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ABSTRACT. — Consider{X;: t > 0} (¢ > 0), the solution starting from O of a stochastic
differential equation, which is a small Brownian perturbation of the one-dimensional ordinary
differential equationx; = sgn(x;)|x;|” (0 < y < 1). Denote byp?(x) the density ofX?. We
study the exponential decay of the densityeas 0. We prove that, for the poin{s, x) lying
between the extremal solutions of the ordinary differential equation, the rate of the convergenc
is different from the rate of convergence in large deviations theory (although respected for the
points(z, x) which does not lie between the extremals). Proofs are based on probabilistic (large
deviations theory) and analytic (viscosity solutions for Hamilton—Jacobi equations)1di§1
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Introduction

Let0< T < o0, {B;: t > 0} an one-dimensional Brownian motion, and consider the
stochastic differential equation ¢, T'1:

dX? =edB; +b(X?) dr,
XS = XQ.

Let us denote by, the law of the procesk®. Itis classical that the familyP,: ¢ > 0}
is weakly relatively compact and, agends to zero, every cluster valiehas its support
contained in the set of pathswhich are solutions of the dynamical system

x'(t) = b(x()),
{x(O) = Xg. (1)

If (1) has an unique solution (for instance, if b is a Lipschitz function), then by
the large deviations theory, it is known that is exponentially tight and thereforg,
converges taP exponentially fast, as tends to zero.

If (1) has more than one solution, in [1] it is proved that, under suitable conditions,
there is just one limit value in law, concentrated on at most two paths: the extremal
solutions of (1) (see Fig. 1).

The aim of this paper is to study the precise convergenc&, dbwards P in the
following case: take & y < 1 and letP. be the law of the solution of the stochastic
differential equation:

dX! =edB, +sgn(X?)| X;|" dt, @)
X5=0.
We can see this equation as a small random perturbation of the dynamical system:
xt/ = Sgr(xt)lxt |V’
{ X0 = 0. (3)

Let us denote by?(-) the density ofX; with respect to the Lebesgue measure. We
observe that ifx| # (t(1 — )17, i.e. if (t, x) does not belong to the graph of one of
the extremal solutions of problem (3), then the density tends to zero, corroborating the
results in [1].

the upper (t(1 — 7))1/177
extremal solution

N

the lower

extremal solution

Fig. 1. Solutions of the dynamical system.
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Let us describe our main results. According to the position of the poinf), we
emphasize two kinds of rate.

If the point (¢, x) is such thatx| > {r(1 — y)}¥*~7, there exists a positive function
such that:

lim 2In pf(x) = —k;(|x]).

This means that the density has an exponential decay witkh%a&es in large deviations
theory. The rate is the same as in the case when the dynamical system has an uniq
solution. For instance, if the drift b is a Lipschitz function the rate agrees to the rate in
Freidlin~Wentzell theorem for random perturbations of the dynamical systems (see, [7
p. 31)).

If the point (¢, x) lies in the domain between the two extremals, that igxijf<
{t(1—y)}¥177 then the density has an exponential decay with a different rate, namely
g2=1)/+y)_ Precisely, we show that, for such poiritsx):

. 21-y) . xtr
lim e @ In pf(x) = A1 —1].
e—0 1— 14

Herel 1 is the first positive eigenvalue of the Schrédinger operator

1 d y |x |2
—5—=+ —+
2dx2 " 2|7 2

Let us note that, in the particular case= 0, the calculation is explicit (see
Proposition 3 below).

The plan of the paper is as follows. In the first section we recall some existence
results for stochastic and ordinary equations and also the results of [1], for the drift
b(x) :=sgnx)|x|”, 0< y < 1. Moreover we give some representations of the density
p; . In particular, we give an expansion in terms of eigenvalues and eigenfunctions of the
Schrédinger operator. This was already studied by Kac [10] for continuous potentials an
we adapt this result to our situation. Section 2 is devoted to the convergence of the densi
in logarithmic scale with rate?. We compute the limit for the points, x) which does
not lie between the extremals (see Theorem 1) and we give an upper bound for the oth
points. In the last section we treat the convergence of the density in logarithmic scale
with the rates?—7)/+7) for the points(t, x) lying between the extremals. The precise
limit is obtained in Theorem 2 by the study, developed in Section 3, of the viscosity
solution of a Hamilton—Jacobi equation (see [2] or [8]). Although the ideas are inspired
by [2], there are several new difficulties, since, for example, b is not a Lipschitz function.

