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ABSTRACT. — We introduce a probabilistic model that is meant to describe an object that falls
apart randomly as time passes and fulfills a certain scaling property. We show that the distributio
of such a process is determined by its index of self-similarig/R, a rate of erosion > 0, and a
so-called Lévy measure that accounts for sudden dislocations. The key of the analysis is provide
by a transformation of self-similar fragmentations which enables us to reduce the study to the
homogeneous case= 0 which is treated in [6]0 2002 Editions scientifiques et médicales
Elsevier SAS
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RESUME. — On introduit un modéle probabiliste pour décrire I'évolution d’'une masse qui se
fragmente de facon aléatoire au cours du temps, tout en satisfaisant a une certaine proprié
d’auto-similarité. On établit que la loi d’'un tel processus est déterminée par son indice d’auto-
similarité « € R, un taux d’érosiorc > 0, et une mesure de Lévy qui prend en compte les
dislocations soudaines. La clef de I'analyse consiste en une transformation permettant de rédui
I'étude a celle du cas homogéme= 0 qui a déja fait I'objet de [6]2 2002 Editions scientifiques
et médicales Elsevier SAS

AMS classification60J25; 60G09

Mots Clés:Fragmentation; Auto-similaire; Partition échangeable

1. Introduction

Informally, imagine an object with total unit mass that falls apart randomly as time
passes. The state of the system at some given time consists in the sequence of the mas
of the fragments. Suppose that its evolution is Markovian and obeys the following rule.
There is a parameter € R, called the index, such that given that the system at time
t > 0 consists in the ranked sequence of masses m, > --- > 0, the system at time
t + r is obtained by dislocating every mass independently of the other fragments
to obtain a family of sub-masses, say; ;, j € N), where the sequence of the ratios
(m; j/m;, j € N) has the same distribution as the sequence resulting from a single unit
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mass fragmented up to time'r. Such a random process will be referred to a2k
similar fragmentatiorwith indexo.

Here is a simple example that is closely connected to Kingman’s coalescent [13]
Consider a stick of length 1, which can be identified as the unit intervalland .,
a sequence of i.i.d. uniformly distributed variables. ket 1, ..., cut the stick at the
locationU,, at the instant of thath jump of some Poisson process which is independent
of the sequencéd/y,.... Then the process giving the lengths of the fragments of the
stick as a function of time is easily seen to be a self-similar fragmentation with index
a = 1. Related examples based on binary splitting of intervals have been considered b
Brennan and Durrett [7,8] (in this direction, it may be interesting to recall that the case
«a = 2/3 arises in a model for polymer degradation). More recently, Aldous and Pitman
[3] have constructed a self-similar fragmentation with ind¢®2 Which has a central
role in the study of the standard additive coalescent, by cutting randomly the continuun
random tree along its skeleton (see also [5] for an alternative construction based o
the Brownian excursion). We also refer to Aldous’ survey [2] for more literature on
fragmentation processes.

Roughly, the key result of this work is that the distribution of a self-similar
fragmentation is characterized by its index R, a coefficientc > 0 that measures
the rate of erosion, and a so-called Lévy measunghich accounts for the sudden
dislocations. More precisely, introduce the natural state-spgcefor the ranked
sequence of sub-masses resulting from the dislocation of a unit mass,'igenotes
the space of decreasing numerical sequerces(sy, sz, ...) With >"s; < 1. A Lévy
measurey on SV is a measure that gives no mass to the sequéhdg. . .) and fulfills
the requirement

/(1 — s v(ds) < oo.
S

Conversely, given arbitrary numbers= R andc > 0 and a measuneon S+ that verifies
the preceding integral condition, one can construct a self-similar fragmentation with
index«, erosion rate: and Lévy measure.

Our approach relies on a recent related work [6] which focuses on the so-callec
homogeneousasex = 0 where the fragmentation rate does not depend of the mass of
the fragments. More precisely, the characterization alluded above has been establish:
there for homogeneous fragmentations, and the first purpose of this work is to extend thi
to the self-similar case. This extension will be obtained by introducing a kind of random
time-transformation that enables us to change the index in a self-similar fragmentatiot
process, and hence to reduce the study to the homogeneous case.

This classical idea of transforming a Markov process into a simpler one by a
suitable time-substitution raises important technical difficulties in the present setting.
Specifically, it has been pointed out by Pitman [15] that in the homogeneoua eafe
it is much easier to analyze fragmentations as processes with values in the space
partitions ofN = {1, 2, .. .}, and this is the key to the results in [6]. This trick is not so
useful in the self-similar case +# 0, because if one works in the space of partition of
N, the dynamics of the fragmentation depend on the so-called asymptotic frequencie
of blocks (which correspond to the masses of the fragments), and the lattaotare
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continuous functionals of partitions. As a consequence, it seems hopeless to prove tf
Feller property by this approach, and a fortiori, to develop techniques of random time
substitutions.

We shall circumvent this difficulty by discussing two different aspects of fragmenta-
tion. We first consider fragmentation of the unit interi@l1[ induced by a nested family
of open sets, this framework being well-suited for establishing the Feller property in the
self-similar case. Then we will turn our attention to a more general setting involving
random exchangeable partitionsidf We shall see that these two aspects are in fact es-
sentially equivalent. This allows us to shift the time-substitution results established for
interval-fragmentations to partition-valued fragmentations and to establish the desirel
characterization of self-similar fragmentations.

As an example of application, we consider the evolution as time passes of the
size of the fragment that contains a tagged point picked randomly at the initial time,
independently of the fragmentation process. We identify this process as a semi-stabl
Markov process in the terminology of Lamperti [14], and its distribution is made explicit
in terms of the characteristics of the fragmentation. In some cases, such as for instanc
that considered by Aldous and Pitman [3], one can recover the characteristics of th
fragmentation from the law of the mass of the tagged fragment.

2. Interval fragmentation
2.1. Definition

We write V for the space of open subsétsC 10, 1[. EachV € V is determined by the
continuous functioryy :

xv(@)=min{|x —y|: ye V®}, x€[0,1],

whereV¢ = [0, 1]\ V. Define the distance between two open geendV as the uniform
distance between the functiopg and xy, i.e.,

distU, V) = llxv — xvlles = max Ixu (x) = xv(®)l.

This coincides with the Hausdorff distance between the closed complementaty‘sets
and V¢, andV a compact metric space. For instance, a sequence of open intervals, sa
la,,b,[forn=1,..., converges tda, b[ where 0< a < b < 1ifandonlyiflima, =a

and limb, = b, and converges t@ if and only if lim(b, — a,) = 0. We point out the
following elementary lemma that will be useful for our future purpose.

