Ann. I. H. Poincaré — PR8, 4 (2002) 475-505
0 2002 Editions scientifiques et médicales Elsevier SAS. All rights reserved
S0246-0203(01)01086-X/FLA

GIRSANOV AND FEYNMAN-KAC TYPE
TRANSFORMATIONS FOR SYMMETRIC MARKOV
PROCESSES

Zhen-Qing CHEN & Tu-Sheng ZHANG?®
2Department of Mathematics, University of Washington, Seattle, WA 98195, USA
bDepartment of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, UK

Received 28 August 2000, revised 10 January 2001

ABSTRACT. — Studied in this paper is the transformation of an arbitrary symmetric Markov
processX by multiplicative functionals which are the exponential of continuous additive func-
tionals of X having zero quadratic variations. We characterize the transformed semigroups by
their associated quadratic forms. This is done by first identifying the symmetric Markov process
under Girsanov transform, which may be of independent interest, and then applying Feynman
Kac transform to the Girsanov transformed process. Stochastic analysis for discontinuous ma
tingales is used in our approach2002 Editions scientifiques et médicales Elsevier SAS

Math. Subj. Class. (1991Primary 60J45; secondary 60J57; 31C25

RESUME. — Dans ce papier, nous étudions la transformation d’'un processus symétrique d
Markov X par une functionelle multiplicative, qui est I'exponentielle d’une function additive
continue, de variation quadratique nulle. Les semi-groupes transformés seront caracterisés [
leur formes quadratiques associées. On traite d’abord le cas de la transformation de Girsanov (c
peut avoir un interét en sai), puis on applique la transformation de Feynman—Kac au processl
transformé. L'analyse strochastique pour les martingales discontinues est utilisée dans not
approchen 2002 Editions scientifiques et médicales Elsevier SAS

1. Introduction

Let E be a Lusin metrizable topological space, i.E.js homeomorphic to a Borel
subset of some compact metric space 8rdl) is the class of Borel sets if. Let m
be ao-finite measure o8(E) with supgm] =E. Let x = (Q, M, M, X;,P,,x € E)
be anm-symmetric, right Markov process with state spdten more detail, the right-
continuous procedg®, +o0) > t — X, is defined on the sample spa@, M), adapted
to the filtration (M;), and under the lawWP, is a strong Markov process with initial
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condition Xo = x. The shift operator#,, r > 0, satisfy X, o 6, = X,, identically for
s,t > 0. Adjoined to the state spadgis an isolated poind ¢ E; the process retires
to d at its “lifetime” ¢ :=inf{z: X, = 9}. DenoteE U {3} by Ej.

The transition operators;, t > 0, are defined by

P f(x) =E [ f(XD)]=E[f(Xp): 1 <]

(Here and in the sequel, unless mentioned otherwise, we use the convention that
function defined orE takes the value 0 at the cemetery pdintThe P, may be viewed

as operators o.2(E, m); as such they form a strongly continuous semigroup of self-
adjoint contractions. The associated infinitesimal generatsrdefined by

Lf:=lim tTHPSf = f) (1.1)

on the domain consisting of thogee L2(E, m) for which the limit in (1.1) exists in the
strong sense. The (typically unbounded) operatdr is self-adjoint and non-negative,
so it admits a (self-adjoint, positive) square reét-L. Let F be the domain of/—ZL,
and define the bilinear foré on F by

Eu,v) = (vV—Lu, V_'CU)LZ(E,m)’ u,veF.

Then (€, F) is thesymmetric Dirichlet fornon L2(E, m) associated with the process
X. It is known (cf. [17]) that(E, F) is quasi-regular. In fact, there is a one-to-
one correspondence between symmetric right Markov processes and symmetric qua:
regular Dirichlet forms. It is proved in [4] that a Dirichlet form is quasi-regular if
and only if it is quasi-homeomorphic to a regular Dirichlet form on a locally compact
separable metric space. Thus without loss of generality, we assume throughout this pap
that E is a locally compact separable metric space andar) is a regular Dirichlet
form. Let 7, = F N L*°(E,m) and denote byF, the family of B(E)-measurable
functionsu on E that is finitem-a.e. and there is afé-Cauchy sequencé,} C F
such that lim_, ., u, = u m-a.e. onE. (&, F,) is called the extended Dirichlet space of
(€, F). Details on symmetric Markov process and Dirichlet form can be found in [12]
and [17], including definitions on smooth measures, capa€ityest, quasi-continuity,
etc.

It is well known (cf. [12]) that foru € F., u has a quasi-continuous versianand
u(X,) has the following Fukushima’s decomposition:

0(X,) =i(Xo)+ M+ N", >0, (1.2)

Here M* is a martingale additive functional of and N* is a continuous additive
functional of X having zero quadratic variation. Note that in gené¥élis not a process

of finite variations sou(X;) is not a semimartingale, even when is a Brownian
motion. The above decomposition (1.2) can be regarded as an extension of Doob—Mey:
decomposition for semimartingales.
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This paper is concerned with the following Feynman—Kac type transformatioh of
by multiplicative functional &":

Pf=E.[f(X)e¥] forf>0, (1.3)

and its characterization.

When N/ is a process of finite variation, (1.3) is a Feynman-Kac transform.
Feynman—Kac transforms and Schrodinger operators have been studied extensively |
many authors. See for example [5,22] and the references therein. BuiVlieisean
additive functional of zero energy which does not necessarily have finite variations sc
the classical results for Feynman—Kac transform do not apply. Here are some interestin
examples.

Examples— Let X be a Brownian motion ifR.

(1) (Hilbert transform of Brownian local timgd_et u(x) = xlog|x| — x, which is
locally in the Sobolev spac&2(R). It is illustrated in Example 5.5.2 of [12] that
t — N/' is not of finite variation. Furthermore/; is the value at O of the Hilbert
transform of Brownian local times, that is,

t
. . L(x,t)
N”:Ilm/X‘ll ds:llm/ 1 dx.
f=lm X e ds =M — 1
0 R

HereL(x,t) is the local time ofX atx. If we define fora e R, u,(x) = u(x — a), then

L(x,t)

X —a

t
N — lim / (X — @) Y x, —afoe; ds = lim 1 asey d.
£l0 el0
0

‘x‘l—a
a(a+1)

(2) (Fractional derivative of Brownian local timg$-or u =
(0,1/2),t — N/ is not of finite variations and

sgn(x) with o €

7L(x, N—Lx0)

X 14« ’

t
N* =1lim /XS|XS|_°‘_21{‘XS|>5} ds =
el0
0 0

which is the value at 0 of theymmetridractional derivative of ordex for the Brownian
local time (see [26] and [27]).

One can similarly make examples for one-dimensional symmetric stable processes ¢
well (cf. [10]).

The above examples demonstrates the additive functisiiaf zero energy in (1.2)
contains many important as well as interesting continuous additive functionals anc
therefore it is worthwhile to investigate the Feynman—Kac type transform (1.3)/by e
To state the main result of this paper, we need the following definition.
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DEFINITION 1.1. —A smooth measune is said to be in Kato class of proce&sif its
associated PCAR, satisfies condition

lim esssufE,[A,] = (1.4)
10 xeE

Hereesssups the abbreviation for

xekE

Iimz sup,
C
CanN)=OXEE\N

whereCap denotes thd-capacity ofX. Similarly, we defin@ssinfto be

xekE
inf inf .
NCE xeE\N
Cap, (N)=0

Let (M") be the predictable dual projection of the square brajdké{ of M* in (1.2),
which is a positive continuous additive functional (PCAF in abbreviation)X ofWe
denote byu,, the Revuz measure ¢f/"). Measureu,, is called the energy measure
of u.

THEOREM 1.2. —Assume that functiom is in F, such thatu, is in Kato class ofX.

