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ABSTRACT. – We introduce a probabilistic model that is meant to describe an object that falls
apart randomly as time passes and fulfills a certain scaling property. We show that the distribution
of such a process is determined by its index of self-similarityα ∈ R, a rate of erosionc� 0, and a
so-called Lévy measure that accounts for sudden dislocations. The key of the analysis is provided
by a transformation of self-similar fragmentations which enables us to reduce the study to the
homogeneous caseα = 0 which is treated in [6]. 2002 Éditions scientifiques et médicales
Elsevier SAS
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RÉSUMÉ. – On introduit un modèle probabiliste pour décrire l’évolution d’une masse qui se
fragmente de façon aléatoire au cours du temps, tout en satisfaisant à une certaine propriété
d’auto-similarité. On établit que la loi d’un tel processus est déterminée par son indice d’auto-
similarité α ∈ R, un taux d’érosionc � 0, et une mesure de Lévy qui prend en compte les
dislocations soudaines. La clef de l’analyse consiste en une transformation permettant de réduire
l’étude à celle du cas homogèneα = 0 qui a déjà fait l’objet de [6]. 2002 Éditions scientifiques
et médicales Elsevier SAS
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1. Introduction

Informally, imagine an object with total unit mass that falls apart randomly as time
passes. The state of the system at some given time consists in the sequence of the masses
of the fragments. Suppose that its evolution is Markovian and obeys the following rule.
There is a parameterα ∈ R, called the index, such that given that the system at time
t � 0 consists in the ranked sequence of massesm1 �m2 � · · · � 0, the system at time
t + r is obtained by dislocating every massmi independently of the other fragments
to obtain a family of sub-masses, say(mi,j , j ∈ N), where the sequence of the ratios
(mi,j /mi, j ∈ N) has the same distribution as the sequence resulting from a single unit
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mass fragmented up to timemαi r . Such a random process will be referred to as aself-
similar fragmentationwith indexα.

Here is a simple example that is closely connected to Kingman’s coalescent [13].
Consider a stick of length 1, which can be identified as the unit interval, andU1, . . . ,

a sequence of i.i.d. uniformly distributed variables. Forn = 1, . . . , cut the stick at the
locationUn at the instant of thenth jump of some Poisson process which is independent
of the sequenceU1, . . . . Then the process giving the lengths of the fragments of the
stick as a function of time is easily seen to be a self-similar fragmentation with index
α = 1. Related examples based on binary splitting of intervals have been considered by
Brennan and Durrett [7,8] (in this direction, it may be interesting to recall that the case
α = 2/3 arises in a model for polymer degradation). More recently, Aldous and Pitman
[3] have constructed a self-similar fragmentation with index 1/2 which has a central
role in the study of the standard additive coalescent, by cutting randomly the continuum
random tree along its skeleton (see also [5] for an alternative construction based on
the Brownian excursion). We also refer to Aldous’ survey [2] for more literature on
fragmentation processes.

Roughly, the key result of this work is that the distribution of a self-similar
fragmentation is characterized by its indexα ∈ R, a coefficientc � 0 that measures
the rate of erosion, and a so-called Lévy measureν which accounts for the sudden
dislocations. More precisely, introduce the natural state-spaceS↓ for the ranked
sequence of sub-masses resulting from the dislocation of a unit mass, i.e.,S↓ denotes
the space of decreasing numerical sequencess = (s1, s2, . . .) with

∑
si � 1. A Lévy

measureν on S↓ is a measure that gives no mass to the sequence(1,0, . . .) and fulfills
the requirement ∫

S↓

(1− s1) ν(ds) <∞.

Conversely, given arbitrary numbersα ∈ R andc� 0 and a measureν onS↓ that verifies
the preceding integral condition, one can construct a self-similar fragmentation with
indexα, erosion ratec and Lévy measureν.

Our approach relies on a recent related work [6] which focuses on the so-called
homogeneouscaseα = 0 where the fragmentation rate does not depend of the mass of
the fragments. More precisely, the characterization alluded above has been established
there for homogeneous fragmentations, and the first purpose of this work is to extend this
to the self-similar case. This extension will be obtained by introducing a kind of random
time-transformation that enables us to change the index in a self-similar fragmentation
process, and hence to reduce the study to the homogeneous case.

This classical idea of transforming a Markov process into a simpler one by a
suitable time-substitution raises important technical difficulties in the present setting.
Specifically, it has been pointed out by Pitman [15] that in the homogeneous caseα = 0,
it is much easier to analyze fragmentations as processes with values in the space of
partitions ofN = {1,2, . . .}, and this is the key to the results in [6]. This trick is not so
useful in the self-similar caseα 
= 0, because if one works in the space of partition of
N, the dynamics of the fragmentation depend on the so-called asymptotic frequencies
of blocks (which correspond to the masses of the fragments), and the latter arenot
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continuous functionals of partitions. As a consequence, it seems hopeless to prove the
Feller property by this approach, and a fortiori, to develop techniques of random time
substitutions.

We shall circumvent this difficulty by discussing two different aspects of fragmenta-
tion. We first consider fragmentation of the unit interval]0,1[ induced by a nested family
of open sets, this framework being well-suited for establishing the Feller property in the
self-similar case. Then we will turn our attention to a more general setting involving
random exchangeable partitions ofN. We shall see that these two aspects are in fact es-
sentially equivalent. This allows us to shift the time-substitution results established for
interval-fragmentations to partition-valued fragmentations and to establish the desired
characterization of self-similar fragmentations.

As an example of application, we consider the evolution as time passes of the
size of the fragment that contains a tagged point picked randomly at the initial time,
independently of the fragmentation process. We identify this process as a semi-stable
Markov process in the terminology of Lamperti [14], and its distribution is made explicit
in terms of the characteristics of the fragmentation. In some cases, such as for instance
that considered by Aldous and Pitman [3], one can recover the characteristics of the
fragmentation from the law of the mass of the tagged fragment.

2. Interval fragmentation

2.1. Definition

We writeV for the space of open subsetsV ⊆]0,1[. EachV ∈ V is determined by the
continuous functionχV :

χV (x)= min
{|x − y|: y ∈ V c}, x ∈ [0,1],

whereV c = [0,1]\V . Define the distance between two open setsU andV as the uniform
distance between the functionsχU andχV , i.e.,

dist(U,V )= ‖χU − χV ‖∞ = max
x∈[0,1] |χU(x)− χV (x)|.

This coincides with the Hausdorff distance between the closed complementary setsUc

andV c, andV a compact metric space. For instance, a sequence of open intervals, say
]an, bn[ for n= 1, . . . , converges to]a, b[ where 0� a < b� 1 if and only if liman = a
and limbn = b, and converges to∅ if and only if lim(bn − an) = 0. We point out the
following elementary lemma that will be useful for our future purpose.

LEMMA 1. – For everyi ∈ N, let (Vn,i, n ∈ N) be a sequence inV that converges to
Vi. Assume that for each fixedn ∈ N, the open setsVn,1, Vn,2, . . . are disjoint and that
the sequenceVn,i converges inV as i→ ∞ to ∅, uniformly inn ∈ N. Then

lim
n→∞

⋃
i∈N

Vn,i =
⋃
i∈N

Vi in V.
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Proof. –It follows from the assumptions that the open setsV1, V2, . . . are disjoint and
a fortiori converge to∅ asi → ∞. Set

Wn = ⋃
i∈N

Vn,i , W = ⋃
i∈N

Vi,

and note that

χWn =
∞∑
i=1

χVn,i , χW =
∞∑
i=1

χVi .