LEMMA 1. - For everyi € N, let (V,;, n € N) be a sequence il that converges to
V;. Assume that for each fixede N, the open set¥, 1, V, », ... are disjoint and that
the sequenc#,, ; converges irV asi — oo to ¢, uniformly inn € N. Then

lim (JVvii=Jvi inV.

ieN ieN
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Proof. —It follows from the assumptions that the open SétsVx, ... are disjoint and
a fortiori converge t@ asi — oco. Set

W=V W=V,

ieN ieN
and note that
o0 o0
XWHZZXVM-, XW:ZXV;-
i=1 i=1

To complete the proof, note that by the triangular inequality, we have for évey

k 00 00
lxw, = xwlloo <D Ixves = xvilloo +{| D xvie|l +1 D xv,
i=1 i=k+1 00 i=k+1 00
k
= lxv,; — xvillo + SUP llxv,; oo + SUP [1xv; lloos
im1 i>k+1 i>k+1

where the identity stems from the fact that the open 3&ts,1,... (respectively
Vi+1, . ..) are disjoint. For every > 0, we can choosé large enough (independently
of n) such that the last two terms in the sum in the right-hand side are both less/than
The integerk being fixed, we can bound the first term 58 whenever is sufficiently
large. O

Next, each open sét € V can be expressed as the union of disjoint open intervals,
and we call interval decomposition &f any infinite sequencél;, i € N) of disjoint
open intervals such that = J ;. Of course, some of thé’s may be empty, and any
permutation of an interval decomposition is again an interval decomposition. We state
the following simple connexion linking convergencelirand interval decompositions.

LEMMA 2.— Let (V,,n € N) be a sequence of open sets that converge¥ to
V. Then there exists interval decompositiqis;, i € N) and (/;,i € N) of V,, and V,
respectively, such that

@) lim,~ I,; =I; iInV for eachi e N,

(i) lim;o o I,; =@ inV, uniformly inn € N.

Proof. —Let (I;, i € N) be an interval decomposition &f such that the sequence of
the lengthg|I;| of these intervals is non-increasing. For evéry N such thatl; £ @,
let m; denote the mid-point of;. Setd, = dist(V,, V) for n € N, so the sequence,
converges to 0. For evewye N, seti(n) = max{i € N: |I;| > 4d,}. For everyi <i(n),
we haveyy (m;) > 2d,, and hencexy, (m;) > d,. Thusm; € V,,, and we denote by, ;
the interval component df, that containss;. It is immediate that

|1,:|>2d, and distl;,I,;) <d,, i<i(n). Q)
Note that this entails thak,; N 1, ; = ¥ wheneveri # j < i(n), since otherwise we

would haver, ; = I, ; and by the triangular inequality digt, /) < 2d,, which is absurd
(recall thatyy, (m;) > 2d, and x;, (m;) = 0 sincem; ¢ I;).
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Observe also that i is an interval component of, with |J| > 6d,, thenJ = I, ;
for somei < i(n). More precisely, consider the mid-poimtof J. Sinceyy, (m) > 3d,,
we haveyy (m) > 2d,, som € V and the interval componeit of V that containsz has
length|I;| > 4d,, thatisi < i(n). The same argument as that used previously shows that
dist(/;, J) <d,, and by (1) and the triangular inequality, this fordgs= J.

Next, we consider for every the interval decompositioty, ;, i € N) of V,, obtained
by adding to the finite sequencg, ;, i <i(n)) the infinite sequencé,, ;, i > i(n)) of
the remaining intervals components Wf, where the latter are ranked according to the
decreasing order of their lengths. We see from (1) that-asco, I, ; converges iV to
I; provided thatl; # @. The same holds in the case whgnr= @, because then(n) < i
for everyn and we have pointed out that this entdils;| < 64,. So all that we need is
to verify the requirement (ii) of the statement.

Fix ¢ > 0, takei > 3/¢, and letn be an arbitrary integer. Note thaf;| < ¢/3
(becausely| > |I| > ---and|l1| + --- < 1), so distl;, @) < ¢/6. First, ifd, < ¢/3 and
i <i(n),then by (1) distZ;, 1,;) < ¢/3, and it follows from the triangular inequality that
dist(1, ;, %) < /2. Second, ild, < ¢/3 andi > i(n), then we have already pointed out
that|Z, ;| < 6d,, and hence di¢l, ;, ¥) < 3d, <. Third, if d, > ¢/3, theni(n) < 3/4¢
(becausgl;| > 4¢/3 wheni < i(n)), andi — i(n) > 9/4¢. This implies that there are
more than $4¢ interval components of, with length at least/, ;|, so|1, ;| < 4¢/9 and
hence distz, ;, ¥) < 2¢/9. We have checked (ii) and the proof is complete]

Finally, we introduce the space of numerical sequences

S¢:{(s1,...): s12s22---20and2sn <1},
n=1

which is endowed with the topology of pointwise convergence. There is a natural mag
sV — SY, wheres(V) = (s1(V), ...) is given by the sequence of the lengths of the
component intervals df , ranked in the decreasing order, and it is readily checked from
Lemma 2 thatV — s(V) is continuous. We are now able to introduce the deterministic
notion of fragmentation of0, 1[.

DEFINITION 1 (Interval fragmentation). A family F = (F(¢),t > 0) in V is called
an interval fragmentation if it is nested, i.e.,if(z) € F(r) whenevelO < r <t. The
compound procesg o F(t),t > 0) given by the decreasing sequence of the lengths of
the interval components, is called the ranked fragmentation associatedwith

It is easily checked that an interval fragmentation possesses a right-limit atafy
and a left-limit at any’ > 0 which are given respectively by

F(t+) := rlmF(r) =|JF, F(t'—) ::rirp_ F(r)= (ﬂ F(r)) N )

r>t r<t’

whereA' denotes the interior afl. Note that by the continuity of the mapV — S¥,
we have

Iith1+soF(r):soF(t+), lim soF(r)=so F(t'—).
r— r—t'—
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In the converse direction, it is easily seen that an interval fragmentétisrcontinuous
atr if and only if its associated ranked fragmentatio F is continuous at.

Our next purpose is to define random self-similar fragmentations. To that end, our
basic data consist in a familgp, (10, 1[), ¢t > 0) of probability measures oW, where
p:(]0, 1) is meant to describe the distribution of the random open set resulting from the
fragmentation at time of the unit interval. We shall assume that the map p, (10, 1])
is continuous and we construct a family of probability kernebbas follows.

First, recall that we are given a real numlbegrthe index of self-similarity. For every
open intervall €10, 1[, we introduce the Iavpt(“)(l ) of the fragmentation of observed
attimer by an obvious affine transformation. More precisel§’ (¥) is always the Dirac
point mass a). WhenI =]a, b[ is non-void, introduce the affine functign : 10, 1[— I
given byg;(x) = a + x(b — a). By a slight abuse of notation, we still denote gythe
induced map orV, so thatg; (V) is an open subset df. We then define the probability
measurep\”) (1) as the image op, (10, 1[) by g;, with r = ¢|1|* = 1(b — a)*. Finally,
if V €V is an arbitrary open set with interval decompositidn i € N), we denote
by pf"‘)(V) the distribution oflJ X; where X4, ... are independent random variables
distributed according to lay * (1), ..., respectively. We thus have defined for each
t >0 a kernelp® of probability measures o¥.