ThenP is a strongly continuous symmetric semigroupIdiiE, m). Let(Q, D(Q)) be
the quadratic form associated with on L?(E, m). ThenD(Q) = F and for f, g € F,

0(f,8)=E(f,8) +Eu, fg).

Energy measurg,, can be calculated through formulas (2.1)—(2.2) in next section.
Sufficient conditions for being in the Kato class of Brownian motion, symmetric stable
processes, a large family of Lévy processes, and processes with relativistic Hamiltonia
generators can be found in [5] and [28]. Here we just mention one example{ bet
a symmetric diffusion inR" with infinitesimal generato = 22, i=13m (a,j (x)di ),
where matrix(a;; (x))1<i, j<n 1S uniformly elliptic and bounded, that is, thereNS> 1
such that form-a.e.x e R" andé = (&4, ..., &,) € R",

HENP <Y a;(0EE; < AENP
i,j=1
The Dirichlet form(&, F) in L2(R", dx) for X is: F = WY2(R") = {f € L2(R", dx):
VfeL?R", dx)} and

of o
fro=3 [ Lt iEa faewi®).

R”’Jl

The extended Dirichlet spacg, = {f € L2 (R",dx): Vf € L*®R",dx)} (cf. Ex-
ample 1.5.2 of [12]). Note that fou € F,, its energy measure ig (dx) =
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S i aij (x) 5’;‘ j;‘ dx. Thus a locallyZ?-integrable function: with Vi € L?(R", dx) N
L?(R",dx) for somep > n is a function inF, with p,, in the Kato class ofX and
therefore Theorem 1.2 applies.

When X is Brownian motion onR”, Theorem 1.2 was established by Glover et al
in [14] under an additional assumption thats a bounded function itF = W12(R")
using an approximation method that employed some special properties of Browniar
motion. Zhang [25] studied the problem for symmetric Lévy processes and boundec
u, also by an approximation method, where the property of stationary independen
increments for Lévy processes is used in an essential way.

The approach in this paper is more direct and our results are applicable to arbitrar
symmetric right Markov processes. Let us explain our idea behind our method. We firs
establish our result for bounded functiere F, whose energy measurg,, is in Kato
class ofX. In view of (1.2), we have

P f(x) = E, [ f(X,)e X0 —uX0-Mi] _ g tIg [(re)(x,)e ).

WhenX has continuous sample paths,

L, = exp( ;<M“> ) (1.5)

is an exponential martingale. Since

P f(x) =" WE, [L, exp(%<M">l) (fe) (X,)} :

the transform (1.3) is the result of a Girsanov transform by exponential martidigale
followed by a Feynman—Kac transform Q%pM”)l). In the general cas& may have
jumps and killings so things become much more involved but the same idea still works.
Our key observation is that whenis a general symmetric Markov process,

exp(—M;') = L, exp(A,),

whereL, is an exponential martingale defined by
t
L =1+ / L&) dye™ (1.6)

with Me =M ‘-1 and 4, is a continuous additive functional of having finite
variations. So the key to study the transformation (1.3) is to study Girsanov transform
by exponential martingal&; and identify the transformed process. Once this is done, it
can be shown that under the condition of Theorem 1.2, the Revuz megasiird, has
property thatu™ is in Kato class of the Girsanov transformed process and hence results
from [1] can be applied.
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We show that under the condition thais a bounded function iff,, exponential local
martingaleL; defines a family of probability measuréB,, x € E} through

dP,=L,dP, onM,, x<cE.

We will characterize the transformed proceés underP,, x € E, by identifying its
associated Dirichlet form. Our method of identifying the Dirichlet form is influenced by
Fitzsimmons [9]. However, difficulties and delicacy arise due to the possible jumps and
the killings of the procesX. Once Theorem 1.2 is established for bounded F,, we
extend it to general € F, by approximating it withu,, = ((—n) Vv u) A n. Here for two

real numbers andb, a v b :=maXa, b} anda A b :=min{a, b}.

Girsanov transform of Brownian motion and other Markov processes by supermartin-
gale multiplicative functionals has been studied by physicists as well as mathemati
cians, including names of Cameron and Martin, Maruyama, Girsanov, Kac, Darling anc
Siegert, Hunt, Dynkin,. ., for many years. See the Notes and Comments of Blumenthal
and Getoor [3] for a brief history and the references therein. The one that is closest t
our Girsanov transform result in this paper is the work of Fukushima and Takeda [13]
and Fitzsimmons [9]. In [13], transformation by (1.6) of a symmetric Markov process is
considered, but with® being replaced by a positive functignin the domain of gener-
ator L. In [9], transformation of symmetric diffusion® without killings by exponential
local martingale (1.5) for positive such that " € Fio is considered and the Dirichlet
form for the transformed process is identified. For other related work on transformation
by supermartingale multiplicative functional in the context of symmetric diffusions and
local Dirichlet forms, see the references in [9], [12] and [23].

The Girsanov transform studied in this paper is for an arbitrary symmetric Markov
processX transformed by a supermartingale related to functioh that is not in the
domain of the generataf of X. A new feature of our result under transformation (1.6)
is that the killings of the original proces$ do not disappear after the transformation
as oppose to the case in [13]. In fact the new transformed process has killing measul
e "Wk (dx) (rather than 8@ (dx) as one might think), where(dx) is the killing
measure of{. Another interesting feature is that the time-reversal technique and Lyons—
Zheng's forward-backward martingale decomposition technique work equally effective
for symmetric Markov processes with possible jumps and killings. Our method can
be modified to recover and extend the Girsanov transform result in Fukushima anc
Takeda [13]. Details on this will appear in a separate paper.

A closely related but somewhat inverse question is, givemaymmetric Markov
processX, can one characterize all-symmetric Markov proces¥ whose law is
absolutely continuous to that &f. The research on the latter problem was initiated
by Orey [18] in 1974, wher& is one-dimensional Brownian motion. Fukushima [11]
studied the case for multidimensional Brownian motion, and Oshima [19] for a special
class of diffusions. Fitzsimmons [9] treated general symmetric diffusions without
killings. We plan to study the absolutely continuity problem for general symmetric right
Markov processes in a separate paper.

The rest of the paper is organized as follows. After Section 2 on preliminaries,
the aforementioned results for Girsanov transformibyin (1.6) were established in
Section 3. Theorem 1.2 is proved in Section 4.
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2. Preliminaries

Recall that we assumed thatis a locally compact separable metric space and the
Dirichlet form (£, F) in L?(E, m) is regular, i.e..F N C.(E) is dense both iF with
respect to thefi(-,-) = £(,-) + (-,-) norm and inC.(E), the space of continuous
functions with compact supports, with respect to the uniform norm. Therefote
M, M, X, P,x € E) can be taken as a Hunt process Bn For « > 0, let
G, = f0°° e % P, dr be thea-resolvent ofX. Whenu is a smooth measure, we uSgu
to denote the 1-potential @f. If w(dx) = f(x)m(dx), thenUyu =G f.

Let (N (x, dy), H) be the Lévy system faX . If we usev to denote the Revuz measure
of the PCAFH, then (cf. [12]) the jumping measuteand the killing measure of X
are given by

J(dx,dy):%N(x,dy)v(dx) and «(dx) = N(x, 9)v(dx).

