{∫ 1

0 H(ν̇s | ν1) ds + H(ν1 | λp) − βg
( ∫

� xν1(dx)
)− C if ν· ∈AC,

∞ otherwise,

whereC = infν1∈M1(�)[H(ν1 | λp) − βg(
∫

� xν1(dx))]. The following result helps us in
simplifying the expression ofI .

LEMMA 9. –For everyν· ∈AC and everyλ ∈ M1(�)

1∫
0

H(ν̇s | ν1) ds + H(ν1 | λ) =
1∫

0

H(ν̇s | λ) ds. (26)

Proof. –Let ν· ∈ AC andλ ∈ M1(�). First we suppose thatν1 andλ are such that
H(ν1 | λ) =∞. Hence, according to Jensen’s inequality

1∫
0

H(ν̇s | λ) ds � H

( 1∫
0

ν̇s ds
∣∣∣λ)� H(ν1 | λ) =∞,

so in this case
∫ 1

0 H(ν̇s | ν1) ds + H(ν1 | λ) = ∫ 1
0 H(ν̇s | λ) ds.

Suppose now thatH(ν1|λ) < ∞. Since for allA ∈ B� t �→ νt(A) is an increasing map,
ν1(A) = 0 implies thatν̇s(A) = 0 for everys ∈ [0, 1]. Henceν̇s is absolutely continuous
w.r.t. ν1, and we obtain for everys ∈ [0, 1]

H(ν̇s | ν1)+ H(ν1 | λ)=
∫
�

log
dν̇s

dν1
dν̇s +

∫
�

log
dν1

dλ
dν1

=
∫
�

log
dν̇s

dν1
dν̇s +

∫
�

log
dν1

dλ
dν̇s +

∫
�

log
dν1

dλ
dν1 −

∫
�

log
dν1

dλ
dν̇s

=
∫
�

log
dν̇s

dλ
dν̇s +

∫
�

log
dν1

dλ
dν1 −

∫
�

log
dν1

dλ
dν̇s

=H(ν̇s | λ) +
∫
�

log
dν1

dλ
dν1 −

∫
�

log
dν1

dλ
dν̇s .
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Let us denote byf the measurable mapf = log dν1
dλ

. To complete the proof it is sufficient
to show that

1∫
0

( ∫
�

f dν̇s

)
ds =

∫
�

f dν1.

For step functionsf =∑k
i=1 αi1Ai

this relation follows from the definition oḟνs . For
generalf ’s we letf+ be the positive part off and we denote by(fn)n∈N an increasing
sequence of step functions that converges tof+. We obtain

1∫
0

(∫
�

f+ dν̇s

)
ds =

1∫
0

(
lim

n→∞

∫
�

fn dν̇s

)
ds �

1∫
0

(∫
�

fn dν̇s

)
ds �

∫
�

fn dν1,

so
∫ 1

0 (
∫

� f+ dν̇s) ds �
∫

� f+ dν1, and according to Fatou’s lemma

∫
�

f+ dν1 �
∫
�

fn dν1 =
1∫

0

(∫
�

fn dν̇s

)
ds

� lim inf
n→∞

1∫
0

(∫
�

fn dν̇s

)
ds

�
1∫

0

(∫
�

lim inf
n→∞ fn dν̇s

)
ds =

1∫
0

(∫
�

f dν̇s

)
ds.

Whence
∫ 1

0 (
∫

� f+ dν̇s) ds = ∫� f+ dν1 < ∞, sinceH(ν1 | λ) < ∞. So it follows that

1∫
0

(∫
�

log
dν1

dλ
dν̇s

)
ds =

∫
�

log
dν1

dλ
dν1,

and this ends the proof.✷
By virtue of Lemma 9 we obtain

Iβ(ν·) =
{∫ 1

0 H(ν̇s | λp) ds − βg
( ∫

� xν1(dx)
)−C if ν· ∈AC,

∞ elsewhere.

We can prove that(Ln
t )t∈[0,1] follows a LDP in this set-up another way. According

to Theorem 1 in [4] the distribution of(Ln
t )t∈[0,1] under λ⊗n

p (i.e., Xn
1, . . . , Xn

n being
independent and identically distributed according toλp) follows a LDP with good rate
function

Ĩ (ν·, λp) =
{∫ 1

0 H(ν̇s | λp) ds if ν· ∈AC,

∞ elsewhere.
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Hence, from Varadhan’s lemma we know that the distribution of(Ln
t )t∈[0,1] underPn,β

follows a LDP with good rate function

Īβ(ν·) =
{∫ 1

0 H(ν̇s | λp) ds − βg(
∫

� xν1(dx)) − C̄ if ν· ∈AC,

∞ otherwise,

where

C̄ = inf
ν·∈D[[0,1],(M+(�),β)]

[ 1∫
0

H(ν̇s | λp) ds − βg

( ∫
�

xν1(dx)

)]
.