DEFINITION 2 (Self-similar interval fragmentation). A-random interval fragmenta-
tion F = (F(¢),t > 0) is called self-similar with index € R if F is atime-homogeneous
Markov process which fulfills the following conditions

(i) F is continuous in probability and starts from(0) =10, 1[ a.s.

(@ii) If p;(]0, 1) denotes the law aof (¢) for r > 0, then the transition semigroup &f

is given by the kernelgp!*’, ¢ > 0) in the notation introduced above.

Informally, (ii) means that disjoint intervals fall apart independently, which is a kind
of branching property. In the sequel, this will be referred to as the (simple) fragmentatior
property. By (2),F possesses a cadlag version giver(Byt+), r > 0), whereF (1+) =
U.-0 F(t +¢) for everyr > 0. We shall implicitly work with that version from now
on, i.e., we assume thdt(s) = F(t++) in the sequel. We shall also suppose that the
fragmentation is not trivial, i.e F' 10, 1[ with positive probability; and it is then easy to
see thatF'(r) converges t@ a.s. wherr — oo. Therefore we shall agree thB{oo) = @;
in this direction note thali can be viewed as a cemetery point in the terminology of the
theory of Markov processes.

2.2. First properties

Throughout the rest of this sectioR,= (F(¢), ¢t > 0) will denote some (non-trivial,
cadlag) self-similar interval fragmentation, affdwill stand for its distribution on
Skorohod’s space of paths with values in the compact metric spaEer every open
setV € V, we write Py for the fragmentation process started frdm in particular,

P ="Pp1.

The next two statements are devoted to the scaling and the Feller propertie
respectively, which are most useful tools in this work. Recall the notatjoy — V
introduced above for a generic non-void intervaland agree thad, (V) = @ for every
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V e V. First, the scaling property is an immediate consequence of the very definition of
a self-similar fragmentation.

LEMMA 3 (Scaling property). -For every open interval C ]0, 1[, the distribution
of the processg; o F(¢|1]%),t > 0) underP is P,.

Note that more generally, the combination of the scaling and the simple fragmentatior
properties entails that for eve®y € V, the lawPy of the fragmentation started &tcan
be constructed as follows. Introduce a sequeRgce, ... of independent copies af
(started from]O, 1[), and pick an interval decompositidif;, i € N) of V. Next define
for everyr > 0 the random open set

X, =J g o F(111]*). 3)
ieN

Then the distribution of the proce&s= (X;,t > 0) is Py.

LEMMA 4 (Feller property). —The semigroup(p*, ¢ > 0) of F fulfills the Feller
property, that is for each fixed> 0 the mapV — p* (V) is continuous orV and for
each fixedv € V, p,“‘)(V) converges to the Dirac point massWtwhens — 0.

Proof. —Let (V,,n € N) be a sequence i converging toV, and pick interval
decompositions!, ;,i € N) and(/;,i € N) of V, and of V respectively, that fulfill the
conclusions (i) and (ii) of Lemma 2. For simplicity, we wrigg; andg; for g; when
I =1,; andl = I;, respectively. Finally, fix > 0 and set, ; = |1, ;|* ands; = t|[;|*.
Following (3), letFy, F», ... be a sequence of independent copie# pnd introduce

Yo=JgnioFiti). Y=|JgioF).
ieN ieN

For everyi € N, we have that lim...7,; =t and it is immediate to check that
lim,_~ g,.; = g inthe sense of uniform convergence of functions on the compact metric
space). On the other hand, recall thdt is continuous in probability. Provided that

t; < oo, Fi(t,;) converges in probability t@;(z;), and hence, ; o F;(z,;) converges in
probability tog; o F;(¢;). The latter assertion also holds in the cgse oo because it
only occurs when; is empty andr < 0. As 1, ; converges t@ asi — oo, uniformly in

n € N, we have automatically that, ; o F;(z, ;) converges t@ asi — oo, uniformly in
neN.

Applying Lemma 1, we conclude th&}, converges in probability t&. On the other
hand, we know from (3) that, andY have the lawp* (V,) and p{’ (V) respectively,
and therefore the map — p{* (V) is continuous. This proves the first part of the
statement; the argument for the second is similar (and easier).

The Feller property ensures that the (simple) fragmentation property holds more
generally for stopping times; this can be viewed as the strong fragmentation property
Our next purpose is to present a different extension of the simple fragmentation propert
which will play an important role in our analysis.

For everyx €]0, 1[ and everyr > 0, denote byl,(z) the interval component of
F(r) that containst if x € F(¢r), and setl, () = @ otherwise. Recall that the ultimate
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fragmentationF' (co) is empty a.s., so we also agree thabo) = . We write (]—'l(x))@o

for the natural filtration (completed by null sets) generated the pradegs, r > 0). We

are now able to introduce the notion of frost for an interval fragmentation, which bears
roughly the same role as stopping times for Markov processes. It is also a close relativ
to the so-called stopping lines for branching processes; see Chauvin [10].

DEFINITION 3 (Frost). A random functionT : ]0, 1[— [0, oo] is called a frost for
the interval fragmentatior¥ if the following two conditions are satisfied

(i) Foreveryx €10, 1[, T (x) is an(F)-stopping time.

(i) Forx €]0,1[ andy € I, (T (x)), it holds thatT (x) = T ().

Of course, a deterministic constant function is a frost. To present a non-trivial
example, we may considét(x) = inf{r > 0: |I,(¢)| < £}, the first instant at which the
length of the interval component &f containingx is less than some fixede 10, 1[.

WhenT is afrost, note from (ii) that for every, y €10, 1[, we have eithef, (T (x)) =
I,(T(y)) or I.(T (x)) N I,(T (y)) = ¥. This incites us to introduce the random open set

F(T)= |J L(TW),

x€]0,1[

which will be referred to as the fragmentatiéiozenat 7. On the other hand, it is
immediately seen that if’ and T’ are two frosts, thelr A T’ is again a frost, and
moreoverF (T) C F(T A T'). Similarly, for every deterministic > 0, T + ¢ is also a
frost andF (T +t) C F(T). These observations enable us to define the fragmentation
terminatedat T

Fory=(FtAT),t>0)

and theresumedragmentation
Fobr=(F(T+1),t>0).

The notationt and 6 refer to the classical stop and shift operators in the canonical
notation for Markov processes.