Furthermore the following Beurling—Deny decomposition holdsffof € 7.,

E(f.9)=E9 (. g) + / (F() = F0) (8() — §() I (dx, dy)

ExE\d

+ / FOgr(dv),
E

where bilinear form€e is the strongly local part of .
The martingale par#/}* in (1.2) can be decomposed as

M =M™+ M"T + M*F,

where

Mtu’j = n"_rﬂo { Z (ﬁ(Xs) - ﬁ(Xs—))1{|’J(xs)—7(xs,)\>1/n}1{t<§}

O<s<t

-/ ( / (@() — E(X,))N(X,, dy)) st},
0 4

YEE: [u(y)—u(Xs)|>1/n}
t
Mt”’k = /E(XS)N(XS, ) dH; — u(X:-)1i>e)s

0
andM}-< are respectively the jumping, killing and the continuous part of martingféle
The limit in the expression fod** is in the sense of in probability and in the norm of
space of square integrable martingales (cf. [12]).

Let py, Ky M{w andpuf,, be the smooth Revuz measures associated with the sharp

bracket PCARM"), (M"€), (M*“7) and(M"“*), respectively. Then,

ey (0x) = S, () + gl (dx) + pfy, (), (2.1)
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wherew,, satisfiesu{, (E) = 2E¢(u, u),
(@) =2 [ (@00 = 70)*I (@, dy). - and ph, (@) = 7(6%(co).
E

Letu, = ((—n) Vu) An. By Theorem 5.2.3 of [12],,, satisfies

/ F bt (Ax) = 26(un foun) — E(u?, f) for any boundedf € F,,  (2.2)
E

which can be used to find the expressionu@f,, and therefore of(,) = lim, .« tq,)-
Note that

1 1 1/
sup-E,, [(M[“)z] =lim -E, (M"), = pnuw(E) =&, u) — - /u(x)zlc(dx).
t>0 1 tl0 ¢t 2E
In particular,

E, [(M*)?] <tEu,u) forallt>0andu € F,.

We now present some results which will be used in the sequel. First recall Propositior
3.1 of [1]:

LEMMA 2.1. —If uis in the Kato class, then for ary> 0, there is a constanti, > 0
such that

/E(x)zu(dx) <eE(h,h) + A, /h(x)zm(dx), heF.
E E

Define a bilinear formQ on F, by

O(f.8)=E(f.9)+EW, fg), f.geFp. (2.3)

PROPOSITION 2.2. —Assume thai € 7, whose energy measug,, is in Kato class
of X.

(i) The quadratic form(Q, F,,) is well defined and lower bounded. More precisely,
there are constants > 0 and A > 1 such that for every € 7,

AEF ) <O ) +a / F2Omdn) <AL f). (2.4)
E

(i) Let(Q, D(Q)) be the smallest closed extension &f, 7). ThenD(Q) = F and
for f,ge F,

1, Lo
O(f, ) =E(f 0+ / FO g (@0 + 5 / §IM, 1) (@)

+ / (f)E@) — FMEW)) (@(x) — #(y))J (dx, dy) + / 1 (x) f ()& (x) (dx).
ExE\d

(2.5)
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Proof. —(i) Sincep,, is in Kato class, for any > 0, there is a constant, such that

/E(x)zuw(dx) < eE(h. h) + A, /h(x)zm(dx), hefF. 2.6)
E E

Note that forf, g € F,

B B 12
\ / f<x)ufu,g><dx>] <([Feru@n) ( [fug @)
E E E

~ . 1.
< [ Fouiy @0 + 569, o (2.7)
E

1/2

For the jumping part, by the symmetry dfwe have

/ (@) — 7)) (F) — ) (F() + () J (d, dy)]

ExE\d

<( | (F = Fo)P, dn)*?

ExE\d

2 2 12
([ @0 - w0 Fw +30) @ dn)

ExE\d

<2( | G- Fm)rs, dy))l/2

ExE\d

x( [ 32w — )@, dv)”?

ExE\d

1 L o
<5 | (Fw-Fo)yx dy+2 / §0)2ul, (dx). (2.8)
EXE\d E

Observe also that

1/2
] / u(x)f(x)g(x)x(dx)] ( / x)zu(xfx(dx)) ( / §<x>2:<<dx))
E E

1/2

1 17
<5 [ Foudy o+ [ g%, (2.9)
E E

AS py = 1S, + il + 1k, applying (2.6) to (2.7)—(2.9) witlf = g € 73, we see that
there exists a constadt such that

2
£l A < SES N +A [ F0Pmao.
E
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This proves (2.4).

(i) Clearly (2.5) holds forf, g € F, and (2.4) implies thaD(Q) = F. For general
frgeF, let f,=((—n)Vv f)Anandg,=((—n)Vv g)An.As f, > fandg, — ¢
with respect to thé€;-norm, Q(f, g) = lim,_. - Q(f., g,) and (2.5) follows immediately
from (2.6)—(2.9). O

DEFINITION 2.3.—-A (non-negative smooth measurg: is said to be of finitec-
energy integral if there is a constant> 0 such that

/f(x)u(dx)gc\/gl(f, f) forall feF.
E

LEMMA 2.4. —Assume thaj is of finite £-energy integral and4, is its associated
PCAF. Ther' (x) := E,[A,] is quasi-continuous.

Proof. —For anya > 0, defineh, (x) = E,[ [, €% dA,]. Then

e¢]

hy(x) =E, [ / e dA,

0

o0

— e “E, lExt l / e dA,

0

is quasi-continuous and lim,g k. (x) = h'(x) for q.e.x € E. By Theorem 2.1.4in [12],
itis sufficient to show that syp, £(hy, he) < co. By the proof of Lemma 5.1.9in [12],
we see thak’(x) € F and

EM,h") <, h') <€(u,Uin) < €& U, Urp), 1> 0.

By integration by parts,
t
he(x) =€*h'(x) — a/hs(x)e_‘“ ds.
0

ThusforO< o < 1,

t
Eha, ha) < 2621 (W ') + 202 / &2 E(h, ¥ ds
0

t
< (26‘2"”@ + 2a2/ez(l_“)s ds) E1(Urpt, Urpr)
0

< (2€ +€*)E1 (Ui, Urp),
which implies that sup ; € (hq, hy) < 0o. This completes the proof. O
COROLLARY 2.5. —Assume that. is a smooth measure willa(E) < oo. Thenu is
in Kato class if and only if there is a properly exceptional Aesuch that

lim sup E,[A,]=0. (2.10)

1=0xep\N
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Proof. —Clearly if (2.10) holds, thep is in Kato class. Now assume thais in Kato
class. Sincei(E) < oo, by Cauchy—Schwartz and Lemma 2.1, we see jghiatof finite
E-energy integral. Choose a sequence of real numpere asn — oo and let

en = €SSSUfiE,[A, ].

xeE

Theng, | 0andE,[A, ] <¢,, m-a.e. Since, by Lemma 2.B,[A, ] is quasi-continuous,
E.[A, 1<e, forq.exeE.

Let N, be the exceptional set in the last line. Choose a properly exceptionN set
containinglJ,, N,,. Clearly

lim sup E,[A;]=0,

=0 em\N

which proves the corollary. O

3. Girsanov transform

In this section, we study the Girsanov transforms of symmetric Markov processes ant
identify the Dirichlet forms associated with the transformed processes.

Throughout this section, we assume thais a boundedfunction in F,. Note that
no additional conditionis imposed on its energy measuyig, in this section. Define
p(x) = €™, Inthe sequel, we will use the convention for this functipthat 5(3) = 1.
It is easy to see that — 1 € F,. Thus if we defineM” := M°~* andN” := N*~1, then
we have Fukushima’s decomposition f&¢X;):

F(X,) — p(Xo) =M/ + Nf, P,-as.

Moreover,
MP =M+ M+ M,
whereM/* = [3 p(X,-) dM" and
J k_ | ~ = .
M+ M7 —H'E”oo( > (PX0) = X)) Lk, ks yi1/m)

O<s<t
t

_ /( / (5O — (X)) N(X,, dy)) st).