To complete the proof, note that by the triangular inequality, we have for everyk ∈ N

‖χWn − χW‖∞ �
k∑
i=1

‖χVn,i − χVi‖∞ +
∥∥∥∥∥

∞∑
i=k+1

χVn,i

∥∥∥∥∥∞
+
∥∥∥∥∥

∞∑
i=k+1

χVi

∥∥∥∥∥∞

=
k∑
i=1

‖χVn,i − χVi‖∞ + sup
i�k+1

‖χVn,i‖∞ + sup
i�k+1

‖χVi‖∞,

where the identity stems from the fact that the open setsVn,k+1, . . . (respectively
Vk+1, . . .) are disjoint. For everyε > 0, we can choosek large enough (independently
of n) such that the last two terms in the sum in the right-hand side are both less thanε/3.
The integerk being fixed, we can bound the first term byε/3 whenevern is sufficiently
large. ✷

Next, each open setV ∈ V can be expressed as the union of disjoint open intervals,
and we call interval decomposition ofV any infinite sequence(Ii, i ∈ N) of disjoint
open intervals such thatV = ⋃

Ii. Of course, some of theIi ’s may be empty, and any
permutation of an interval decomposition is again an interval decomposition. We state
the following simple connexion linking convergence inV and interval decompositions.

LEMMA 2. – Let (Vn, n ∈ N) be a sequence of open sets that converges toV in
V . Then there exists interval decompositions(In,i, i ∈ N) and (Ii, i ∈ N) of Vn andV ,
respectively, such that

(i) lim n→∞ In,i = Ii in V for eachi ∈ N,
(ii) lim i→∞ In,i = ∅ in V , uniformly inn ∈ N.

Proof. –Let (Ii, i ∈ N) be an interval decomposition ofV such that the sequence of
the lengths|Ii| of these intervals is non-increasing. For everyi ∈ N such thatIi 
= ∅,
let mi denote the mid-point ofIi. Setdn = dist(Vn,V ) for n ∈ N, so the sequencedn
converges to 0. For everyn ∈ N, seti(n)= max{i ∈ N: |Ii|> 4dn}. For everyi � i(n),
we haveχV (mi) > 2dn, and henceχVn(mi) > dn. Thusmi ∈ Vn, and we denote byIn,i
the interval component ofVn that containsmi . It is immediate that

|In,i|> 2dn and dist(Ii, In,i)� dn, i � i(n). (1)

Note that this entails thatIn,i ∩ In,j = ∅ wheneveri 
= j � i(n), since otherwise we
would haveIn,i = In,j and by the triangular inequality dist(Ii, Ij )� 2dn, which is absurd
(recall thatχIi (mi) > 2dn andχIj (mi)= 0 sincemi /∈ Ij ).
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Observe also that ifJ is an interval component ofVn with |J | > 6dn, thenJ = In,i
for somei � i(n). More precisely, consider the mid-pointm of J . SinceχVn(m) > 3dn,
we haveχV (m) > 2dn, som ∈ V and the interval componentIi of V that containsm has
length|Ii|> 4dn, that isi � i(n). The same argument as that used previously shows that
dist(Ii, J )� dn, and by (1) and the triangular inequality, this forcesIn,i = J .

Next, we consider for everyn the interval decomposition(In,i, i ∈ N) of Vn obtained
by adding to the finite sequence(In,i , i � i(n)) the infinite sequence(In,i, i > i(n)) of
the remaining intervals components ofVn, where the latter are ranked according to the
decreasing order of their lengths. We see from (1) that asn→ ∞, In,i converges inV to
Ii provided thatIi 
= ∅. The same holds in the case whenIi = ∅, because theni(n) < i
for everyn and we have pointed out that this entails|In,i| � 6dn. So all that we need is
to verify the requirement (ii) of the statement.

Fix ε > 0, take i > 3/ε, and let n be an arbitrary integer. Note that|Ii| < ε/3
(because|I1| � |I2| � · · · and|I1| + · · · � 1), so dist(Ii,∅) < ε/6. First, if dn < ε/3 and
i � i(n), then by (1) dist(Ii, In,i) < ε/3, and it follows from the triangular inequality that
dist(In,i,∅) < ε/2. Second, ifdn < ε/3 andi > i(n), then we have already pointed out
that |In,i| � 6dn, and hence dist(In,i ,∅)� 3dn < ε. Third, if dn � ε/3, theni(n)� 3/4ε
(because|Ii| > 4ε/3 wheni � i(n)), and i − i(n) > 9/4ε. This implies that there are
more than 9/4ε interval components ofVn with length at least|In,i|, so|In,i | � 4ε/9 and
hence dist(In,i,∅) < 2ε/9. We have checked (ii) and the proof is complete.✷

Finally, we introduce the space of numerical sequences

S↓ =
{
(s1, . . .): s1 � s2 � · · · � 0 and

∞∑
n=1

sn � 1

}
,

which is endowed with the topology of pointwise convergence. There is a natural map
s :V → S↓, wheres(V ) = (s1(V ), . . .) is given by the sequence of the lengths of the
component intervals ofV , ranked in the decreasing order, and it is readily checked from
Lemma 2 thatV → s(V ) is continuous. We are now able to introduce the deterministic
notion of fragmentation of]0,1[.

DEFINITION 1 (Interval fragmentation). –A familyF = (F (t), t � 0) in V is called
an interval fragmentation if it is nested, i.e., ifF(t) ⊆ F(r) whenever0 � r � t . The
compound process(s ◦ F(t), t � 0) given by the decreasing sequence of the lengths of
the interval components, is called the ranked fragmentation associated withF .

It is easily checked that an interval fragmentation possesses a right-limit at anyt � 0
and a left-limit at anyt ′ > 0 which are given respectively by

F(t+) := lim
r→t+F(r)=

⋃
r>t

F (r), F (t ′−) := lim
r→t ′−F(r)=

(⋂
r< t ′

F(r)

)i
, (2)

whereAi denotes the interior ofA. Note that by the continuity of the maps :V → S↓,
we have

lim
r→t+ s ◦ F(r)= s ◦ F(t+), lim

r→t ′− s ◦ F(r)= s ◦ F(t ′−).
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In the converse direction, it is easily seen that an interval fragmentationF is continuous
at t if and only if its associated ranked fragmentations ◦ F is continuous att .

Our next purpose is to define random self-similar fragmentations. To that end, our
basic data consist in a family(pt (]0,1[), t � 0) of probability measures onV , where
pt(]0,1[) is meant to describe the distribution of the random open set resulting from the
fragmentation at timet of the unit interval. We shall assume that the mapt → pt(]0,1[)
is continuous and we construct a family of probability kernel onV as follows.

First, recall that we are given a real numberα, the index of self-similarity. For every
open intervalI ⊆]0,1[, we introduce the lawp(α)t (I ) of the fragmentation ofI observed
at timet by an obvious affine transformation. More precisely,p

(α)
t (∅) is always the Dirac

point mass at∅. WhenI =]a, b[ is non-void, introduce the affine functiongI : ]0,1[→ I

given bygI (x)= a + x(b − a). By a slight abuse of notation, we still denote bygI the
induced map onV , so thatgI (V ) is an open subset ofI . We then define the probability
measurep(α)t (I ) as the image ofpr(]0,1[) by gI , with r = t|I |α = t (b − a)α . Finally,
if V ∈ V is an arbitrary open set with interval decomposition(Ii, i ∈ N), we denote
by p(α)t (V ) the distribution of

⋃
Xi whereX1, . . . are independent random variables

distributed according to lawp(α)t (I1), . . . , respectively. We thus have defined for each
t � 0 a kernelp(α)t of probability measures onV .