THEOREM 1 (Extended fragmentation property)..et T be a frost forF . For every
open setV € V, under the conditional lawPy (- | F(T) = V') of the fragmentation
started fromV and conditioned on the frozen fragmentatiBnT) = V', the fragmenta-
tion terminated atT’, F o t7, and the resumed fragmentatiof,o 67, are independent
and the latter has the laWy .

Proof. —We shall first check by induction Theorem 1 in the case wHemnly takes
finitely many values. The statement is trivial wh#&nis a deterministic constant, so
let us assume that the extended fragmentation property has been proved for every fro
taking at most: values, and consider a fro%t taking values in{zs, ..., t,+1} where
0<n < - <t,41 < 00. We may apply the extended fragmentation property to the frost
T A t,, SO conditionally onF (T A t,) =V', F o t7,,, and F o 07,,, are independent
andF o 0r,,, has the lawPy.
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We next assigh a markl (1) to each non-void interval componehof V' as follows:
if T(x)<t, for some (and then allx € I, the markM(I) is O (stop); otherwise
M(I) =1 (continue). We stress that the random mafkis measurable with respect
to the sigma-field generated by the stopped fragmentafientr ., , and hence the
preceding extended fragmentation property can be reinforced as follows. Wyrite/’’
for the open set obtained from the interval components/ofhaving mark 0 and
Vi = V\V© for that obtained from the intervals having mark 1, and denote-py
and F; the resumed fragmentatiano 07, ,, restrained td/, and Vi, respectively. Then
conditionally onF (T A t,) = V" andM, F o t7,,,, Fo and F; are independentfp has
the lawPy, and F; has the lawPy,. By an application the simple fragmentation property
for Fy attimer, 1 —t,, we now easily conclude that the extended fragmentation property
holds forT.

It is now straightforward to complete the proof for a general frostWe may
approximatel’ by a decreasing sequencg,, n € N) of frosts taking only finitely many
values. For instance, one may consider

T.(x) = {2_"[2"T(x) +1] i T <2,
(%) otherwise.

By a standard argument based on the right-continuity of the paths and the Felle
property stated in Lemma 4, we see that the extended fragmentation propdity at
propagates t@'. O

Recall that we are working with the right-continuous version of the fragmentation
F. Turning our attention to left-continuity, we conclude this section with the following

property.

COROLLARY 1 (Quasi-left-continuity). -Let (7, n € N) be an increasing sequence
of frosts, and sel’ =1lim,,_, o 7T,,. ThenT is a frost andim,,_, o F(T,) = F(T) a.s.

Proof. —That the increasing limit of a sequence of frosts is again a frost is immediate.
The second assertion is established by the same argument based on the right-continu
of the path, the Feller property, and the extended fragmentation property as in the proc
of the quasi-left-continuity for Feller processes. See for instance Proposition 1.7 in
[4]. O

2.3. Changing theindex of sef-similarity

The purpose of this section is to present a simple transformation based on the extend
fragmentation property which allows us to change the index of self-similarity. Recall
that |7, (z)| denotes the length of the interval componentrif) that containse (with
the convention thatl, (1)| = 0 whenx ¢ F(¢)), and introduce for an arbitragy € R and
t>0

u

T,<ﬁ>(x):inf{u>o:/|1x(r)|—ﬁdr>t}, x €10, 1.

0
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It should be plain that each” is a frost forF. This enables us to introduce the process
of frozen fragmentations

FP@) :=F(T¥), t=0.

THEOREM 2. —The process of frozen fragmentatiafi$) = (F#) (1), t > 0) is a self-
similar interval fragmentation with index + S.

Proof. —As the functionr — 7, is right-continuous and increasing;® is a
right-continuous interval fragmentation; and it is clear tf (0) =10, 1[, P-a.s.
Also for eachr > 0, one hasT/® (x) < T, (x) wheneverr < 1 and T#)(x) < oo,
and lim.,, ¥ = 1,7 It follows from the quasi-left-continuity property as stated in
Corollary 1 thatF® is continuous in probability.

Next, for every open set < 10, 1[, write Q for the distribution of F®) underPy .
On the one hand, far < ¢, the frozen fragmentatiof ) (u) = F(T,?’) is measurable
with respect to the fragmentation terminated‘éﬁ), Fo T On the other hand, if we

write F = F o ) for the resumed fragmentation, then we have in the obvious notation
that

T8 x) - TP ) =TP(x) wheneverT” (x) < cc.

Applying the extended fragmentation property7at’, we now see that the conditional
distribution of (F® (¢t +r), r > 0) underPy given(F® (u),0< u <t)isQy  with V' =

F” . HenceF® is a Markov process, and more precisely, it enjoys the fragmentation
property.

Finally, we have to check the self-similarity property, which relies on the scaling
property. In this direction, lef €10, 1[ be an arbitrary non-void open interval, and
recall the notatiorg; introduced before Definition 2. Applying Lemma 3, we see that
the distribution ofF,”” underP, is the same as that @f o F(|1|*T/) underP with

T/(y) :inf{u >0: /‘J,(|I|“r)‘_ﬁdr > t},
0

where J,(-) denotes the interval component gf o F(-) that containsy €10, 1[. In
other words, fory = g;(x), we haveJ,(-) = g;(I,(-)) and in particular J, (|1]%r)| =
[I||I,(JI|*r)|. It then follows from a few lines of elementary calculations that

11T () = T\ s (),

and we conclude that the law &% () underP; is the same as that gf o F® (¢|1]%*F)
underP. This shows tha¥ ® is a self-similar fragmentation with index+ 8, and the
proof of Theorem 2 is now complete.I

We stress thaF can be recovered froi®, more precisely we haveé = (F#)#
in the obvious notation.
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3. Partition-valued fragmentation

Informally, focusing on interval fragmentation may appear as a rather restrictive point
of view, and it could be more natural to consider fragmentation of abstract sets. In this
direction, we first introduce some material on partitions of integers which are mostly
lifted from Evans and Pitman [11].

3.1. Definition

An equivalence relatiol™ onN = {1, ...} can be identified as partition of N into a
sequencéB,, n € N) of disjoint blocks. It is convenient to agree that the indexation of
blocks obeys the following ruleB,, is the block ofl" that contains: provided that: is
the smallest element in its block, otherwiBg= ¢. The partition that has a unique non-
void block, By = N, will be referred to as thé&ivial partition. The space of partitions
of N is denoted byP; recall there is a natural metric makirfg compact, which can
be described as follows: for evefy, I'” € P, dist(I", ') = 27" wheren is the smallest
integer such that the partitions inducedIbyndI™” on {1, ..., n} differ. Next, for every
C C N and every partition” € P, we may define a partitiol o C of C, called the
partition of C induced byT", as follows. We rank the elements 6fin the increasing
order, i.e.C ={c1,...} with ¢; < ---, and we denote b¥ o C the partition ofC defined

by
FToC=({c;: jeB), i=1,...), (4)

whereBy, ... are the blocks of". Of coursel’ o = (¥, .. .).