0 (veEy: [p()—p(X)|>1/n}
Define a square integrable martingafeby

o1
M, = 0
= 0/ X)) dm?. (3.2)

Note thatM; = M}*< and
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1

M, —M,_ = MP — M?
(M= S M ME)
~ ~ p(X;)
=— X)) — p(X,0)) = = ~1

X PE) X)) =2

Let L7 be the solution to the following SDE:
t
1P = 1+/L§_ dM,. (3.2)

It follows from Doleans—Dade formula (cf. [15, Theorem 9.39]) that

1, . M
Lf:exp<M1—5<M >t) H 1+ M, — M,_)e Ms=Ms)

O<s<t
l u,c ﬁ(XY) ( 5(X€) )
= Mt —_ = M ! o l_ ~ . 33
eXp( 5! >’> 0H< P T (X, 53

Note thatL? is a positive local martingale and therefore a supermartingal6,aw).
Thus

dP, = L,dP, onM, forxcE,

defines a family of probability measures @, M..). It is known that under these new
measuresX is a right Markov process off. We will use (X M, M,,]P)x,x e E) to
denote the transformed process)beereXl(a)) X, (w) but we useX, for emphasis
when working WithP, .

Define

P f(x) =E.[L f(X)]. (3.4)

Before stating the next result, let us recall the the definition of time reversal operator
r, on the path space. Given a paite {r < ¢}, define a time-reversal operatgrby

_Jow@—s)- forO<s <,
r’(w)(s)_{co(O) fors >t.
Here forr > 0, w(r)_ :=limg;, w(s). It is known (see Lemma 4.1.2 of Theorem 9.39

[12]) that operator, preserves the measuPg on M, N {t < ¢}.

DEFINITION 3.1.—A continuous additive function&, is called even ifA; o r, = A,
for everyr < ¢.

LEMMA 3.2.—P, is symmetric orL2(E, p2m).
Proof. —Let £, g € B, (E). By time reversal, we have
(P f, &) pom = (E[LY F (X)), 8) 2
En [L? f(X)g(X0)p*(Xo)]
E, [Lf orig(X)p*(X,) f (Xo)].
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To show

(Pif, &) pom = (fs Pi8) o =B [LL 2(X,) p*(X0) f (X0)],
it suffices to prove the following identity

. p*(Xo)

ke p*(X:)

P,-a.s.onfr <¢}.
To this end, note that ofr < ¢} by (3.1),
p(Xy)
M, =M+ lim { ( ) (1P (X)—p(X,0)|>1/n)
e O<s<t (X ) ? P /
X

5)

_/< / ( ((Xs_)—1>N(Xs,dy)) dHS}, (3.5)

0 {yeEy: lp(y)—p(X,)|>1/n}
while asu is bounded,

M; =M +,1|Lrﬂo{ > (@) = # (X)) L 5w —50x = 1m
O<s<t

t

-/ / (mw—m&»Napwmm}
0 (yeEs: 1p(y)—p(X)|>1/n}
(cf. Theorem A.3.9 of [12]). It follows from (3.3) that

LY =exp(M;' + A,), (3.6)

where
t

A= /(/(ﬁ()’) —u(X;,)+1-— e;(y)—f(xs))N(Xs, dy)) dH, — %<M“’C>t_

0 Ey

Recall from [8] that continuous additive functionals of zero energy and continuous
additive functionals of bounded variation are even (although it was proved in [8] for
diffusions, the proof there in fact works for general symmetric Markov processes). Thus
P,-a.s.on{r < ¢},
Lfor = exp(M;‘ or,+A,0 r,)
=exp(M; + A, + 2(u(Xo) — u(X,)))

, P*(Xo)

! p?(X;) .
Here we used the fact that for fixed the discontinuous set of the sample p&tkw) is

at most countable and that for fixedX, = X, P, -almost surely for € E. The proof
is now complete. O
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The following theorem was proved in Fitzsimmons [9] as Lemma 4.4 for symmetric
diffusions. But its proof works for symmetric right Markov processes as well. For
interested reader, an alternative proof is supplied in Appendix A of this paper, undel
an additional assumption that the energy meagyreof « is in the Kato class oX.

THEOREM 3.3. —Let A; be a PCAF ofX with Revuz measurg, then the Revuz
measure forA as a PCAF ofX is p?p.

THEOREM 3.4. —Let (&, F) be the Dirichlet form ofX in L2(E, p?m). ThenF = F
and for f € F,

~ 1 _ _
aﬁﬁzéfmw%mww+ /(ﬂm—f@ﬁmnmwumwo
E

ExE\d

+/ﬂm%uwmu
E

Proof. —Our proof uses ideas from [9] but modifications are needed since our process
X may have jumps and Killings insidg. It is known (see V1.3 of [17]) that there is
an&-nest{K,},>1 of compact sets and a sequenceipie F such that:, =1 onK,,.
By the probabilistic characterization éFnest,{K,},>1 is an&-nest (for process)
as well. Fixn > 1. For boundedf € Fx, = {g € F: g =0q.e. onK¢}, the following
Lyons—Zheng'’s forward-backward martingale decomposition holds:

F(X) — f(Xo) = %(M,f —M/or,) P,-as.ont<c}, (3.7)

whergM,f is the martingale part in Fukushima’s decomposition (1.2)/fcX). Recall
that d?, = L/ dP, on M,. By the Girsanov transform (see [15]),

K, = M /

is a martingale additive functional und@r and

d(M/ L) =M —(M', M),

(K1, = [M'],(B,) P,-as.

Here[K](]R) is the square bracket for martingateunder probability measur@, and
[MI(P,) is the square bracket for martingalé’ under probability measurg, . We
will use (K)(P,) and (Mf)(]Pi) to denote the predictable dual projection[&f](P,)
and[M/](P,) under measur®, andP,, respectively. It follows from the last identity
(see, for example, [15]) that

(K)(Py) = (M) (P

L?) (Py)

=(M >t<1P’x)+<[ "], M), ()
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=(M") (P, + (Oit(f(xs) — f(Xs_))2<§((;i‘i)) — 1)>p(]11>x)

= (M) (P oy — Fon? (LY _ 1\ nx. dydH. (3.8
(M9),( x>+0/E/3(f<Xs) 7o) (ﬁ(xo ) (X, dy)dH,. (3.8)

Thus by Theorem 3.3, the Revuz measure for the PCRAL(P,) of X is

_ _ L
B2y () + 25(x)? E/ (FG) - F)? (% - 1) J(dr dy)
+ f(x)25<x)2(~i - 1)K<dx>
p(x)
= 0wl ) +2 [ (F0) = F0) p() I @ dy)
yeE
+ f(0)?p(x)k (d). (3.9)

Note that(M/, M), = (M/, M), or, on{t < ¢}. So by (3.7)
FX0 = [0 = (K.~ K,or) B,-as. onki <2, (3.10)

Letv = p°m and
B,() = / B, (v ().
E

Now applying Theorem 3.3 and noting that time reversal operatso leaves measure
P, invariant on{r < ¢}, we have by (3.9)—(3.10),

1~ ~ ~
lim “E, [(/(X) ~ F(X0)% t <<

. 1- 1~
<lim (Z]El) [(Kt)z; < d + ZEV [(Kt Ort)2§ < §])

t—0
= im 7B, [(K), (B); 1 <]

< / P()2 sy (cx) + 2 / (f) = F0)2A)A()J (dx dy)

E ExE\d

+ / FO02p () ()
E

<2pl2E(f, f) < oo.