DEFINITION 2 (Self-similar interval fragmentation). –A random interval fragmenta-
tionF = (F (t), t � 0) is called self-similar with indexα ∈ R if F is a time-homogeneous
Markov process which fulfills the following conditions:

(i) F is continuous in probability and starts fromF(0)=]0,1[ a.s.
(ii) If pt(]0,1[) denotes the law ofF(t) for t � 0, then the transition semigroup ofF

is given by the kernels(p(α)t , t � 0) in the notation introduced above.

Informally, (ii) means that disjoint intervals fall apart independently, which is a kind
of branching property. In the sequel, this will be referred to as the (simple) fragmentation
property. By (2),F possesses a càdlàg version given by(F (t+), t � 0), whereF(t+)=⋃
ε>0F(t + ε) for every t � 0. We shall implicitly work with that version from now

on, i.e., we assume thatF(t) = F(t+) in the sequel. We shall also suppose that the
fragmentation is not trivial, i.e.,F 
≡ ]0,1[ with positive probability; and it is then easy to
see thatF(t) converges to∅ a.s. whent → ∞. Therefore we shall agree thatF(∞)= ∅;
in this direction note that∅ can be viewed as a cemetery point in the terminology of the
theory of Markov processes.

2.2. First properties

Throughout the rest of this section,F = (F (t), t � 0) will denote some (non-trivial,
càdlàg) self-similar interval fragmentation, andP will stand for its distribution on
Skorohod’s space of paths with values in the compact metric spaceV . For every open
setV ∈ V , we write PV for the fragmentation process started fromV , in particular,
P = P]0,1[.

The next two statements are devoted to the scaling and the Feller properties
respectively, which are most useful tools in this work. Recall the notationgI :V → V
introduced above for a generic non-void intervalI , and agree thatg∅(V )= ∅ for every
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V ∈ V . First, the scaling property is an immediate consequence of the very definition of
a self-similar fragmentation.

LEMMA 3 (Scaling property). –For every open intervalI ⊆]0,1[, the distribution
of the process(gI ◦ F(t|I |α), t � 0) underP is PI .

Note that more generally, the combination of the scaling and the simple fragmentation
properties entails that for everyV ∈ V , the lawPV of the fragmentation started atV can
be constructed as follows. Introduce a sequenceF1,F2, . . . of independent copies ofF
(started from]0,1[), and pick an interval decomposition(Ii, i ∈ N) of V . Next define
for everyt � 0 the random open set

Xt =
⋃
i∈N

gIi ◦ Fi
(
t|Ii|α). (3)

Then the distribution of the processX= (Xt , t � 0) is PV .

LEMMA 4 (Feller property). –The semigroup(p(α)t , t � 0) of F fulfills the Feller
property, that is for each fixedt � 0 the mapV → p

(α)
t (V ) is continuous onV and for

each fixedV ∈ V , p(α)t (V ) converges to the Dirac point mass atV whent → 0.

Proof. –Let (Vn, n ∈ N) be a sequence inV converging toV , and pick interval
decompositions(In,i, i ∈ N) and(Ii, i ∈ N) of Vn and ofV respectively, that fulfill the
conclusions (i) and (ii) of Lemma 2. For simplicity, we writegn,i andgi for gI when
I = In,i andI = Ii , respectively. Finally, fixt � 0 and settn,i = t|In,i |α andti = t|Ii|α .
Following (3), letF1,F2, . . . be a sequence of independent copies ofF , and introduce

Yn = ⋃
i∈N

gn,i ◦ Fi(tn,i ), Y = ⋃
i∈N

gi ◦ Fi(ti).

For every i ∈ N, we have that limn→∞ tn,i = ti and it is immediate to check that
limn→∞ gn,i = gi in the sense of uniform convergence of functions on the compact metric
spaceV . On the other hand, recall thatF is continuous in probability. Provided that
ti <∞, Fi(tn,i) converges in probability toFi(ti), and hencegn,i ◦ Fi(tn,i ) converges in
probability togi ◦ Fi(ti). The latter assertion also holds in the caseti = ∞ because it
only occurs whenIi is empty andα < 0. AsIn,i converges to∅ asi→ ∞, uniformly in
n ∈ N, we have automatically thatgn,i ◦ Fi(tn,i ) converges to∅ asi → ∞, uniformly in
n ∈ N.

Applying Lemma 1, we conclude thatYn converges in probability toY . On the other
hand, we know from (3) thatYn andY have the lawp(α)t (Vn) andp(α)t (V ) respectively,
and therefore the mapV → p

(α)
t (V ) is continuous. This proves the first part of the

statement; the argument for the second is similar (and easier).✷
The Feller property ensures that the (simple) fragmentation property holds more

generally for stopping times; this can be viewed as the strong fragmentation property.
Our next purpose is to present a different extension of the simple fragmentation property
which will play an important role in our analysis.

For everyx ∈]0,1[ and everyt � 0, denote byIx(t) the interval component of
F(t) that containsx if x ∈ F(t), and setIx(t) = ∅ otherwise. Recall that the ultimate
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fragmentationF(∞) is empty a.s., so we also agree thatIx(∞)= ∅. We write(F (x)
t )t�0

for the natural filtration (completed by null sets) generated the process(Ix(t), t � 0). We
are now able to introduce the notion of frost for an interval fragmentation, which bears
roughly the same role as stopping times for Markov processes. It is also a close relative
to the so-called stopping lines for branching processes; see Chauvin [10].

DEFINITION 3 (Frost). –A random functionT : ]0,1[→ [0,∞] is called a frost for
the interval fragmentationF if the following two conditions are satisfied:

(i) For everyx ∈]0,1[, T (x) is an(F (x)
t )-stopping time.

(ii) For x ∈]0,1[ andy ∈ Ix(T (x)), it holds thatT (x)= T (y).
Of course, a deterministic constant function is a frost. To present a non-trivial

example, we may considerT (x)= inf{t � 0: |Ix(t)|< &}, the first instant at which the
length of the interval component ofF containingx is less than some fixed& ∈]0,1[.

WhenT is a frost, note from (ii) that for everyx, y ∈]0,1[, we have eitherIx(T (x))=
Iy(T (y)) or Ix(T (x))∩ Iy(T (y))= ∅. This incites us to introduce the random open set

F(T )= ⋃
x∈ ]0,1[

Ix
(
T (x)

)
,

which will be referred to as the fragmentationfrozen at T . On the other hand, it is
immediately seen that ifT and T ′ are two frosts, thenT ∧ T ′ is again a frost, and
moreoverF(T ) ⊆ F(T ∧ T ′). Similarly, for every deterministict > 0, T + t is also a
frost andF(T + t) ⊆ F(T ). These observations enable us to define the fragmentation
terminatedatT

F ◦ τT = (
F(t ∧ T ), t � 0

)
and theresumedfragmentation

F ◦ θT = (
F(T + t), t � 0

)
.

The notationτ and θ refer to the classical stop and shift operators in the canonical
notation for Markov processes.