A P-valued fragmentatiofis a family of partitions(I1(z), r > 0) such that for every
0 < r <t, the partitionTI(¢) is finer thanIl(r), in the sense that each block Hf(z)
is contained into some block dfi(r). A randomP-valued fragmentation is called
exchangeabléf for every finite permutatiors of N, the processeéo o I1(¢),t > 0)
and (T1(z), t > 0) have the same distribution, wheseo I1(¢) is the random partition
whose blocks are the images #yof the blocks off1(z).

By a fundamental result of Kingman [13] (see also Aldous [1] for a simpler proof),
for eachr > 0, the blocks ofl1(z) have asymptotic frequencies a.s., in the sense that the
limits

nILmoo %Card{k <nikeBi(t)}:=1(1t)
exist with probability one for =1, .... We write A ! (¢) = (Ai(r), ....) for the decreasing
rearrangement of thig (r)’s. TheS*-valued process* = (A¥(¢), t > 0) will be referred
to as the ranked fragmentation correspondingltoWe stress thai'(z) is not a
continuous functional of the exchangeable partitio().

We call an exchangeabie-valued fragmentatiol niceif it fulfills the (apparently)
stronger assumption that with probability ofié() has asymptotic frequencies for all
t > 0 simultaneously. Evans and Pitman [11] have pointed out that this requirement is
always fulfilled whenevell has proper frequencies, in the sense gt 1;(r) =1
a.s. for everyr > 0. Similarly, it has been observed in Section 5 of [5] that so-called
homogeneou$-valued fragmentations are always nice, and we are not aware of any
exchangeablé-valued fragmentation which is not nice.
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Finally, we define self-similaP-valued fragmentation. Recall the notation (4).

DEFINITION 4 (Self-similar P-valued fragmentation). A nice exchangeabléP-
valued fragmentatiorl = (T1(¢), ¢ > 0) is called self-similar with indext € R if TI
is a time-homogeneous Markov process which fulfills the following conditions
() IT starts a.s. from the trivial partition.
(i) The ranked fragmentatioh' associated tdl is continuous in probability.
(iif) Foreveryr, r > 0, the conditional distribution of1 (¢ +r) givenIl(¢) = (B, ...)
is the law of the random partition whose blocks are those of the partitions

N9@;) o B; fori =1,..., wherel1W .. is a sequence of independent copies
of IT andr; =ri;(¢)* (recall that ), () denotes the asymptotic frequency of the
block B;).

3.2. Connection with interval fragmentation

Here is a prototype of an exchangeaBlesalued fragmentation. Lef be an abstract
space endowed with a sigma-fiefdand a probability measure. Consider for each
t > 0 a sequenceék, (1), n € N) of disjoint measurable sets such that for every < ¢
and everyi € N there is someg € N such thatE; (1) € E;(s). So informally we may
think of E as an object that falls apart as time runs, and of the faq#ifyz), » € N) as
the sequence of fragments at timeNext, pick a sequenc#s, ... of random points in
E such that eacl/; has the lawp, andUy, ... are independent. For eack: 0, consider
I1(¢), the random partition d such that two distinct integefsand j belong to the same
block of I1(¢) if and only if the pointsU/; andU; both belong ta, (¢) for somen € N. It
should be plain thall is an exchangeablP-valued process. Moreover, it follows from
the strong law of large numbers that for each O,

lim 1Card{i <n: U; € Ex(t)} = p(E(1)), a.s.

n—o0o p

so the ranked fragmentation' is the process that describes the ranked sequence of
masses of the fragments in the dislocation process of the gpace

We may of course apply the construction above in the special case &vbelb, 1],
o is the Lebesgue measure and for each O, (E,(t) = I,(¢),n € N) is an interval
decomposition ofF (¢), whereF = (F(¢),t > 0) is some interval fragmentation. In that
case, we writd1(r) = I (¢) and refer to(T1x(¢), t > 0) as theP-valued fragmentation
associated with the interval fragmentatiéh (To be completely rigorous, we should
rather call this a version as this process also depends on the uniform random variable
Ui, ...; but since we are only interested in the law of s@®ivalued fragmentation, we
will not indicate the dependency on tlig’s.) Note that the Glivenko—Cantelli theorem
enables us to assert tHats is nice.

The following lemma is essentially straightforward.

LEMMA 5. —If F = (F(t),t > 0) is a self-similar interval fragmentation with index
o, then the associate®-valued fragmentatioiI1x(¢), ¢ > 0) is self-similar with index
a, and has the same ranked fragmentationFase.,s o F(t) = A¥(¢) a.s. for each > 0.
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Proof. -We have already observed th&ir is a nice exchangeablé-valued
fragmentation. AsF'(0) =10, 1[ a.s., the partitiod1(0) is trivial a.s. MoreoverF is
continuous in probability, and this entails that the corresponding ranked fragmentatior
s o F is also continuous in probability. By the strong law of large numbers,F
coincides with the ranked fragmentatian of the P-valued process$l -, so (i) and (ii)
of Definition 4 have been checked.

Next, fix r > 0 and consider an interval decompositio) (¢),n € N) of F(z) (for
instance we may rank the interval componentg of) in the decreasing order of their
lengths and from the left to the right in the case of intervals with the same length); it is
convenient to sefy(¢) = F(¢)°. Introduce fom =0, 1, ...

B, ={keN: Uy € I,(1)},

S0 By is the set of indices corresponding to singletons in the partifigfiz), and the
blocks of ITx(¢) which are neither empty nor reduced to singletons coincide with the
B.sforn=1,...andI,(r) # @. Whenevell,(¢) is not empty, we index the elements of
B: according to the increasing ordgf,, < B;2 < -- -, and set for simplicity; ; = U, ..

It is easily seen that conditionally on thg(s)'s and 8,’s, the families of variables
(Ui, ...) fori=1,... are independent, and more precisely, provided Ih@} is not
empty, U, 1, U; 2, ... iS a sequence of i.i.d. variables that are uniformly distributed on
I;(t). As for r < ¢, the partitionII(r) can be recovered fron (r), the sequence of
blocks (8,,n € N), and the variablesU;, j € o), the preceding observations easily
entail thatll is a Markov process, and the self-similarity property derives from that for
F. O

In the converse directioh, we first show that given a nice exchangeablevalued
fragmentationl1, we can construct an interval fragmentatiaf; (), ¢ > 0) having the
same ranked fragmentation Hs For everyr > 0 andk € N, let B,(¢) denote the block
of the partitionTI(z) that containsk provided thatk is the least element of its block,
and B, (¢) = ¥ otherwise. Let,(¢) be the asymptotic frequency & (¢), and define the
instant when thé&th block appears,

i =inf{r > 0: By(r) # ¢}.