Recall thatf = 0 m-a.e. onK¢ andh, € F with h, = 1 m-a.e. onK,. Thus f = fh,
and
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1 l
im / (@) = Pof ) Fov(ce) = lim ( PR = F(R)% 1 <]
+ / FEPA- El)(x)v(dx))

<limsup ZIE S XD = FX0)% 1 <]

t—0

+ lim sup; (fha)(x)*(1 = P,1)(x)v(dx)
t—0

. 1~ - -
<limsupZ B, [(f(X) — f (X0)": 1 <¢]

t—0

1 -~
+ 11 o lim sup— hp(x)%(1 — Pr1)(x)v(dx)
t—0

<UPIZES: )+ 11 fllooE Urn, hy) < 0.
Thereforef e F and so it admits a Fukushima’s decomposition:

f(X)— f(Xo)=M/ +N/, P,as, (3.11)

whereM; is aP,-sequare integrale martingale aNd is a continuous process of zero-
energy, particularly a continuous process of zero quadratic variation. On the other hanc
f(X;) has Fukushima’s decomposition under meagure

f(X) = f(Xo) =M/ + N/ .

Since by Girsanov transfornk, = le — (M7, M), is a martingale undep, , by the
uniqueness of Fukushima’s decompaosition we have

M/ =K, fort>0. (3.12)

To find the expression foE(f, f), we first calculate the killing measureé for
transformed procesgX, P,, x € E}. k is the Revuz measure for PCAR>,))” P),
the predictable dual projection under measkifer nondecreasing function— 1;>.,),
whereg; is the inaccessible part of the lifetingefor processX. By the same reasoning
as that in (3.8),

Lz’ P) = s’ P) + (Lisey. M), (P)

1 14
= Lyse)P (P — =115 P
(L= ( )+<(p(X;,-—) ) {24}) )
= (P(X5-) " Lyzy) " (@).
Thus by Theorem 3.3,
& (dx) = p(x)k (dx). (3.13)
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Now by (3.9), (3.12) and (3.13)

| =

E(f, H=lim 3 E [(f(X) = f(Xo)?] f (0% (dx)

2
E

t—0

= lim 21E [(M])?] }/f(x)zlz(dx)
=lim SB[+ 5 [ TR
E

=3 / B2 (ce) + / (F() — FO0)) 2505 J (cx dy)

ExE\d

+ / Fo02p () ().
E

Since f is an arbitrary bounded function ifx,, we conclude thatJ,., Fk, C F
and thereforeF c F. By the following theorem, we can interchange the roles of
(X;,P,,x € E) and(X;,P,, x € E) to deduce tha c F and hencef = F. O

Recall thatp = & and that we take the convention thatd) = 1. Sinceu € 7,
—1leF, c D). Sop~(X,) has Fukushima’'s decomposition

pHX) — KXoy = M+ N (3.14)

whereM” ' = M7 Lis a martingale additive functional of having finite energy and

N = N71is a continuous additive functional & having zero energy. In analogous
to the definition ofM andL” in (3.1) and (3.2) with respect to proce¥swe define for
processy,

t
M= [pEdr”, 10 (3.15)
0

andZ*™" be the unique solution to

t
1

ZP‘1=1+/Z;{ dM,, >0, (3.16)
0

THEOREM 3.5. —Let L” and L*" be defined by3.2) and (3.16) respectively. Then
1/L’ =LY" P,-a.s.forq.ex € E.

Proof. —Sincep—! — 1€ F,, p~1(X,) has Fukushima’s decomposition

pYX) —p M Xo)=MP NP, 120, (3.17)
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whereM? ' = M7 Lis a martingale additive functional &f having finite energy and
_ 1 . . - . .
N°~' = N> tis a continuous additive functional of having zero energy. Moreover

MP =M M M

t
~ -1 u,c i ~ -1 0 -1 ~ ~
=/P(Xs—) dM; +n'Lmoo< > (PX)™ = A ™) L5 5o ym)

O<s<t
-/( / ()™ = B NG d) ) di ). (3.48)
0 {yeEs: p(y)—p(Xs)|>1/n}
(See Theorem A.3.9 of [12] for the justification of the expressioM;Sf_l’j + MP k)
Thus by (3.5)
[Mp‘l, M|, = [Mp‘lvc, M+ Y (Mf_1 — Mf__l)(MS — M)
O<s<t
r1 1\ (AX) )
— d{M"-<) -1
- [ 5% +0;<,< (X, (Xs_>)<ﬁ(xs_>
0
[l (BXy) = B(X,-))?
=— d(M*e) — .
/5(Xs) (M), 0§<l P(X)p(Xs-)?
0 S
Hence
_1 Fo1
MP , — - s
< >l /O(Xs) >s
[ [ B = BX,))? )
- N(X,, d dH;. 3.19
(] sty Vo (3:19)

l
By Girsanov transformp?™ — (M*™, M) is a local martingale with respect . In
view of (3.14), (3.17) and the uniqueness of Fukushima’s decomposition, we have

-1

—~ 1 -1
MPT =M — (M, M),

t

So by (3.5), (3.15) and (3.18)—(3.19),

t

M, = /( ) dme

0

t ~ ~ 2
= [pxodm ™+ e, / ( (P = Py k. ) ) dH
) 5\ p(Y)p(Xy)

(P(X,) — p(X,-))?
— _M[ Mu.c —
M), + 02 P (X)p(X,0)

-1
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This in particular imples thatM©<) = (M"“<) = (M°). By Doleans—Dade formula and
(3.3),

. 1 LX) pH(X,)
LY =ex (M,——M“ l) —————eX (1—7~ = )
P 2< ) 0<1:[<t o 1(X,2) p1(X,-)

0 — D 2
=exp(_Ml+}<Mu,c>t) 11 exp<(,0(Xs) p(XS_))>

2 O<s<t ﬁ(XY)ﬁ(XS‘—)
p(X,o) ( ﬁ()?s_))
————expl1-— —
Xoggt FE SRS
1 c p(Xs-) ( o(Xy) )
= _Ml‘ — M — L _ l
exp( + 2< >t> 0<1:[<l 500 exp X
1

4. Feynman—K ac typetransform

Recall thatd} is the martingale part of the additive functionalX,) — u(Xo) in the
Fukushima’s decomposition (1.20*) is the predictable dual projection of the square
bracket[M"] of M", and u, is the Revuz measure of PCAB/“). Throughout this
section,u is a function inF, with ., in Kato class ofX. To prove Theorem 1.2, we
first prepare two lemmas.

LEMMA 4.1. —Suppose that is a bounded function itF, with u(,, in Kato class
of X.
(i) For any realk,

Iz'?(] efsgunEx [exp(kM;')] = IZI?S essinfil, lexp(kM;')] = 1.

This implies by the Markov property a&f that there are constants, ¢, > 0 such that

esssufkE, [exp(kM}')] < c1explcat).

xekE

(i) Foranyk > 1andT >0

esssuft, [ sup (L?)"] < oo.
x€E 0<I<T

HenceL! is a martingale.

Proof. —(i) First note that if|x| < M, |y| < M, then there exists a constanj such
that

|ex—ev|<cM|x—y| and |ex—x—1|<ch2. 4.2)
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By (3.6) with Zu and &“ in place ofu andp, we have
E, [exp(M#* + AZ")] <1, (4.2)

where

t

a2 = [ ([ (@eits) - 2kcx) + 1 - 702000 N (x,. dy) ) o, -
0 Ey

1
E<]‘42ku,c>

.-
4.3)
The Revuz measure for continuous additive functionad?* of X is

p(c) = / (2Kii (y) — 2kii(x) + 1 — 7O 20D) N (xdy)u(dr) — 2Ky, (cx)
Ey
=2 / (2Kii(y) — 2kii(x) + 1 — U240 1 (dly, dy)
ExE\d
+ (L= 2kir(x) — €20 ) e () — 242, (dlv).
Thus by (4.1) and (2.1), the total variation of measure
) < [ (@) = 70)° (s, d) 4+ cirtoe(dn) + e, (do)

ExE\d
< cpagy (dx). (4.4)

So i and henced?* is in the Kato class of proces¥. Now by Cauchy—Schwartz
inequality and (4.2),

u\] _ ku } 2ku _} 2ku
E,[exp(kM")] =E, {exp(M, +2A, )exp( 2A, )}
(Ex [exp(MP* + AZ)|E. [exp(—AP)])
(B, [exp(—A%)])"*.