THEOREM 1 (Extended fragmentation property). –LetT be a frost forF . For every
open setV ∈ V , under the conditional lawPV (· | F(T ) = V ′) of the fragmentation
started fromV and conditioned on the frozen fragmentationF(T )= V ′, the fragmenta-
tion terminated atT , F ◦ τT , and the resumed fragmentation,F ◦ θT , are independent
and the latter has the lawPV ′ .

Proof. –We shall first check by induction Theorem 1 in the case whenT only takes
finitely many values. The statement is trivial whenT is a deterministic constant, so
let us assume that the extended fragmentation property has been proved for every frost
taking at mostn values, and consider a frostT taking values in{t1, . . . , tn+1} where
0� t1< · · ·< tn+1 � ∞. We may apply the extended fragmentation property to the frost
T ∧ tn, so conditionally onF(T ∧ tn) = V ′, F ◦ τT∧ tn andF ◦ θT∧ tn are independent
andF ◦ θT∧ tn has the lawPV ′ .
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We next assign a markM(I) to each non-void interval componentI of V ′ as follows:
if T (x) � tn for some (and then all)x ∈ I , the markM(I) is 0 (stop); otherwise
M(I) = 1 (continue). We stress that the random markM is measurable with respect
to the sigma-field generated by the stopped fragmentationF ◦ τT∧ tn , and hence the
preceding extended fragmentation property can be reinforced as follows. WriteV0 ⊆ V ′
for the open set obtained from the interval components ofV ′ having mark 0 and
V1 = V ′\V (0) for that obtained from the intervals having mark 1, and denote byF0

andF1 the resumed fragmentationF ◦ θT∧ tn restrained toV0 andV1, respectively. Then
conditionally onF(T ∧ tn)= V ′ andM , F ◦ τT∧ tn , F0 andF1 are independent,F0 has
the lawPV0 andF1 has the lawPV1. By an application the simple fragmentation property
for F1 at timetn+1− tn, we now easily conclude that the extended fragmentation property
holds forT .

It is now straightforward to complete the proof for a general frostT . We may
approximateT by a decreasing sequence(Tn, n ∈ N) of frosts taking only finitely many
values. For instance, one may consider

Tn(x)=
{

2−n[2nT (x)+ 1] if T (x)� 2n,
∞ otherwise.

By a standard argument based on the right-continuity of the paths and the Feller
property stated in Lemma 4, we see that the extended fragmentation property atTn
propagates toT . ✷

Recall that we are working with the right-continuous version of the fragmentation
F . Turning our attention to left-continuity, we conclude this section with the following
property.

COROLLARY 1 (Quasi-left-continuity). –Let (Tn, n ∈ N) be an increasing sequence
of frosts, and setT = limn→∞ Tn. ThenT is a frost andlimn→∞ F(Tn)= F(T ) a.s.

Proof. –That the increasing limit of a sequence of frosts is again a frost is immediate.
The second assertion is established by the same argument based on the right-continuity
of the path, the Feller property, and the extended fragmentation property as in the proof
of the quasi-left-continuity for Feller processes. See for instance Proposition I.7 in
[4]. ✷
2.3. Changing the index of self-similarity

The purpose of this section is to present a simple transformation based on the extended
fragmentation property which allows us to change the index of self-similarity. Recall
that |Ix(t)| denotes the length of the interval component ofF(t) that containsx (with
the convention that|Ix(t)| = 0 whenx /∈ F(t)), and introduce for an arbitraryβ ∈ R and
t � 0

T (β)t (x)= inf

{
u� 0:

u∫
0

|Ix(r)|−β dr > t
}
, x ∈]0,1[.
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It should be plain that eachT (β)t is a frost forF . This enables us to introduce the process
of frozen fragmentations

F (β)(t) := F (T (β)t

)
, t � 0.

THEOREM 2. –The process of frozen fragmentationsF (β) = (F (β)(t), t � 0) is a self-
similar interval fragmentation with indexα+ β.

Proof. –As the function t → T
(β)
t is right-continuous and increasing,F (β) is a

right-continuous interval fragmentation; and it is clear thatF (β)(0) =]0,1[, P-a.s.
Also for eacht > 0, one hasT (β)r (x) < T

(β)
t (x) wheneverr < t and T (β)r (x) < ∞,

and limr↑t T (β)r = T
(β)
t . It follows from the quasi-left-continuity property as stated in

Corollary 1 thatF (β) is continuous in probability.
Next, for every open setV ⊆]0,1[, write QV for the distribution ofF (β) underPV .

On the one hand, foru < t , the frozen fragmentationF (β)(u)= F(T (β)u ) is measurable
with respect to the fragmentation terminated atT

(β)
t , F ◦ τ

T
(β)
t

. On the other hand, if we

write F̃ = F ◦ θ
T
(β)
t

for the resumed fragmentation, then we have in the obvious notation
that

T
(β)
t+r (x)− T (β)t (x)= T̃ (β)r (x) wheneverT (β)t (x) <∞.

Applying the extended fragmentation property atT
(β)
t , we now see that the conditional

distribution of(F (β)(t+r), r � 0) underPV given(F (β)(u),0� u� t) is QV ′ with V ′ =
F
(β)
t . HenceF (β) is a Markov process, and more precisely, it enjoys the fragmentation

property.
Finally, we have to check the self-similarity property, which relies on the scaling

property. In this direction, letI ⊆]0,1[ be an arbitrary non-void open interval, and
recall the notationgI introduced before Definition 2. Applying Lemma 3, we see that
the distribution ofF (β)t underPI is the same as that ofgI ◦ F(|I |αT ′

t ) underP with

T ′
t (y)= inf

{
u� 0:

u∫
0

∣∣Jy(|I |αr)∣∣−β dr > t
}
,

whereJy(·) denotes the interval component ofgI ◦ F(·) that containsy ∈]0,1[. In
other words, fory = gI (x), we haveJy(·) = gI (Ix(·)) and in particular|Jy(|I |αr)| =
|I ||Ix(|I |αr)|. It then follows from a few lines of elementary calculations that

|I |αT ′
t (y)= T (β)t |I |α+β (x),

and we conclude that the law ofF (β)(t) underPI is the same as that ofgI ◦F (β)(t|I |α+β)
underP. This shows thatF (β) is a self-similar fragmentation with indexα + β, and the
proof of Theorem 2 is now complete.✷

We stress thatF can be recovered fromF (β), more precisely we haveF = (F (β))(−β)
in the obvious notation.
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3. Partition-valued fragmentation

Informally, focusing on interval fragmentation may appear as a rather restrictive point
of view, and it could be more natural to consider fragmentation of abstract sets. In this
direction, we first introduce some material on partitions of integers which are mostly
lifted from Evans and Pitman [11].

3.1. Definition

An equivalence relation, on N = {1, . . .} can be identified as apartition of N into a
sequence(Bn, n ∈ N) of disjoint blocks. It is convenient to agree that the indexation of
blocks obeys the following rule:Bn is the block of, that containsn provided thatn is
the smallest element in its block, otherwiseBn = ∅. The partition that has a unique non-
void block,B1 = N, will be referred to as thetrivial partition. The space of partitions
of N is denoted byP ; recall there is a natural metric makingP compact, which can
be described as follows: for every,,,′ ∈ P , dist(,,,′)= 2−n wheren is the smallest
integer such that the partitions induced by, and,′ on {1, . . . , n} differ. Next, for every
C ⊆ N and every partition, ∈ P , we may define a partition, ◦ C of C, called the
partition ofC induced by,, as follows. We rank the elements ofC in the increasing
order, i.e.,C = {c1, . . .} with c1< · · · , and we denote by, ◦C the partition ofC defined
by

, ◦C = ({cj : j ∈ Bi}, i = 1, . . .
)
, (4)

whereB1, . . . are the blocks of,. Of course, ◦ ∅ = (∅, . . .).
A P-valued fragmentationis a family of partitions(/(t), t � 0) such that for every

0 � r � t , the partition/(t) is finer than/(r), in the sense that each block of/(t)
is contained into some block of/(r). A randomP-valued fragmentation is called
exchangeableif for every finite permutationσ of N, the processes(σ ◦ /(t), t � 0)
and (/(t), t � 0) have the same distribution, whereσ ◦/(t) is the random partition
whose blocks are the images byσ of the blocks of/(t).