Next, for k > 2, call j € N the father ofk if £k was an element of th¢th block
immediately beforeB, emerges, that is it € B;(1,—). Define by induction the notion
of ancestor ok > 1, so thatk is an ancestor of, and the father of an ancestor lofs
again an ancestor @&f Call k¥’ > 2 a twin brother of if #, = #,, andk andk’ have the
same father. Finally, define for eveky> 2 the predecessaqr(k) of k as the largest twin
brotherk’ of k such thak’ < k whenever suck’ exists, and otherwise defingk) as the
father ofk. Plainly, p(k) < k for all k > 2.

We then introduce for everny> 0 andk € N the open interval

I (1) = Ixg, xx + A (D[S0, 1,

1we stress that the notatidi and Fy is not meant to suggest that one could be viewed as the inverse
of the other.
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wherex; =0 and fork > 2

Xk = Xp(k) + )"p(k)(tk)-

The following properties are clear from this very construction. Higét) = @ if 1 < 1,
andl(t') C I(r) if 1, <t < t'. Second, ik’ # k is either the father of or one of its twin
brothers, ther (1) N I (1) = . Third, if j is the father ok > 2, thenl, (1) C I;(t—).

Combining these elementary observations, we now see that wdftave I;(t) =¥
wheneveri # j (consider the largest common ancestor @nd j and the last instant
wheni and j are in the same block), so the sequence of inter¢&als), i € N) can be
viewed as interval decomposition of an open selGrl[ which we denote byFp (z).
It is also easy to check that the famity (), > 0) is nested. Indeed, letQr < t.
We already known that if > 7, thenl (t) C I, (r), and ift < 1, thenI(¢) is empty. So
suppose that < r, < r and consider the largest ancestof k with ¢; < r. Itis immediate
that I, (1) C I;(r). We conclude thatFr (¢), ¢ > 0) is an interval fragmentation. Finally,
we have by construction that the length(z) of I,(¢+) coincides with the asymptotic
frequency of the bloclB, (1).

We now state the following counterpart of Lemma 5.

LEMMA 6. —LetII be a self-similarP-valued fragmentation with index. Then the
following assertions hotd
(i) The interval fragmentatiorf; = (Fr(¢),t > 0) constructed above is also self-
similar with indexa.
(i) TheP-valued fragmentatiorll s, associated taF; (cf. Lemmab) has the same
distribution asIT.

Proof. —(i) The statement is intuitively obvious, however making the intuition
rigorous is somewhat heavy. For every 0, the sequence of intervalg, (1), k € N) are
constructed from the family of partitiondT(«), 0 < u < t). Choose an integer such
that I;,(r) # @ and recall that théth block B, (¢) of the partitionTI(z) has asymptotic
frequency|I;(¢)|. Recall also from the fragmentation property (iii) in Definition 4 that
the partitionTI(¢ + r) restricted toB,(r) can be expressed in the forf(r|1;(1)|%) o
By (1), whereIl is independent of[1(x), 0 < u < r) and has the same distribution Hs
We shall now see that this entails that the interval fragmentdipis self-similar with
indexa.

Write for simplicity g = g, for the affine function that map$, 1[ to (), and let
ki =k <k, < --- be the ordered sequence of the elements of the B¢k . We claim
that the family(Z;,(r + r), i € N) of intervals that result at time+ r from [;(t) can
be expressed in the foriiz(/;), i € N), where the family(/;, i € N) is independent of
(MT(u), 0< u < t) and has the same law 85(r|I;(¢)|*), i € N). More precisely, denote
by I;(u) =%, % + A;u)[ for i =1, ..., the family of intervals obtained from tHe-
valued fragmentation] at timex. By construction, the instamt, at which emerges the
k;th block in the fragmentatioll can be expressed as

e =t + | L (D)1,
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wheref; is the instant at which emerges th block in the fragmentatiofil. Also, the
asymptotic frequency aBy, (r + u) is clearly given by

M (8 4 1) = (O (ul L (1))
It follows readily thatx,, = g(x;) and hence

It + 1) = g (L(r L)),

This establishes our claim; more generally, a variation of this argument that now fully
exploits the fragmentation property of tife-valued procesd1 shows that disjoint
intervals in the interval-fragmentatiof; fall apart independently. Putting the pieces
together, this completes the proof of (i).

(if) For simplicity, write IT’ for ITx,. We know from Lemma 5 thalll’ a self-similar
‘P-valued fragmentation with index, which has the same ranked fragmentation as
1. According to Kingman [13], two exchangeable partitions with the same ranked
asymptotic frequencies have the same distribution, so the one-dimensional distribution
of IT andT1’ are the same. BecauBeandI1’ both are self-similar, their semigroups are
the same, and we conclude that they have the same law.

3.3. Characteristics of self-similar fragmentations

We are now able to tackle the problem that motivated this work, that is the
characterization of self-similaP-valued fragmentations. In this direction, we start by
recalling the results obtained in [6] in the homogeneous gas®.

First, recall thatS* denotes the natural state-space for ranked fragmentations, i.e.,
the space of decreasing numerical sequencess, ...) with >_°2;s; < 1. Following
Kingman [13], we can associate to eacke S* a unique exchangeable probability
measureu; on P such that the ranked sequence of the asymptotic frequencies of the
blocks of the generic partition is¥ = s, u,-a.s. Finally, call a measuneon the space
S' a Lévy measure if has no atom atl, 0, ...) and verifies the integral condition

/(1— s1) v(ds) < oo, (5)

St

wheres = (s1, 52, . . .) denotes a generic sequencesSih The mixture

o= [ vids)

St

is a sigma-finite measure @?, called the dislocation measure corresponding to the Lévy
measure. Next, for every integek, denote by, the measure o given by the Dirac
point mass at the partition that has only two non-void blo¢ks.andN\{k}. For every

¢ >0, call
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the erosion measure with rate

Given an erosion measune. and a dislocation measupe,, one can construct a
homogeneou®-valued fragmentation as follows. First, one considérs,, ;), r > 0),
a Poisson point process with values # x N with characteristic measur#/ :=
(ue + 1y) ® #, where # stands for the counting measureNonThis means that for
every measurable sdtC P x N with M(A) < oo, the counting process

NA(t)=Cardu €[0,1]: (A,,k)€A), t=0

is a Poisson process with intensity(A), and to disjoint sets correspond independent
counting processes. One can then construct a urfigualued processl,. , = (T1(7), 1 >

0) started from the trivial partition and with cadlag sample paths suchIihatonly
jumps at times when a point(A,, k,) occurs in the Poisson point process, and in that
case I1(z) is the partition obtained frorl (r—) as follows. In the notation (4), consider
the partitionA, o By, (t—) of the k;th block? of TT(t—) induced byA,. The blocks of
the partitionI1(r) are formed by the blocks ok, o By, (t—) and the blocksB; (r—) of
[1(r—) for i # k,. ThenIl, , is a homogeneou®-valued fragmentation. Conversely,
any homogeneouR-valued fragmentatiolll has the same law d3. , for some unique

¢ > 0 and Lévy measure, see [6] for details.