Hence by Corollary 2.5 and Khasminskii’'s lemma,

<
<

lim esssufit, [exp(kM")] < 1.

10 xeE
On the other hand, by Jensen’s inequality
E, [exp(kM]')] > exp(E, [kM]']) = 1.

This, together with the Markov property &f, proves (i).

(i) By (3.6) (L))" = exp(kM" + kA"), whereA" is given by (4.3). Note thatiA is
a continuous additive functional &f whose Revuz measure is in Kato classXofBy
Cauchy-Schwartz inequality,

E,[(L")"] < (E, [exp(2kM")]E, [exp(2kA*)]) "2,
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It follows from part (i) of this Lemma, the Khasminskii's lemma and the Markov
property ofX that

sup esssuf, [(L?)"] < co.
0<t<T xeE

By Doob’s maximal inequailty, this implies

esssufE, [ sup (L?)"] < oo
x€E 0<t<T

for all £ > 1, which in particular implies that! is a martingale. O

LEMMA 4.2. —Suppose that is a bounded function itF, with 1, in Kato class of
Xand thatA is a PCAF ofX whose Revuz measure measurss in the Kato class for

X. Then the Revuz Q’leaSlﬂ?gu(dx) for A as a PCAF for the transformed procei‘sis
in the Kato class foiX, that is

lim esssufi,[A,] = 0.

0 xeE

Proof. —Let N be the exceptional set described in Corollary 2.5. ForaayE \ N,

by the Markov property o,
t t
:mx[/</dA,)dAs
0 K]

t t
/ / dA, dA,
00
t

=2Ex[ / Ex.[A_,]dA, =2Ex[ / (Ex.[Ai_]) dA,, X, € E\N
0 0

E, [A7] = E.

<2( sup E,[A]E,[A].
yeE\N

Hence by Corollary 2.5,
lim esssuf, [A?] = 0. (4.5)
0 xeE
Now
. — < . p
I;?g efgurﬁ%mz] < ','?8 efgguﬂﬂx [LPA,]
<limesssup(E. [(L{)°]) " (E.[47)) "}

0 xeE

=0.
The last equality is due to (4.5) and Lemma 4. 1(ii}a

Proof of Theorem 1.2 for bounded —We first show that ?;,s > 0} is a strongly
continuous symmetric semigroup @3(E, m).
SinceN! is an even continuous additive functionalXf for f, g € L3(E, m),
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/ f)Pgx)m(dy) =E,[f(X0)g(X)EY' ] =K, [(f (Xo)g(X,)e¥) or]
E
—E,[f(X)g(Xo)e¥] = / () B, f (om(ck).
E

Note thatN" = u(X,) — u(Xo) — M". Thus by Lemma 4.1(j), for any € L?(E, m),

/ (B f)(x)2m(dv) < / E, [exp(—2M")|E, [(fe)2(X,)] & 2O (dk)
E E
< o / F200m ().
E

HenceP, is a bounded operator dif(E, m). For f € L2(E, m), again by Lemma 4.1(i),
lim 1P = iz
< lim &1~ |E. [ (&) (X0)] = (& £) |26,
< e lim [, [(€) (X0)] = (1)) 2.0
+ e”lzt”oc Itl?g HEX [(e_M[“ — 1) (eu f) (X[)} ||L2(E,m)

lulloo i
<el>lim||P (€ f) =€ fl 2z m

+ glulloe |[,?3 (/Ex [(exp(—M") — 1)’ E, [(eﬂf)Z(X,)]m(dx)>1/z

=0.

ThereforeP, is a strongly continuous symmetric semigrouplo?rgE, m).
Now we identify the quadratic form associated with semigréugror f € L?(E, m),
by (3.6),

P, f(x) =B, [f (X, X0—uXo-M|
= e "WE, [Lf e (fe) (X)), (4.6)

whereA~" is defined by (4.3) with2= —1 there. We see from (4.4) the Revuz measure
u for continuous additive functionad = of X is

p(dx) =2 / (H(x) —u(y)+1-— J<x>—7<>’>) J(dx, dy)
ExE\d

N ~ 1
+ (@(x) + 1 — €9)k(dx) — S (@), (4.7)

which is in the Kato class of proce&s and therefore by Lemma4.2, the Revuz measure
for A as an additive functional of the transformed prockss in Kato class ofX. It is
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well known thatf € D(Q) if and only if

1
lim [ (PLf () = f () f ym(dhe) < oo,

E

By (4.6), the left hand side of above equals

1 ~
im = [(@F,£() - (f&) ) (£¢") ()& 2 m(c)
E

1 D
:%; (B [LE e (fe)(X)] — (f€) ) (f€)(x)e P m(dx). (4.8)
E

Hence by Theorem 3.4 and Proposition 3.1 of [1], a bounded fungtionL?(E, m) is

in D(Q) ifand only if f& € F, and therefore if and only if € F,. The latter is because
both & — 1 and €* — 1 are inF. It follows from (4.7)—(4.8), Theorems 3.4-3.5 and the
Feynman—Kac formula (see [1]) that fgre F,

1o
(s N=lm = [(Bf @) = f@) f @me)
E

=E(re, e+ [ (Fe () ()

E

:g(f’ f)+5(f2,u)
+ [ PR+ — i) - ) g (e, dy)

ExE\d

- / FOPR(L+i(y) —ii(x) — €975 J dx, dy)
EXE\d
zg(f,f)+5(f2,u).

The last equality is due to estimate (4.2) and the symmetry of the jumping measure
J(dx, dy). This completes the proof of the theorem wheis bounded. O

Proof of Theorem 1.2 for general —For general: € F,, defineu,, = ((—n) vV u) An.
Asu, € F,, it has Fukushima’s decomposition

n(X,) =, (Xo) + M + N/, t>0.

As for eachn, u,, is a normal contraction af (that is,|u,| < |u] and|u, (x) — u,(y)| <
lu(x) — u(y)|), we have by Theorem 3.2.2 in [12] that, ,(dx) < u{,(dx) and so
by (2.1) e, (dx) < pyy(dx). Thereforew,,, is in Kato class ofX for eachn > 1.
Furthermore, from the proof of Proposition 2.2(i), one can find common constants
andx > 1 such that (2.4) holds fap and all Q" on 7, where the bilinear fornQ" is
defined via (2.3) withy, in place ofu. If we defineP* by

Pl () =B, [ f(X)], f=0,
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then{ﬁl”} is anm-symmetric, strongly continuous semigroup whose associated quadratic
formis (F, 0"). By (2.4), Lemma 1.3.2 and Theorem 1.3.1 in [12], we have

||e_(°‘_l)tﬁ,nH2—>2 <1 fort>0andn>1.