It is sufficient, in order to prove the equality of the rate functions, to prove thatC = C̄.
We have

C̄ = inf
ν·∈D[[0,1],(M+(�),β)]

[ 1∫
0

H(ν̇s | λp) ds − βg

( ∫
�

xν1(dx)

)]

= inf
µ∈M1(�)

{
inf

ν·: ν1=µ

( 1∫
0

H(ν̇s | µ) ds + H(µ | λp)− βg

( ∫
�

xµ(dx)

))}

= inf
µ∈M1(�)

{
H(µ | λp)− βg

(∫
�

xµ(dx)

)}
= C,

the equality ofI andĪ follows.

5.2. Infinite exchangeable random variables

Let (X1, . . . , Xn, . . .) be an infinite exchangeable sequence of�-valued random
variables defined on a probability space(�,A,P). For all n ∈ N (Xn

1, . . . , Xn
n) =

(X1, . . . , Xn) is ann-exchangeable random vector, and according to de Finetti’s theorem
for any Borel subset of�n

P
(
(X1, . . . , Xn) ∈ A

)= ∫
�

Pθ

(
(X1, . . . , Xn) ∈ A

)
γ (dθ),

whereγ is a probability measure on a closed subset� of M1(�), and for everyθ ∈ �,
Pθ is a probability measure defined on(�,A) such thatX1, . . . , Xn, . . . are independent
and identically distributed underPθ . From [9] we know that provided� is compact,

Ln
1 =

1

n

n∑
i=1

δXi
= 1

n

n∑
i=1

δXn
i

follows a LDP onM1(�) with good rate functionJ (ν1) = infθ∈� H(ν1 | πθ), where
πθ = Pθ ◦ X−1

1 . Hence, according to Theorem 2,(Ln
t )t∈[0,1] follows a LDP on
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D[[0, 1], (M+(�), β)] with good rate function

I (ν·) =
{∫ 1

0 H(ν̇s | ν1) ds + infθ∈� H(ν1 | πθ) if ν· ∈AC,

∞ elsewhere.

Now, we give a direct proof (without Theorem 2) of this result. Since the map-
ping from �n to D[[0, 1], (M+(�), β)] defined byLn

t is continuous, it is an im-
mediate consequence of de Finetti’s theorem that for any measurable subsetA of
D[[0, 1], (M+(�), β)]

P
(
Ln

· ∈ A
)= ∫

�

Pθ

(
Ln

· ∈ A
)
γ (dθ).

Hence, according to Theorems 2.1, 2.2 in [9], it is sufficient to prove that the family
(P n

θ = Pθ ◦ (Ln· )−1, θ ∈ �) is exponentially continuous to establish the LDP for the dis-
tribution of (Ln

t )t∈[0,1] underP. In other words we have to prove that for any converging
sequenceθn w→ θ in � and any measurable subsetA of D[[0, 1], (M+(�), β)]

− inf
ν·∈Ao

Ĩ (ν·, πθ) � lim inf
n→∞

1

n
logP n

θn(A) � lim sup
n→∞

1

n
logP n

θn(A) �− inf
ν·∈Ā

Ĩ (ν·, πθ)

whereĨ (ν·, πθ) is defined onD[[0, 1], (M+(�), β)] by

Ĩ (ν·, πθ) =
{∫ 1

0 H(ν̇s | πθ) ds if ν· ∈AC,

∞ elsewhere.

Let (t0 = 0 < t1, . . . , td−1 < td � 1) be a strictly ordered(d + 1)-tuple. We first look for
the LDP satisfied by the distribution of(Ln

t0
, . . . , Ln

td
) underPθn . SinceX1, . . . , Xn are

independent underPθn the random empirical measuresLn
t1
− Ln

t0
, Ln

t2
− Ln

t1
, . . . , Ln

td
−

Ln
td−1

are also independent. It follows from [2] that the distribution of eachLn
ti
− Ln

ti−1

(1� i � d) underPθn satisfies a LDP onM+(�) with good rate function

Ii(νi) = (ti − ti−1)H

(
νi

ti − ti−1

∣∣∣πθ

)
.

We deduce from Lemmas 2.7, 2.8 in Lynch and Sethuraman [14] that(Ln
t1
− Ln

t0
, Ln

t2
−

Ln
t1
, . . . , Ln

td
− Ln

td−1
) satisfies a LDP onM+(�)d with good rate function

I(t0,...,td )(ν1, . . . , νd) =
d∑

i=1

(ti − ti−1)H

(
νi

ti − ti−1

∣∣∣πθ

)
.