It might be useful to further explain this construction. A paint;, ;) in the Poisson
point process affects the fragmentation if and only if kit block of IT(¢—) is neither
empty nor reduced to a singleton, which we shall assume in the sequel. Points in th
Poisson point process can be of two types. First, the partiiprmay have trivial
asymptotic frequencies, which occurs if and onlyjfhas exactly two non-void blocks,
say{j} andN\{j}. The effect of the occurrence of such a point is that at tinibe k;-
block of IT(z—) splits into two, more precisely itgth element becomes a singleton (and
the other blocks are unchanged). This alone does not affect the ranked fragmentatio
in the sense that the asymptotic frequencie§igf—) andI1(z) are the same; however
the accumulation of such points (note thathas an infinite total mass when> 0) in
the Poisson point process induces a continuous erosion for the bloCksS#cond A,
may have non-trivial asymptotic frequencies, sayS*\{(1,0, ...)}. When such point
(A, k;) occurs, thek,-block of IT(r—) is dislocated into smaller blocks, more precisely
the ranked sequence of the asymptotic frequencies of these blogkszis)s, where
Ak, (1—) is the asymptotic frequency of theth block of IT(r—).

Recall from Theorem 2 that one can change the index in a self-similar interval
fragmentation by a suitable time-substitution. It is therefore natural to look for a similar
result forP-valued self-similar fragmentations, in order to reduce their construction to
the construction described above in the homogeneous case. In this direction, for evel
i e Nandr > 0, denote by, (r) the asymptotic frequency of block df(r) that contains
i (sothatt;(r) = A;(r) wherej is the least element of the block that contairet time

2In [6], we used a different convention to enumerate the blocks of a partition; however it is easy to check
that these two conventions yield two homogeneous fragmentations with the same distribution.
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r). Then introduce for an arbitragy € R
TP (t) = inf {u >0: /Ei(r)_ﬁ dr > t}, >0,
0

and consider the random partitidh® () of N such that, j € N are in the same block
of ® (1) if and only if there are in the same block Bi(7,'’ (1)) (or equivalently in the
same block of 1(7”(1))). We are now able to state the main result of this work.

THEOREM 3. — (i) If T is a self-similarP-valued fragmentation with index, then
the procesd1® = (ITP(¢), t > 0) is a self-similarP-valued fragmentation with index
o + B. MoreoverIl can be recovered froml‘®, more preciselT = (IT»)# in the
obvious notation.

(i) As a consequence, the law of a self-simifavalued fragmentation is determined
by its indexa € R, and by the erosion coefficient> 0 and the Lévy measuneon S*
of the homogeneouB-valued fragmentatiol~%. We call(«, ¢, v) the characteristics
of IT.

Proof. —(i) Denote by F = Fp the interval fragmentation associated with and
M=T1I r the P-valued fragmentation associated fiQ so thatfT andIT have the same
law by Lemma 6(ii). Next, consider the interval fragmentatiofi’ constructed fromF
as in Theorem 2. A (short) moment of reflection shows thafthelued fragmentation
I associated ta7® coincides withI1®® in the obvious notation, and thus has the
same distribution aBl ‘). We know from Lemma 6(i) thak is self-similar with index,
we deduce from Theorem 2 that? is self-similar with indexx + 8, and conclude by
Lemma 5 thaf1® is self-similar with indexx + . Finally the identityIT = (IT%#)#
is immediate.

(ii) follows from (i) and the characterization of homogeneous fragmentations recalled
at the beginning of this section.O

For instance, recall from the Introduction the example obtained by cutting the interval
10, 1 at i.i.d. points picked according to the uniform distribution, that arrive at the jump
times of a Poisson process, say with parameter 1. One can check that this fragmentatic
is self-similar with indexx = 1 and its erosion rate is= 0. Moreover it ishinary, in the
sense with probability one, when a fragment with massplits, it gives rises to exactly
two fragments with masses say andm, and such thaii, 4+ m, = m. It follows that
the Lévy measure is carried by the subset &f* consisting of decreasing sequences
(s1, 52, ...) such thats; + s, = 1 ands, > 0, and therefore is completely by the obvious
identity v(s; € dx) = 2dx for x € [1/2, 1].

We conclude this section by noting that the following construction of a self-similar
P-valued fragmentatiodl with characteristicq«, ¢, v) is implicit in Theorem 3: one
first constructs a homogeneoBsvalued fragmentatioll with erosion rate: and Lévy
measure as in [6], and then one takés = [1@. In particular, this yields an interesting
probabilistic interpretation for the Lévy measurén terms of the evolution of the first
block B1(-). More precisely, suppose for simplicity that the erosion coefficieata<0,
and consider the point proceSs= (Z,, t > 0) with values inS*\{(1,0, .. .)} defined as
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follows. If the asymptotic frequency;(-) of the first blockB1(-) is continuous at time
t,thenX, = (1,0, ...). Otherwise, the ranked sequence of the asymptotic frequencies of
the blocks resulting at timefrom the dislocation of the blocB,(z—) can be expressed

in the form,(r—)s for somes € S¥\{(1,0, ...)}, and we sek, = s. We claim that the
intensity of the point process (see Jacod [12]) is given by

Lo, ao=0r(E—)*v(ds)dt, se€S*\{(L,0,...)}ands>0. (6)

To see this, consider first the homogeneous ease0, and recall the construction of
the fragmentation from a Poisson point procéga;, k;),t > 0). Then introduce the
S'*-valued Poisson point procegs= (D,, t > 0) where the point®, occur at instants

t whenk, = 1 and are then given by the ranked asymptotic frequencies of the blocks
of the partitionA,. On the one hand, by construction, the characteristic measube of
coincides with the Lévy measune On the other hand, a moment of reflection shows
that ¥, = D, provided that\,(r—) > 0. This establishes (6) in the homogenenous case.
The self-similar case # 0 now follows from Theorem 3.

4. Mass of atagged fragment

In this section, we consider a self-similar fragmentation with characterigtics v),
and at the initial time, we tag a point picked at random according to the mass distribution
Our purpose is to describe the evolution as time passes of r(@sef the tagged
fragment, i.e., that contains the tagged point. Equivalently, we may idenitify= 11(-)
as the process of the asymptotic frequencies of the first bBa¢k in a P-valued self-
similar fragmentation. In the case of an interval fragmentation, this simply means tha
we introduce a random variablé uniformly distributed on0, 1[ which is independent
of the fragmentation process, and aim at studying the process

A@) =y, t=0,

where| I, (t)| denotes the length of the interval componenf@f) that contains.
On the one hand, it follows from Theorem 2 that if we define

AT =0T @), t>0, )

where
T (1) =inf {u > 0: /k(r)“dr > t}, t>0,
0

then the process~® = (A=%(¢),t > 0) can be viewed as the process of the mass of
the tagged fragment in a homogeneous fragmentation with charactef@stics ).