By a fundamental result of Kingman [13] (see also Aldous [1] for a simpler proof),
for eacht � 0, the blocks of/(t) have asymptotic frequencies a.s., in the sense that the
limits

lim
n→∞

1

n
Card

{
k � n: k ∈ Bi(t)} := λi(t)

exist with probability one fori = 1, . . . .We writeλ↓(t)= (λ↓
1(t), . . .) for the decreasing

rearrangement of theλi(t)’s. TheS↓-valued processλ↓ = (λ↓(t), t � 0) will be referred
to as the ranked fragmentation corresponding to/. We stress thatλ↓(t) is not a
continuous functional of the exchangeable partition/(t).

We call an exchangeableP-valued fragmentation/ nice if it fulfills the (apparently)
stronger assumption that with probability one,/(t) has asymptotic frequencies for all
t � 0 simultaneously. Evans and Pitman [11] have pointed out that this requirement is
always fulfilled whenever/ has proper frequencies, in the sense that

∑∞
i=1λi(t) = 1

a.s. for everyt > 0. Similarly, it has been observed in Section 5 of [5] that so-called
homogeneousP-valued fragmentations are always nice, and we are not aware of any
exchangeableP-valued fragmentation which is not nice.
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Finally, we define self-similarP-valued fragmentation. Recall the notation (4).

DEFINITION 4 (Self-similar P-valued fragmentation). –A nice exchangeableP-
valued fragmentation/ = (/(t), t � 0) is called self-similar with indexα ∈ R if /
is a time-homogeneous Markov process which fulfills the following conditions:

(i) / starts a.s. from the trivial partition.
(ii) The ranked fragmentationλ↓ associated to/ is continuous in probability.
(iii) For everyt, r � 0, the conditional distribution of/(t+r) given/(t)= (B1, . . .)

is the law of the random partition whose blocks are those of the partitions
/(i)(ri) ◦ Bi for i = 1, . . . , where/(1), . . . is a sequence of independent copies
of/ and ri = rλi(t)

α (recall thatλi(t) denotes the asymptotic frequency of the
blockBi).

3.2. Connection with interval fragmentation

Here is a prototype of an exchangeableP-valued fragmentation. LetE be an abstract
space endowed with a sigma-fieldE and a probability measureρ. Consider for each
t � 0 a sequence(En(t), n ∈ N) of disjoint measurable sets such that for every 0� s � t
and everyi ∈ N there is somej ∈ N such thatEi(t) ⊆ Ej(s). So informally we may
think of E as an object that falls apart as time runs, and of the family(En(t), n ∈ N) as
the sequence of fragments at timet . Next, pick a sequenceU1, . . . of random points in
E such that eachUi has the lawρ, andU1, . . . are independent. For eacht � 0, consider
/(t), the random partition ofN such that two distinct integersi andj belong to the same
block of/(t) if and only if the pointsUi andUj both belong toEn(t) for somen ∈ N. It
should be plain that/ is an exchangeableP-valued process. Moreover, it follows from
the strong law of large numbers that for eacht � 0,

lim
n→∞

1

n
Card

{
i � n: Ui ∈Ek(t)}= ρ(Ek(t)), a.s.

so the ranked fragmentationλ↓ is the process that describes the ranked sequence of
masses of the fragments in the dislocation process of the spaceE.

We may of course apply the construction above in the special case whenE =]0,1[,
ρ is the Lebesgue measure and for eacht � 0, (En(t) = In(t), n ∈ N) is an interval
decomposition ofF(t), whereF = (F (t), t � 0) is some interval fragmentation. In that
case, we write/(t)=/F(t) and refer to(/F(t), t � 0) as theP-valued fragmentation
associated with the interval fragmentationF . (To be completely rigorous, we should
rather call this a version as this process also depends on the uniform random variables
U1, . . . ; but since we are only interested in the law of suchP-valued fragmentation, we
will not indicate the dependency on theUi ’s.) Note that the Glivenko–Cantelli theorem
enables us to assert that/F is nice.

The following lemma is essentially straightforward.

LEMMA 5. – If F = (F (t), t � 0) is a self-similar interval fragmentation with index
α, then the associatedP-valued fragmentation(/F(t), t � 0) is self-similar with index
α, and has the same ranked fragmentation asF , i.e.,s ◦F(t)= λ↓(t) a.s. for eacht � 0.
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Proof. –We have already observed that/F is a nice exchangeableP-valued
fragmentation. AsF(0) =]0,1[ a.s., the partition/F(0) is trivial a.s. Moreover,F is
continuous in probability, and this entails that the corresponding ranked fragmentation
s ◦ F is also continuous in probability. By the strong law of large numbers,s ◦ F
coincides with the ranked fragmentationλ↓ of theP-valued process/F , so (i) and (ii)
of Definition 4 have been checked.

Next, fix t > 0 and consider an interval decomposition(In(t), n ∈ N) of F(t) (for
instance we may rank the interval components ofF(t) in the decreasing order of their
lengths and from the left to the right in the case of intervals with the same length); it is
convenient to setI0(t)= F(t)c. Introduce forn= 0,1, . . .

βn = {
k ∈ N: Uk ∈ In(t)},

so β0 is the set of indices corresponding to singletons in the partition/F(t), and the
blocks of/F(t) which are neither empty nor reduced to singletons coincide with the
βn’s for n= 1, . . . andIn(t) 
= ∅. WheneverIi(t) is not empty, we index the elements of
βi according to the increasing order,βi,1< βi,2< · · · , and set for simplicityUi,j =Uβi,j .
It is easily seen that conditionally on theIn(t)’s and βn’s, the families of variables
(Ui,1, . . .) for i = 1, . . . are independent, and more precisely, provided thatIi(t) is not
empty,Ui,1,Ui,2, . . . is a sequence of i.i.d. variables that are uniformly distributed on
Ii(t). As for r � t , the partition/(r) can be recovered fromF(r), the sequence of
blocks (βn, n ∈ N), and the variables(Uj , j ∈ β0), the preceding observations easily
entail that/F is a Markov process, and the self-similarity property derives from that for
F . ✷

In the converse direction,1 we first show that given a nice exchangeableP-valued
fragmentation/, we can construct an interval fragmentation(F/(t), t � 0) having the
same ranked fragmentation as/. For everyt � 0 andk ∈ N, let Bk(t) denote the block
of the partition/(t) that containsk provided thatk is the least element of its block,
andBk(t)= ∅ otherwise. Letλk(t) be the asymptotic frequency ofBk(t), and define the
instant when thekth block appears,

tk = inf
{
t � 0: Bk(t) 
= ∅}.