Therefore
1P l2n2 <€D and G252 < 1, (4.9)

where G, = [>° e P’ dr. Since lim_., N/ = N*, by Fauto’s lemma we have for
feL*E,m),

/(Ef(x))zm(dx) < liminf /(E"f(x))zm(dx) < e £)2
E

E

Thus P;, given by (1.3), is a well defined semigroup of bounded linear operators in
L?(E,m). We show now that’" f — P, f weakly in L?(E, m). To this end, for any
nonnegativef, g € L2(E, m), define a finite measuneon M, by

v(A)i= [ B [FX)L] g@mido).
E
Then
[ B r@gtom@n) = v[e'].
E
From (4.9) with 2 in place ofu, we have

supv [V ] =sup [ E, [ £(X)]gx)m(dx) < & fll2ligllz < o0
E

for someg, > 0. So{e™", n > 1} is uniformly integrable with respect to measurand
therefore

lim_ [ P poogeomo = fim ve®] =v[e"] = [ B foog0om(c),
E E

This proves thaﬁ," f converges weakly t®, f and consequentl@’g f converges weakly
to G f forany f € L(E,m) and$ > «. HereGy f := [ e P P, f dr. We show next

that{éﬁ, B > a} is the resolvent associated with the quadratic foémD(Q)) specified
in Proposition 2.2. By (2.4) and (4.9), we have e «,

El(a%f, (A?%f) < kQ”(é'éf, (A;%f) :)L/f(x)é%f(x)m(dx) < C,B”f”%'
E
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So {G f,n > 1} is & bounded. After taking a subsequence if necessary, we may
assume thaG,g f converges weakly to somg € F and that the Cesaro mean :=

S°1_1 G% f/n converges tofy in Hilbert space(F, £1). Hence fo = G f . After taking

a further subsequence if necessary, we may assume, by (2.4), that (cf. Lemma 3.2
in[12])

lim 04(Ghf.8) = 0s(Gpfrg) forallgeF.
Therefore

[ @gm(dn = m [04(Gy . ¢) + 04 (Gy /- 8) — Qs(G 1. )]
E

= 04(Gyf.9) + lim [05(G} . 8) — 0s(G f.g)].  (4.10)

Note that
Gt g@| = [ G, )
E (xeE: u(x)=n}
1/2 1/2
<( <dx)) ( G F (2, (dx))
{x€E: u(x)>n}
1/2 1/2
<( [ mpw) ( £, (@) )
{x€E: u(x)>n}

-~ -~ 1/2 12
<ca@ren”( [ M€g><dx>)

(xeE: u(x)=n}
— 0 asn— oo. (4.11)

In the second to the last inequality we used the factahas a normal contraction of
and henceu{,_, , < 4ug,,. Onthe other hand,

12
[aooms,, g, @) < ugg,éﬁ(E)l/z( [ 3@ @)
E E

e@yreyn(a | §(x)2ufu>(dx))l/2

(x€E: u(x)=n}

—0 asn—0. (4.12)
By the symmetry of the jumping measufédx, dy),

(GG ) ) — (B64S) ) (@ — ) (x) — (@ — ) (1)) J (@, dy)\

ExE\d

/ (G — ) () — (i — ) (7))

ExE\d
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% (G £(x) = G F () (B() + (1) I (d, dy>\

R R , 1/2
<( [ Gpren-Groniar dn)

ExE\d

2 1/2
x (4 / g0 — 1) (x) — (@ — u,) ()" J (dx, dy))

ExE\d
~ ~ 2 1/2
<as@yr. Gy / B2t - ). o) )
(G @) <nJu(y) | <n)eNd
— 0 asn— oo. (4.13)

The last inequality is due to the fact thatis a normal contraction af. Also

] [Grrwaw - un)(x)/c(dx)’
E

1/2

1/2 N
< ( [ awia- ﬁnxx)zx(dx)) ( / sz(x>zx<dx>>
E E

= -~ 1/2 172
<E(Gr.Cyp)Y ( / §<x>2ﬁ<x)2<dx>)
(xeE: [u(x)|>n}

— 0 asn— oo. (4.14)

Now by (4.11)—(4.14),

1[4, . 1r .
— E/Gﬁf(x)ﬂw—un,g)(dx) + E/g(X)M(M_Mn’gn

+ / (GG 1) () — (867 1)) (i — i) (¥) — (G — 1) (7)) ] (dx. dy)

+ [ GRr0FO @ — )@@
— 0 asn— oc.

This, together with (4.10) shows that

01(Gp9) = [ fgm(d) forall f.g € L*(E.m).
E

So Gﬁ is the resolvent associated wittQ, D(Q)) and henceP, is its associated
semigroup. Theorem 1.2 is now proved in its full generality



Z.-Q. CHEN, T.-S. ZHANG / Ann. I. H. Poincaré — PR 38 (2002) 475-505 501

COROLLARY 4.3. —In addition to the conditions in Theorein2, assume further that
u is bounded, continuous and that the semigréByg, >, for processX is strongly Feller,
that is, P, mapsB,(E) into C,(E). Then the semigroufP, },>¢ is also strongly Feller.

Proof. —Let f € B,(E). Setg(x) = f(x)€®). We have
&P, f(x) =E, [exp(M")g(X,)].

Thus we only need to show th&t [exp(M,)g(X,)] is continuous. Note that for any
e<t,

E, [exp(M; " 060:)g(X,)] =E,[Ex, [¢(X,_.) exp(M, )]

is continuous by the strong Feller property &f. It is sufficient to prove that
E.[exp(M™ o 6,)g(X,)] converges tdE,[exp(M,")g(X,)] uniformly with respect to
x ase — 0. This is a consequence of

lim SUpE, [(exp(M; . — M;* — M;*) —1)*] =0,

s—>0er t+e t 3

which can be shown in a similar way as that of Lemma 4.1(i).

Appendix

In this appendix, we supply an alternative proof to Theorem 3.3 for bounded,
with p, in Kato class ofX.

LEMMA A.l.—Letu,,n > 1 be a sequence of smooth measures of fifiimnergy
integral withsup, i, (E) < oco. Assume that there is a compact subSet E such that
w,(K) =0forn > 1and thatU,u, converges weakly to;u in Hilbert space(F, &,).
Then for any bounded quasi-continuous functfgn

lim / F () () = / FOou(d).
E E

Proof. —By the assumption and the regular property of the Dirichlet form, we see that
W, converges tqw vaguely, i.e.,

lim / ()t () = / (k)
E E

foranyg € C.(E).

Put M = || f|ls- Since f is quasi-continuous, there exists &mest{K,,, m > 1}
consisting of compact sets such tlfak, is continuous. By Tietz extension theorem, for
eachm, we can find af,, in C.(E) such thatf|x, = f|x, and|| f,.ll.c <M. Denote by
en the 1-potential oK \ K,,. Then Cap(K \ K,,) = &1(em, en) — 0 asm — oco. Now
foranym > 1,
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‘ [ rmdo - [ f(X)M(dx)‘
E E
< ‘ / (f () — fm)un(dm‘ + ] / Fon () (c) — / fm(x)u(dx)]
E E E
4 ‘ Juw- ﬂ(x))u(dm‘
E

<om | un<dx)+] [ Futomio - | ﬁ(x)u(dx)]uM [ @
E E

K\Kpn E\Kn

<2M / en ()t () + 24 / en (0)2(cy) + ‘ / T ()t (k) — / ﬁ(x)u(dx)\
E E E E

< 4M¢sup&(U1un, Upta)y/Cap (K \ Ky)
+ ‘ / )bt (o) — / fm(X)M(dx)‘-
E E

The lemma follows by first passing— oo and therm — co. O
We now give an alternative proof for Theorem 3.3.

THEOREM A.2.—Let A, be a PCAF ofX with Revuz measurg, then for any
bounded functiony € LY(E, m),

Ewpzm[At]:/</ﬁsv/ds>ﬁzﬂ(dx)~
E 0

Therefore the Revuz measure foas a PCAF ofX is p2/.