1. Preliminaries

1.1. Existenceresults

In this subsection we recall some existence results for the stochastic differentia
equation (2), for the ordinary differential equation and the convergence result of [1].
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PROPOSITION 1. —There exists a unique strong solution (@). Moreover, for any
Borel measurable functioif,

|B,|7 )
B — B[ *d
fe t)exp{ RS - / |B,J7~2ds

t
1
—W/IlezydsH. (4)
0

Proof. —The existence, weak uniqueness and non explosion results are consequenc
of Girsanov theorem and Novikov criterion (which is satisfied here since 1).
Pathwise uniqueness is a consequence of Proposition 3.2 in [13, p. 370]. Applying
Girsanov theorem, we get

E[f(%ﬂ f(B,)exp{ 1 /sgr(B)|B |” dBy — 222 /lB |2”dsH

and (4) is a consequence of Itb—Tanaka formula (thanks to convexity) and the occupatio
time formula. O

Elf(X)]=E

We study now the dynamical system (3) and the behaviour of théJavfithe process
X%, ase — 0:

PROPOSITION 2. —Eq. (3) admits an infinity of solutions
{c,t =Y A=0—c,t — )Y A >0},
wherec,, is a constant. Let us denote by

p12(t) = {1 — )t}

the extremal solutions of the dynamical system. Thetends to3s,, + 16,,, ase — 0.

Proof. —The existence result is obvious. By Theorem 5.2 in [1, p. 291F i any
cluster value of P.}, ase — 0, thenP is concentrated on the extremal solutignsand
P2

1 1

P:_SP1+§

5 8p O

1.2. Theparticular case: y =0

Let us note that in the cage= 0 the calculation is explicit, we compute the density
and we show that the diffusion tends towards the extremal solutions (in a generalize
sense, namely a.e. differentiable) of the following differential equation:

{x; = sgn(x,),

x0=0,
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which are p; »(t) = £¢. In this particular case, the diffusioX’ is solution of the
following stochastic differential equation:

dX! =edB, + sgn(X?!) dt, @)
X5=0,

and we can compute the densjj(x) of X? with respect to the Lebesgue measure:

PROPOSITION 3. —Let us denote(x) = [ g%/ dy. Then,

N - (Jx] —1)? 1 x| T 2|x|
P ()= e 21t exp—{ 2e2¢ } B szm(p(sﬁ + 7) eXp?' ©)

Moreover, as — 0,

1 t (x| —1)? .
£(x) ~ 1— 7 f
Pr ) e/ 2t ( (x| + f)) &P 2%t Itx#0.

. I3 t =0
P () o3 P =R
In particular, for all (¢, x) e R, x R*
im e2In pf (v = _x =0°
lim eIn pf (x) = —=—

and

32
i 2 &l — > = ——,
lim & InP(||X;|—t]| >9) >
Proof. —Using Girsanov theorem and the It6—Tanaka formula we get

B[ ()] =E| £e1Bexp - 2L _ =)

) 2e2

wheref is a Borel measurable even function (one can consider only even functions sinc
—X* is a solution of (2 too) andL, is the Brownian local time at level 0.

Moreover, by Levy’s theorem(|B;|, 2L,) has the same law &s$; — B, S;), where
S; = SUpy¢, <, Bs, hence

E[f(X5)] =E[f(8(S, — B)) exp{—% — éH,

where the law of B,, S;) is well known (see, for instance, [11, Proposition 8.1, p. 95]):

2(2b — 2b — a)2
P(B; € da, S; € db) = Mexp{_ﬂ

dadb, fora<b,b>0.
Nz =)
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Hence
oo b
2(2b —a) 2b — a)® ot
0 —o0

We make the change of variables= ¢(2b — a) andy := ¢(b — a) and we obtain

X

&y = y_x_t
Elf &) 3m//xep{ 82t g2 g2 282}f(y)dXdy

2y  (y+1)?
Y= / f(y)eXp{ o2 }dy

2 7 v? 2y
= / ( / exp—Edu> ) exp; dy.
0 “(y+0)/(evD

From this equality we get the expression of the density (5). Moreover, using the Laplace
method we obtain the equivalents in the statement of the propositian.

1.3. Somerepresentations of the density

In this subsection we shall describe some useful representations of the densjty of
solution of Eq. (2), for arbitrary & y < 1.

PrRoPOSITION 4. —Fort >0, > 0,x e R:

|x|y+l x2
fx) = ex —
P = TP G 1 D 282r}

1 1

t _ t
xE[exp{—%/hs—l—s«ﬁbSV 1ds—ﬁ/|xs+8«/;bs|2deH,
0 0
(6)

where{b,: t € [0, 1]} is the standard Brownian bridge.