Next, for k � 2, call j ∈ N the father ofk if k was an element of thej th block
immediately beforeBk emerges, that is ifk ∈ Bj(tk−). Define by induction the notion
of ancestor ofk � 1, so thatk is an ancestor ofk, and the father of an ancestor ofk is
again an ancestor ofk. Call k′ � 2 a twin brother ofk if tk = tk′ andk andk′ have the
same father. Finally, define for everyk � 2 the predecessorp(k) of k as the largest twin
brotherk′ of k such thatk′ < k whenever suchk′ exists, and otherwise definep(k) as the
father ofk. Plainly,p(k) < k for all k � 2.

We then introduce for everyt � 0 andk ∈ N the open interval

Ik(t)=]xk, xk + λk(t)[⊆ ]0,1[,
1 We stress that the notation/F andF/ is not meant to suggest that one could be viewed as the inverse

of the other.



332 J. BERTOIN / Ann. I. H. Poincaré – PR 38 (2002) 319–340

wherex1 = 0 and fork � 2

xk = xp(k) + λp(k)(tk).
The following properties are clear from this very construction. FirstIk(t)= ∅ if t < tk
andIk(t ′)⊆ Ik(t) if tk � t < t ′. Second, ifk′ 
= k is either the father ofk or one of its twin
brothers, thenIk(tk)∩ Ik′(tk)= ∅. Third, if j is the father ofk � 2, thenIk(t)⊆ Ij (tk−).

Combining these elementary observations, we now see that we haveIi(t) ∩ Ij (t)= ∅
wheneveri 
= j (consider the largest common ancestor ofi andj and the last instant
wheni andj are in the same block), so the sequence of intervals(Ii(t), i ∈ N) can be
viewed as interval decomposition of an open set in]0,1[ which we denote byF/(t).
It is also easy to check that the family(F/(t), t � 0) is nested. Indeed, let 0� r < t .
We already known that ifr � tk , thenIk(t)⊆ Ik(r), and if t < tk , thenIk(t) is empty. So
suppose thatr < tk � t and consider the largest ancestori of k with ti � r . It is immediate
thatIk(t)⊆ Ii(r). We conclude that(F/(t), t � 0) is an interval fragmentation. Finally,
we have by construction that the lengthλk(t) of Ik(t) coincides with the asymptotic
frequency of the blockBk(t).

We now state the following counterpart of Lemma 5.

LEMMA 6. –Let/ be a self-similarP-valued fragmentation with indexα. Then the
following assertions hold:

(i) The interval fragmentationF/ = (F/(t), t � 0) constructed above is also self-
similar with indexα.

(ii) TheP-valued fragmentation/F/ associated toF/ (cf. Lemma5) has the same
distribution as/.

Proof. –(i) The statement is intuitively obvious, however making the intuition
rigorous is somewhat heavy. For everyt � 0, the sequence of intervals(Ik(t), k ∈ N) are
constructed from the family of partitions(/(u),0 � u � t). Choose an integerk such
that Ik(t) 
= ∅ and recall that thekth blockBk(t) of the partition/(t) has asymptotic
frequency|Ik(t)|. Recall also from the fragmentation property (iii) in Definition 4 that
the partition/(t + r) restricted toBk(t) can be expressed in the form̃/(r|Ik(t)|α) ◦
Bk(t), where/̃ is independent of(/(u),0� u� t) and has the same distribution as/.
We shall now see that this entails that the interval fragmentationF/ is self-similar with
indexα.

Write for simplicity g = gIk(t) for the affine function that maps]0,1[ to Ik(t), and let
k1 = k < k2< · · · be the ordered sequence of the elements of the blockBk(t). We claim
that the family(Iki (t + r), i ∈ N) of intervals that result at timet + r from Ik(t) can
be expressed in the form(g(Ĩi), i ∈ N), where the family(Ĩi, i ∈ N) is independent of
(/(u),0� u� t) and has the same law as(Ii(r|Ik(t)|α), i ∈ N). More precisely, denote
by Ĩi(u) =]x̃i , x̃i + λ̃i(u)[ for i = 1, . . . , the family of intervals obtained from theP-
valued fragmentatioñ/ at timeu. By construction, the instanttki at which emerges the
ki th block in the fragmentation/ can be expressed as

tki = tk + |Ik(t)|αt̃i,
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wheret̃i is the instant at which emerges theith block in the fragmentatioñ/. Also, the
asymptotic frequency ofBki (t + u) is clearly given by

λki (t + u)= λk(t)λ̃i
(
u|Ik(t)|α).

It follows readily thatxki = g(x̃i) and hence

Iki (t + r)= g
(
Ii
(
r|Ik(t)|α)).

This establishes our claim; more generally, a variation of this argument that now fully
exploits the fragmentation property of theP-valued process/ shows that disjoint
intervals in the interval-fragmentationF/ fall apart independently. Putting the pieces
together, this completes the proof of (i).

(ii) For simplicity, write/′ for /F/ . We know from Lemma 5 that/′ a self-similar
P-valued fragmentation with indexα, which has the same ranked fragmentation as
/. According to Kingman [13], two exchangeable partitions with the same ranked
asymptotic frequencies have the same distribution, so the one-dimensional distributions
of / and/′ are the same. Because/ and/′ both are self-similar, their semigroups are
the same, and we conclude that they have the same law.✷
3.3. Characteristics of self-similar fragmentations

We are now able to tackle the problem that motivated this work, that is the
characterization of self-similarP-valued fragmentations. In this direction, we start by
recalling the results obtained in [6] in the homogeneous caseα = 0.

First, recall thatS↓ denotes the natural state-space for ranked fragmentations, i.e.,
the space of decreasing numerical sequencess = (s1, . . .) with

∑∞
i=1 si � 1. Following

Kingman [13], we can associate to eachs ∈ S↓ a unique exchangeable probability
measureµs on P such that the ranked sequence of the asymptotic frequencies of the
blocks of the generic partition isλ↓ = s, µs -a.s. Finally, call a measureν on the space
S↓ a Lévy measure ifν has no atom at(1,0, . . .) and verifies the integral condition∫

S↓

(1− s1) ν(ds) <∞, (5)

wheres = (s1, s2, . . .) denotes a generic sequence inS↓. The mixture

µν =
∫
S↓

µs ν(ds)

is a sigma-finite measure onP , called the dislocation measure corresponding to the Lévy
measureν. Next, for every integerk, denote byδk the measure onP given by the Dirac
point mass at the partition that has only two non-void blocks,{k} andN\{k}. For every
c� 0, call

µc = c
∞∑
k=1

δk
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the erosion measure with ratec.
Given an erosion measureµc and a dislocation measureµν , one can construct a

homogeneousP-valued fragmentation as follows. First, one considers((6t, kt ), t � 0),
a Poisson point process with values inP × N with characteristic measureM :=
(µc + µν) ⊗ #, where # stands for the counting measure onN. This means that for
every measurable setA⊆ P × N with M(A) <∞, the counting process

NA(t)= Card
(
u ∈ [0, t]: (6u, ku) ∈A), t � 0

is a Poisson process with intensityM(A), and to disjoint sets correspond independent
counting processes. One can then construct a uniqueP-valued process/c,ν = (/(t), t �
0) started from the trivial partition and with càdlàg sample paths such that/c,ν only
jumps at timest when a point(6t, kt ) occurs in the Poisson point process, and in that
case,/(t) is the partition obtained from/(t−) as follows. In the notation (4), consider
the partition6t ◦ Bkt (t−) of the kt th block2 of /(t−) induced by6t . The blocks of
the partition/(t) are formed by the blocks of6t ◦ Bkt (t−) and the blocksBi(t−) of
/(t−) for i 
= kt . Then/c,ν is a homogeneousP-valued fragmentation. Conversely,
any homogeneousP-valued fragmentation/ has the same law as/c,ν for some unique
c� 0 and Lévy measureν, see [6] for details.