Finally, we deduce from Theorem 1 in [4] that the distribution of(Ln
t )t∈[0,1] under

Pθn follows a LDP with good rate functioñI (ν·, πθ). Whence the family(P n
θ , θ ∈ �)

is exponentially continuous, and we deduce from Theorems 2.1, 2.2 in [9] that the
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distribution of(Ln
t )t∈[0,1] underP follows a LDP with good rate function

Ī (ν·) =
{

infθ∈�

∫ 1
0 H(ν̇s | πθ) ds if ν· ∈AC,

∞ elsewhere.

Next we show that the rate functionsI and Ī are equals. From Lemma 9 we know that
for all θ ∈ � and for allν· ∈AC

1∫
0

H(ν̇s | πθ) ds =
1∫

0

H(ν̇s | ν1) ds + H(ν1 | πθ)

�
1∫

0

H(ν̇s | ν1) ds + inf
θ∈�

H(ν1 | πθ).

HenceĪ � I . For allν· ∈AC and allε > 0 there exists anα ∈ � such thatH(ν1 | πα) �
infθ∈� H(ν1 | πθ) + ε, hence

1∫
0

H(ν̇s | ν1) ds +H(ν1 | πα) �
1∫

0

H(ν̇s | ν1) ds + inf
θ∈�

H(ν1 | πθ)+ ε,

1∫
0

H(ν̇s | πα) ds �
1∫

0

H(ν̇s | ν1) ds + inf
θ∈�

H(ν1 | πθ)+ ε,

inf
θ∈�

1∫
0

H(ν̇s | πθ) ds �
1∫

0

H(ν̇s | ν1) ds + inf
θ∈�

H(ν1 | πθ)+ ε.

We obtainI � Ī by lettingε → 0.

5.3. Sampling with and without replacement

Let ((Xn
i )1�i�n)n∈N be a triangular array of�-valued random variables such that

for every n ∈ N Xn
1, . . . , Xn

n are independent and identically distributed according to
µn ∈ M1(�). We suppose thatµn w→ µ ∈ M1(�). From [2] we know thatLn

1 obeys a
LDP onM1(�) with good rate function

J (ν1) = H(ν1 | µ).

Hence, according to Theorem 2 and Lemma 9(Ln
t )t∈[0,1] obeys a LDP onD[[0, 1],

(M+(�), β)] with good rate function

I (ν·, µ) =
{∫ 1

0 H(ν̇s | µ) ds if ν· ∈AC,

∞ elsewhere.
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This set-up obviously includes the case whereXn
1, . . . , Xn

n are given by samplingwith
replacement in an urn whose composition is given byµn = 1

n

∑n
i=1 δyn

i
. Let us recall that

according to Theorem 1 the rate function of the LDP associated to samplingwithout
replacement in the same urn and under the same constraintµn w→ µ is

I∞(ν·, µ) =
{∫ 1

0 H(ν̇s | µ) ds if ν· ∈ACµ,

∞ elsewhere,

i.e., the rate function of the samplingwith replacement case relativized toµ.

5.4. Random permutations of random processes

Let (Y1, Y2, . . . , Yn, . . .) be a �-valued process satisfying a Sanov result, and let
((Xn

i )1�i�n)n∈N be a finite exchangeable triangular array of random variables defined as
follows: For everyn ∈ N we uniformly choose a random permutationσ n on {1, . . . , n}
and we putXn

i = Yσ n(i). The resulting process describes the transmission of the random
signal Y n chopped inton pieces of equal length(Y1, Y2, . . . , Yn), each piece being
transmitted to the same destination by different paths. The order of arrival of the pieces
(given byσ n) is assumed to be uniform and independent ofY n. We consider here the
particular case where the spring process is a Markov chain. Let(Y1, Y2, . . . , Yn, . . .) be a
�-valued Markov chain with probability transitionp(x, dy). We suppose thatp(x, dy)

satisfies the Feller property, i.e., for allf ∈ Cb(�) the function

x ∈ � �→ (pf )(x) =
∫
�

f (y)p(x, dy)

is continuous. It is also assumed that there exist integers 0< l � N and a constantM � 1
such that for allx, x′ ∈ �

pl(x, ·) � M

N

N∑
m=1

pm(x′, ·),

wherepm(x, ·) is them-step transition probability for initial conditiony, given by

pm+1(x, ·) =
∫
�

pm(y, ·)(x, dy).

We know that for any starting pointLn
1 = 1

n

∑n
i=1 δYi

satisfies a LDP with good rate
function

J (ν1) = sup
u∈U(�)

{∫
�

log
(

u

pu

)
dν1

}
,

whereU(�) denotes the set ofu ∈ Cb(�) satisfying u � 1 on � (see [7]). We let
((Xn

i )1�i�n)n∈N be defined as above. According to Theorem 2(Ln
t )t∈[0,1] follows a LDP
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on D[[0, 1], (M+(�), β)] with good rate function

I (ν·) =
{∫ 1

0 H(ν̇s | ν1) ds + supu∈U(�)

{∫
� log

(
u

pu

)
dν1
}

if ν· ∈AC,

∞ elsewhere.
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