Proof. -We follow the path in the proof of Lemma 6.3.6 in [12] but with some
improvements. First we note thatgf, converges t@ in (F, &), then by Fukushima’s
decomposition,

(B (NP = N2)*)Y?
<Ne — bllz + (B ($(X) — $(X))*) 2+ (B, (MP — MP)?)
<2k — Pllo+ 2t/ E(pr — b, e — P)
— 0 ask — oo. (A.2)

1/2

Since . is a smooth measure, there is &mest{F,},>1 of compact sets such that
w(F,) < oo, 1g p is of finite £-energy integral, and/;(1f, 1) is bounded for each
n>1 (see Theorem 2.2.4 of [12]). Let” = k(Ur(1p, 1) — kGry1(U1(1g,p))). Let
fne FNC.(E)besuchthat & f, <landf, =1onF,. Then for anyw € F,
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kli_)rrgoé’l(Gl(fng,E")), v) :kli_)moo/g,gn)fnvm(dx) = /ﬁf;,lpnu(dx)
E

E

:/Eanu(dx) =& (U1(1p, 1), v).
E

So0G( fng,ﬁ”)) converges-weakly toU; (15, 1) ask — oo. By taking a Cesaro mean of
a subsequence @f", there is a sequendg™ in F such thatG(f,h\") converges to
Ui(1p, ) in (F, &) ask — oo. Hence by (A.1),

)
I|m Em (NtGl(fnhk ) _ NtUl(lpnM))Z _ 0
k—00
Note that
) ! t
Gi(ful)") \ )
Nt Tuhy, :/Gl(fnhl({ ))(Xs)ds _/(fnh](( ))(Xs)ds
0 0
and

t t
NtUl(lp,,u) =/l71(1F,,M)(XS) ds —/1Fn(Xs) dA;
0 0

(cf. Lemma 5.4.1 of [12]). By (A.1) and the triangular inequality, we see that

2

kli_)mooE,n(/(fnh,((”))(Xs)ds—/an(XS)dAS) =0.
0

0
Now for any bounded functiony € L*(E, m) = L'(E, p?m), by Cauchy-Schwartz
inequality and (4.1),

t

/ (fuh™)(X,) ds — / 15, (X,) dA,
0

0

lim E, .
k—00 vpm

2, 1/2

< Jim (Ey 2, [(L)) "7 (szm < [ xods = [15,00) dAs)
0

0

)

=0.

Note that since

/ ¢ (ym(dy) = / k(G1 — kG1Grs1z D1y, pu(dy) = / kGpaLmu(dv) < u(Fy),
E Fl‘l

E

su.sy [ fuh"m(dx) < co. Thus
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t
EypenlAd = M Eypz, [ / 1, (X,) dA,
0

n—00 k—o00

= lim lim IEWzml/(fnh,(("))()?s)ds]
0

n—00 k—00

:nli_[rgo (/tﬁswds)pzl@,u(dx)=/(/tﬁs‘ﬂds)ﬁzﬂ(dx)-
0

E 0 E

— lim lim </ﬁgwds>p2fnh,£")m(dx).
0

In the second to the last equality, we used Lemma A.2 and the facPfiiats quasi-
continuous with respect t& as well. The latter is due to the fact thaf is 5 strictly
positive up to lifetimez of X and thatP, is quasi-continuous with respectid O

Acknowledgement

We thank Len Gross for helpful discussions on Tietz extension theorem. Thanks art
also due to R. Song for pointing out an error in a previous version of this paper.

REFERENCES

[1] Albeverio S., Ma Z.-M., Perturbation of Dirichlet forms-lower semiboundedness, closabil-
ity, and form cores, J. Funct. Anal. 99 (1991) 332-356.

[2] Albeverio S., Réckner M., Zhang T., Girsanov transform for symmetric diffusion with
infinite dimensional state space, Ann. Probab. 21 (1993) 961-978.

[3] Blumenthal R.M., Getoor R.K., Markov Processes and Potential Theory, Academic Press
New York, 1968.

[4] Chen Z.-Q., Ma Z.-M., Roéckner M., Quasi-homeomorphisms of Dirichlet forms, Nagoya
Math. J. 136 (1994) 1-15.

[5] Chung K.L., Zhao Z., From Brownian Motion to Schroédinger’s Equation, Springer, New
York, 1995.

[6] Dellacherie C., Meyer P.-A., Probabilités et Potentiel, Chapites V a VIII, Hermann, 1980.

[7] Either S.N., Kurtz T.G., Markov Processes-Characterization and Convergence, Wiley, New
York, 1986.

[8] Fitzsimmons P.J., Even and odd continuous additive functionals, in: Dirichlet Forms and
Stochastic Processes, De Gruyter, Berlin, 1988, pp. 139-154.

[9] Fitzsimmons P.J., Absolute continuity of symmetric diffusions, Ann. Probab. 25 (1997)
230-258.

[10] Fitzsimmons P.J., Getoor R.K., Limit theorems and variation properties for fractional
derivatives of the local time of a stable processes, Ann. Inst. Henri. Poincaré 28 (1992)
311-333.

[11] Fukushima M., On absolute continuity of multi-dimensional symmetrizalle diffusion, in:
Functional Analysis in Markov Processes, Lect. Notes Math., Vol. 923, 1982, pp. 146—
176.



Z.-Q. CHEN, T.-S. ZHANG / Ann. I. H. Poincaré — PR 38 (2002) 475-505 505

[12] Fukushima M., Oshima Y., Takeda M., Dirichlet Forms and Symmetric Markov Processes,
Walter de Gruyter, Berlin, 1994.

[13] Fukushima M., Takeda M., A transformation of symmetric Markov processes and the
Donsker—Varadhan theory, Osaka J. Math. 21 (1984) 311-326.

[14] Glover J., Rao M., Sikic H., Song R., Quadratic forms corresponding to the generalized
Schrédinger semigroups, J. Funct. Anal. 125 (1994) 358—-378.

[15] He S.W., Wang J.G., Yan J.A., Semimartingale Theory and Stochastic Calculus, Scienc:
Press, Beijing, 1992.

[16] Kunita H., Absolute continuity of Markov processes, in: Seminaire de Probabilites X, Lect.
Notes Math., Vol. 511, 1976, pp. 44-77.

[17] Ma Z.-M., Rockner M., Introduction to the Theory of (Non-symmetric) Dirichlet Forms,
Springer, Berlin, 1992.

[18] Orey S., Conditions for the absolute continuity of two diffusions, Trans. Amer. Math.
Soc. 193 (1974) 413-426.

[19] Oshima Y., On absolute continuity of two symmetric diffusion processes, in: Lect. Notes
Math., Vol. 1250, Springer, Berlin, 1987, pp. 184-194.

[20] Oshima Y., Takeda M., On a transformation of symmetric Markov processes and recurrenc
property, in: Lect. Notes Math., Vol. 1250, Springer, Berlin, 1987, pp. 171-183.

[21] Sharpe M., General Theory of Markov Processes, Academic Press, 1988.

[22] Simon B., Schrodinger semigroups, Bull. Amer. Math. Soc. 7 (1982) 447-526.

[23] Takeda M., Topics on Dirichlet forms and symmetric Markov processes, Sugaku Exposi-
tions 12 (1999) 201-222.

[24] Takeda M., Zhang T., Asymptotic properties of additive functionals of Brownian motion,
Ann. Probab. 25 (1997) 940-952.

[25] Zhang T., Generalized Feynman—Kac semigroups, associated quadratic forms and asym
totic properties, Preprint, 1998. To appear in Potential Analysis.

[26] Yamada T., On the fractional derivative of Brownian local time, J. Math. Kyoto Univ. 25
(1985) 49-58.

[27] Yamada T., On some limit theorems for occupation times of one dimensional Brownian
motion and its continuous additive functionals locally of zero energy, J. Math. Kyoto
Univ. 26 (1986) 309-322.

[28] Zhao Z., A probabilistic principle and generalized Schrédinger perturbation, J. Funct.
Anal. 101 (1991) 162-176.