It might be useful to further explain this construction. A point(6t, kt ) in the Poisson
point process affects the fragmentation if and only if thekt th block of/(t−) is neither
empty nor reduced to a singleton, which we shall assume in the sequel. Points in the
Poisson point process can be of two types. First, the partition6t may have trivial
asymptotic frequencies, which occurs if and only if6t has exactly two non-void blocks,
say{j} andN\{j}. The effect of the occurrence of such a point is that at timet , thekt -
block of/(t−) splits into two, more precisely itsj th element becomes a singleton (and
the other blocks are unchanged). This alone does not affect the ranked fragmentation,
in the sense that the asymptotic frequencies of/(t−) and/(t) are the same; however
the accumulation of such points (note thatµc has an infinite total mass whenc > 0) in
the Poisson point process induces a continuous erosion for the blocks of/. Second,6t
may have non-trivial asymptotic frequencies, says ∈ S↓\{(1,0, . . .)}. When such point
(6t, kt ) occurs, thekt -block of/(t−) is dislocated into smaller blocks, more precisely
the ranked sequence of the asymptotic frequencies of these blocks isλkt (t−)s, where
λkt (t−) is the asymptotic frequency of thekt th block of/(t−).

Recall from Theorem 2 that one can change the index in a self-similar interval
fragmentation by a suitable time-substitution. It is therefore natural to look for a similar
result forP-valued self-similar fragmentations, in order to reduce their construction to
the construction described above in the homogeneous case. In this direction, for every
i ∈ N andr � 0, denote by&i(r) the asymptotic frequency of block of/(r) that contains
i (so that&i(r)= λj (r) wherej is the least element of the block that containsi at time

2 In [6], we used a different convention to enumerate the blocks of a partition; however it is easy to check
that these two conventions yield two homogeneous fragmentations with the same distribution.
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r). Then introduce for an arbitraryβ ∈ R

T
(β)
i (t)= inf

{
u� 0:

u∫
0

&i(r)
−β dr > t

}
, t � 0,

and consider the random partition/(β)(t) of N such thati, j ∈ N are in the same block
of/(β)(t) if and only if there are in the same block of/(T (β)i (t)) (or equivalently in the
same block of/(T (β)j (t))). We are now able to state the main result of this work.

THEOREM 3. – (i) If / is a self-similarP-valued fragmentation with indexα, then
the process/(β) = (/(β)(t), t � 0) is a self-similarP-valued fragmentation with index
α + β. Moreover/ can be recovered from/(β), more precisely/ = (/(β))(−β) in the
obvious notation.

(ii) As a consequence, the law of a self-similarP-valued fragmentation is determined
by its indexα ∈ R, and by the erosion coefficientc � 0 and the Lévy measureν on S↓
of the homogeneousP-valued fragmentation/(−α). We call(α, c, ν) the characteristics
of/.

Proof. –(i) Denote byF = F/ the interval fragmentation associated with/ and
/̃ =/F theP-valued fragmentation associated toF , so that/̃ and/ have the same
law by Lemma 6(ii). Next, consider the interval fragmentationF (β) constructed fromF
as in Theorem 2. A (short) moment of reflection shows that theP-valued fragmentation
/F(β) associated toF (β) coincides with/̃(β) in the obvious notation, and thus has the
same distribution as/(β). We know from Lemma 6(i) thatF is self-similar with indexα,
we deduce from Theorem 2 thatF (β) is self-similar with indexα + β, and conclude by
Lemma 5 that/(β) is self-similar with indexα+ β. Finally the identity/= (/(β))(−β)
is immediate.

(ii) follows from (i) and the characterization of homogeneous fragmentations recalled
at the beginning of this section.✷

For instance, recall from the Introduction the example obtained by cutting the interval
]0,1[ at i.i.d. points picked according to the uniform distribution, that arrive at the jump
times of a Poisson process, say with parameter 1. One can check that this fragmentation
is self-similar with indexα = 1 and its erosion rate isc= 0. Moreover it isbinary, in the
sense with probability one, when a fragment with massm splits, it gives rises to exactly
two fragments with masses saym1 andm2 and such thatm1 +m2 =m. It follows that
the Lévy measureν is carried by the subset ofS↓ consisting of decreasing sequences
(s1, s2, . . .) such thats1 + s2 = 1 ands2> 0, and therefore is completely by the obvious
identity ν(s1 ∈ dx)= 2dx for x ∈ [1/2,1[.

We conclude this section by noting that the following construction of a self-similar
P-valued fragmentation/ with characteristics(α, c, ν) is implicit in Theorem 3: one
first constructs a homogeneousP-valued fragmentatioñ/ with erosion ratec and Lévy
measureν as in [6], and then one takes/= /̃(α). In particular, this yields an interesting
probabilistic interpretation for the Lévy measureν in terms of the evolution of the first
blockB1(·). More precisely, suppose for simplicity that the erosion coefficient isc = 0,
and consider the point process8 = (8t , t � 0) with values inS↓\{(1,0, . . .)} defined as
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follows. If the asymptotic frequencyλ1(·) of the first blockB1(·) is continuous at time
t , then8t = (1,0, . . .). Otherwise, the ranked sequence of the asymptotic frequencies of
the blocks resulting at timet from the dislocation of the blockB1(t−) can be expressed
in the formλ1(t−)s for somes ∈ S↓\{(1,0, . . .)}, and we set8t = s. We claim that the
intensity of the point process8 (see Jacod [12]) is given by

1{λ1(t−)>0}λ1(t−)α ν(ds) dt, s ∈ S↓\{(1,0, . . .)} andt � 0. (6)

To see this, consider first the homogeneous caseα = 0, and recall the construction of
the fragmentation from a Poisson point process((6t, kt ), t � 0). Then introduce the
S↓-valued Poisson point processD = (Dt, t � 0) where the pointsDt occur at instants
t whenkt = 1 and are then given by the ranked asymptotic frequencies of the blocks
of the partition6t . On the one hand, by construction, the characteristic measure of:

coincides with the Lévy measureν. On the other hand, a moment of reflection shows
that8t =Dt provided thatλ1(t−) > 0. This establishes (6) in the homogenenous case.
The self-similar caseα 
= 0 now follows from Theorem 3.

4. Mass of a tagged fragment

In this section, we consider a self-similar fragmentation with characteristics(α, c, ν),
and at the initial time, we tag a point picked at random according to the mass distribution.
Our purpose is to describe the evolution as time passes of massλ(·) of the tagged
fragment, i.e., that contains the tagged point. Equivalently, we may identifyλ(·)= λ1(·)
as the process of the asymptotic frequencies of the first blockB1(·) in aP-valued self-
similar fragmentation. In the case of an interval fragmentation, this simply means that
we introduce a random variableU uniformly distributed on]0,1[ which is independent
of the fragmentation process, and aim at studying the process

λ(t) := |IU(t)|, t � 0,

where|Ix(t)| denotes the length of the interval component ofF(t) that containsx.
On the one hand, it follows from Theorem 2 that if we define

λ(−α)(t) := λ(T (−α)(t)), t � 0, (7)

where

T (−α)(t)= inf

{
u� 0:

u∫
0

λ(r)α dr > t

}
, t � 0,

then the processλ(−α) = (λ(−α)(t), t � 0) can be viewed as the process of the mass of
the tagged fragment in a homogeneous fragmentation with characteristics(0, c, ν).