On the other hand, we recall from Section 5 in [6] that in the homogeneous case, i
we set

g =—logr"*(1), >0,
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then the process = (§,, ¢ > 0) is a subordinator, that is an increasing Lévy process, and
its law can be specified in terms of the erosion ra@nd the Lévy measure. More
precisely, its drift coefficient coincides with the erosion coefficierits killing rate is

k :c+/ <1—Zsj>v(ds),
'

S j=1
and its Lévy measure

oo

L(dx)=e€"> v(—logs; €dx), x€]0,o0[. (8)
j=1

Equivalently, the Laplace exponedtof &, which is determined by the identity

E((exp(—q&,)) =exp(—t®(q)), ¢ >0,

is given by the Lévy—Khintchine formula

®(g)=clg+1) +/ <1 — ngH) v(ds). (9)

Sl n=1

Putting the pieces together, we obtain at the following description of the process of
the mass of a tagged fragment.

COROLLARY 2. — LetIlI be a self-similar fragmentation with characteristigs c, v),
and leté = (&, ¢ > 0) be a subordinator with Laplace exponehtgiven by(9). Intro-
duce the time-change

u

p(t):inf{u: /exp(aé,)dr>t}, t >0,

0

and setZ, = exp(—&,()) (with the convention thaZ, = 0 if p(¢#) = oo). Then the
processesZ,,t > 0) and (A(¢), t > 0) have the same law.

The representation of Corollary 2 can be viewed as a special case of the constructio
by Lamperti [14] of so-called semi-stable Markov processes (more precisely, Lamperti
has considered the same transformation in the more general case gviseeeLévy
process, not necessarily a subordinator).

Itis interesting to point out that the first instant when the mass of the marked fragment
vanished (which can be thought as the time when this fragment is reduced to dust),

¢ =inf{t > 0: A(1) =0},

has the same distribution as the so-called exponential functjghakp(a&,) dr, which
has been studied by Carmona et al. [9]. In particular Proposition 3.3 there shows that fo
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a < 0, the integral moments @f determine its distribution and are given in terms of the
Laplace exponerd® by the formula

k!

ky _
EQ)‘@pﬂyumemy

k € N. (10)

To conclude this work, let us discuss two related examples. First, let us consider th
fragmentation introduced by Aldous and Pitman [3] in the study of the standard additive
coalescent. This is a self-similar fragmentation with ind¢&,Jand it has been proved in
Theorem 6 of [3] that the magg¢) of the tagged fragment at timdulfills the following
identity in distribution:

(L), 1 20) £ (1/(140()), 1 >0),

whereo (1) = inf{u > 0: W, > -} is the first passage process of a standard Brownian
motion (W,,, u > 0). Combining this with Corollary 2, we obtain that the subordingtor
can be taken in the form

&= IOg(1+ U(Vt)),
with

/ dr
=inf 20:/7 .
Yy =1Nn {u J T o0 >t}

Using the well-known fact that (-) is a stable subordinator with index2, and more
precisely with no drift, no killing, and Lévy measuf2r x3)~/2dx on]0, oo, it is easy
to deduce that the subordinatphas no drift, no killing rate and Lévy measure

Lap(dx) = x> 0. (12)

e
——dx,
V2 (er —1)3

Equivalently, the Laplace exponedp of £ is given by

e ¢]

CDAP(Q)=/(1—e_qx)

0

[2 7 _
—q/Z / e (e —1) Y2 ax (integration by parts)
T
0

1
2
:q\/i/tq‘l/z(l—t)‘l/zdt (t=e),
g
0

e’

__° 4
2 — 13

so finally

2
Par(q) = q\/;B(q +1/2,1/2). 12)
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Comparing (11) with (8) readily yields the following formula for the distribution of the
first terms; of the generic sequence= (s1,...) under the Lévy measurep of the
Aldous—Pitman fragmentation:

vap(sy € dx) = (27x3(1—x)3) 2ax, xe[1/2.1] (13)

(note that all the other terms, s3, ... must be less than/2). Identity (13) is essentially
a variation of formula (39) in Section 4.1 of [3]. On the other hand, it is seen from
the construction of the Aldous—Pitman fragmentation based on the continuum randon
tree (cf. [3]) that this fragmentation is binary, i.e., the Lévy measugeis carried by
the subset of sequences, s, ...) With 57 > s> 0,51+ s, =1,53=s54="---=0.In
particularvap(s; < 1/2) = 0 and (13) completely determines the Lévy measuge On
the other hand, we already know that the index of self-similarity is 1/2, and it is
clear that the erosion coefficientdés= 0 (because the drift coefficient éfis zero), so
we have specified the characteristics of the Aldous—Pitman fragmentation.

Our second example is based on the Brownian excursion with unit duratien,
(e(r),0<r <1), and is a close relative to the alternative construction of the Aldous—
Pitman fragmentation in [5]. Specifically, let us consider the interval fragmentation

F(t)={rel0,1[: e(r) >t}, t>0.

That F = (F(¢),t > 0) is a nested family of open sets is trivial, and it follows from
standard arguments of excursion theory (for details, see [5])Rhatself-similar with
indexa = —1/2. In this framework, we see that the instgnivhen the tagged fragment
vanishes is simply = e(U), where U is the tagged point. Sinc& is uniformly
distributed on[0, 1] and independent of the excursion, it is well-known tha{(?)
follows the Rayleigh distribution, i.e.,

P(2¢ € dr) =P(2e(U) edr) =rexp(—r?/2)dr, r =0,
and the integral moments ofare thus given by
E(¢*)=2""°T(1+k/2), keN.

Using the identity (10), we deduce that the Laplace expodernf the subordinatog
(cf. Corollary 2) is given by

q)e(k)zzs/zkw=2k\/§F(k+l/2)F(l/2) =2k\/§B(k+1/2, U2
Ck+1 T Fk+1) 12

Comparing with the formula (12), we arrive at the striking identity
O, =2Dpp.

This enables us to determine the characteristics of the present fragmentation. Mor
precisely, asb, has zero drift, the erosion coefficient is zero, and we have already
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observed that the index is = —1/2. On the other hand, it follows from the fact that
the values of the local minima of the Brownian path are all distinct a.s. that the presen
fragmentation is binary, and hence its Lévy measuyiie again determined b$,. More
precisely, using the identity (13), we see that

V(51 €dx) =2(2mx3(1 — x)3)_1/2dx, xe[1/2,1],

and this completely determines.
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