On the other hand, we recall from Section 5 in [6] that in the homogeneous case, if
we set

ξt = − logλ(−α)(t), t � 0,
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then the processξ = (ξt , t � 0) is a subordinator, that is an increasing Lévy process, and
its law can be specified in terms of the erosion ratec and the Lévy measureν. More
precisely, its drift coefficient coincides with the erosion coefficientc, its killing rate is

k= c+
∫
S↓

(
1−

∞∑
j=1

sj

)
ν(ds),

and its Lévy measure

L(dx)= e−x
∞∑
j=1

ν(− logsj ∈ dx), x ∈]0,∞[. (8)

Equivalently, the Laplace exponent: of ξ , which is determined by the identity

E
(
(exp(−qξt ))= exp

(−t:(q)), q � 0,

is given by the Lévy–Khintchine formula

:(q)= c(q + 1)+
∫
S↓

(
1−

∞∑
n=1

sq+1
n

)
ν(ds). (9)

Putting the pieces together, we obtain at the following description of the process of
the mass of a tagged fragment.

COROLLARY 2. – Let/ be a self-similar fragmentation with characteristics(α, c, ν),
and letξ = (ξt , t � 0) be a subordinator with Laplace exponent: given by(9). Intro-
duce the time-change

ρ(t)= inf

{
u:

u∫
0

exp(αξr) dr > t

}
, t � 0,

and setZt = exp(−ξρ(t)) (with the convention thatZt = 0 if ρ(t) = ∞). Then the
processes(Zt, t � 0) and(λ(t), t � 0) have the same law.

The representation of Corollary 2 can be viewed as a special case of the construction
by Lamperti [14] of so-called semi-stable Markov processes (more precisely, Lamperti
has considered the same transformation in the more general case whereξ is a Lévy
process, not necessarily a subordinator).

It is interesting to point out that the first instant when the mass of the marked fragment
vanished (which can be thought as the time when this fragment is reduced to dust),

ζ = inf
{
t � 0: λ(t)= 0

}
,

has the same distribution as the so-called exponential functional
∫∞

0 exp(αξr) dr , which
has been studied by Carmona et al. [9]. In particular Proposition 3.3 there shows that for
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α < 0, the integral moments ofζ determine its distribution and are given in terms of the
Laplace exponent: by the formula

E
(
ζ k
)= k!

:(−α) · · ·:(−kα), k ∈ N. (10)

To conclude this work, let us discuss two related examples. First, let us consider the
fragmentation introduced by Aldous and Pitman [3] in the study of the standard additive
coalescent. This is a self-similar fragmentation with index 1/2, and it has been proved in
Theorem 6 of [3] that the massλ(t) of the tagged fragment at timet fulfills the following
identity in distribution:

(
λ(t), t � 0

) d= (
1/
(
1+ σ (t)), t � 0

)
,

whereσ (·) = inf{u � 0: Wu > ·} is the first passage process of a standard Brownian
motion(Wu,u� 0). Combining this with Corollary 2, we obtain that the subordinatorξ

can be taken in the form

ξt = log
(
1+ σ (γt)),

with

γt = inf

{
u� 0:

u∫
0

dr√
1+ σ (r) > t

}
.

Using the well-known fact thatσ (·) is a stable subordinator with index 1/2, and more
precisely with no drift, no killing, and Lévy measure(2πx3)−1/2dx on ]0,∞[, it is easy
to deduce that the subordinatorξ has no drift, no killing rate and Lévy measure

LAP(dx)= ex√
2π(ex − 1)3

dx, x > 0. (11)

Equivalently, the Laplace exponent:AP of ξ is given by

:AP(q)=
∞∫

0

(
1− e−qx) ex√

2π(ex − 1)3
dx

= q
√

2

π

∞∫
0

e−qx(ex − 1
)−1/2

dx (integration by parts)

= q
√

2

π

1∫
0

tq−1/2(1− t)−1/2dt
(
t = e−x),

so finally

:AP(q)= q
√

2

π
B(q + 1/2,1/2). (12)
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Comparing (11) with (8) readily yields the following formula for the distribution of the
first term s1 of the generic sequences = (s1, . . .) under the Lévy measureνAP of the
Aldous–Pitman fragmentation:

νAP(s1 ∈ dx)= (
2πx3(1− x)3)−1/2

dx, x ∈ [1/2,1[ (13)

(note that all the other termss2, s3, . . .must be less than 1/2). Identity (13) is essentially
a variation of formula (39) in Section 4.1 of [3]. On the other hand, it is seen from
the construction of the Aldous–Pitman fragmentation based on the continuum random
tree (cf. [3]) that this fragmentation is binary, i.e., the Lévy measureνAP is carried by
the subset of sequences(s1, s2, . . .) with s1 > s2 > 0, s1 + s2 = 1, s3 = s4 = · · · = 0. In
particularνAP(s1< 1/2)= 0 and (13) completely determines the Lévy measureνAP. On
the other hand, we already know that the index of self-similarity isα = 1/2, and it is
clear that the erosion coefficient isc = 0 (because the drift coefficient ofξ is zero), so
we have specified the characteristics of the Aldous–Pitman fragmentation.

Our second example is based on the Brownian excursion with unit duration,e =
(e(r),0 � r � 1), and is a close relative to the alternative construction of the Aldous–
Pitman fragmentation in [5]. Specifically, let us consider the interval fragmentation

F(t)= {
r ∈]0,1[: e(r) > t}, t � 0.

That F = (F (t), t � 0) is a nested family of open sets is trivial, and it follows from
standard arguments of excursion theory (for details, see [5]) thatF is self-similar with
indexα = −1/2. In this framework, we see that the instantζ when the tagged fragment
vanishes is simplyζ = e(U), whereU is the tagged point. SinceU is uniformly
distributed on[0,1] and independent of the excursion, it is well-known that 2e(U)

follows the Rayleigh distribution, i.e.,

P(2ζ ∈ dr)= P
(
2e(U) ∈ dr)= r exp

(−r2/2
)
dr, r � 0,

and the integral moments ofζ are thus given by

E
(
ζ k
)= 2−k/2,(1+ k/2), k ∈ N.

Using the identity (10), we deduce that the Laplace exponent:e of the subordinatorξ
(cf. Corollary 2) is given by

:e(k)= 23/2k
,(k + 1/2)

,(k + 1)
= 2k

√
2

π

,(k + 1/2),(1/2)

,(k+ 1)
= 2k

√
2

π
B(k+ 1/2,1/2).

Comparing with the formula (12), we arrive at the striking identity

:e = 2:AP.

This enables us to determine the characteristics of the present fragmentation. More
precisely, as:e has zero drift, the erosion coefficient is zero, and we have already
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observed that the index isα = −1/2. On the other hand, it follows from the fact that
the values of the local minima of the Brownian path are all distinct a.s. that the present
fragmentation is binary, and hence its Lévy measureνe is again determined by:e. More
precisely, using the identity (13), we see that

νe(s1 ∈ dx)= 2
(
2πx3(1− x)3)−1/2

dx, x ∈ [1/2,1[,
and this completely determinesνe.
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