Proof. —By (4) in Proposition 1 and by the scaling property of the Brownian motion,
we obtain

o B

= /lBl” ds—zzzy/lBl”ds

Let us decompose the Brownian motion as follows:

t(V‘f‘l)/z
E[f(X)] =E [fwzsg exp{ :

B, =gt + by,
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whereg is a standard Gaussian random variable independent of the Brownian bridge
Therefore,

(r+1)/2
E[£(X)] /f(E\/—)’) A

+1
Grme g e

Y1 +D/2 1
x E|exp —————— lys + by|” tds — —— |ys—|—b 1% ds
D¢y 2c2-2y
0

By the change of variable = ¢./7y, the above formula becomes

ey [ f®) |x |7+ x?
E[f(X5)] = / Nty +1)82—282t}

1 1
t t
xE[exp{ —%/lxs +8\/;bs|y_1ds—ﬁ/|xs+8\/fb5|2”dsH dx
e
0 0

and we obtain the expression of the density (63

Another useful expression of a density is contained in the following:

COROLLARY 1.—-Fort>0,¢>0andx € R,

|x|y+1 x2
P = o N G+ De? 282r}

t/s(s)V(B )
Em(;)l/z [EXD{ B / 2 }
0

where we denoted(e) := ¢?1=)/1+¥) and the potentialV’ is given by

5(8)

B _o] @)

Vx):=

i ®

Proof. —By conditioning with respect toB, = x} in (4) we obtain

el 1 1 +1_x_2}
E[f(Xl)}_R/—@f(sx)exp{(y_kl)gl_y lx|” > dx

t t
1
XEO[eXp—{ZSz_y /|BS|V—1ds — 55227 /|BS|27 ds} B,
0 0

The functional of the Brownian motion which appears in the integral on the right hand
side of the previous equality is time reversal invariant. Therefore we obtain

t t
1
Eolexp—{zsll/_y /lley_lds_ZSZ——Zy/llezyds} Bt:X
0 0

=X]|.
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t t
_ _ |4 y—1 _ 1 2y _
=E, [exp {281—;/ /|BS| ds o227 /|BS| ds} B, =
0 0

By scaling we get (7). O

0f.

The following result contains an expansion of the densityXofin terms of the
eigenvalues and the eigenfunctions of a Schrédinger operator. This type of expressic
was already considered in [10, p. 194] for continuous potentials.

PROPOSITION 5. —For¢ >0, ¢ > 0andx € R;

|x |71 |x|

& _ l —Aj t/s(s) ( )
P = e 1)82}26 0w (=5 ©)

wherei; and; are the eigenvalues and the normalized eigenfunctions of the operator
on L%(R):
16 1
_EW + = V(x)
whereV is given by(8). Moreover the series is uniform convergent for fixeand x
belonging to a compact set &f.

Proof. —Let us consider the following one-parameter semi-group:

1 t
(£ =B | £(B) exp—3 / V(B,)ds|.
0

and we shall denote by, (x, y) the density of the semi-group with respect to the
Lebesgue measure:

e—(x—y)2/2f

t
1
a,(x, y) = WEX [exp—é / V(Bg) ds
0

Therefore, by (7) we can write

Bl‘:y .

= exp| P bae (00 5)
x) = a: (0, ——).
P gs(e)1/? (y +De?) 50\ es(e)l/?

Let us note that, by the definition, the semi-grolippreserve the positivity. More-
over, the generator of;, = e ¥’ is —H, with H a positive self-adjoint operator. In-
deed, this second property is true for self-adjoint contraction semi-groups (see, [5, The
orem 4.6, p. 99]) and we can prove that

<1,

t
1
1T Ml 2wy, L2R) < SUHEEx [GXD—E / V (By) ds
Xe
0




M. GRADINARU ET AL./ Ann. I. H. Poincaré — PR 37 (2001) 555-580 563

sinceV (-) > 0 (see, for instance, [3, p. 271]).
It can be shown (see [6, Lemma 2.1, p. 339]) that the density of a semi-group satisfying
the previous properties and which is a trace class operator, can be developed as

ar(x,y) =) €)Y, ().

j=0

Here thei ; andy/; are the eigenvalues and the normalized eigenfunctions of the discrete
spectrum of the equation

1 1
—SV )+ SV@OY ) =2 ().

Moreover the convergence of the series is uniform over all compact sBtsadg.
To obtain the result (9) we shall prove tHatis a trace class operator. Clearly,

1

V2t

a;(x, x) <

t
1
E[exp—é/bc + b2 dsl =:a;(x, x), (10)
0

whereb?” is the Brownian bridge from 0 to O ové®, ¢] (thus the standard Brownian
bridge ish, = b%1) and & (x, y) is the density of the semi-group generated by the
Schrédinger operator

1d 1~

~5qe T3V With Vi) = .

SinceV € L2 (R) and lim_ V(x)/lxly = +o00 we can deduce that this operator is a
class trace operator (see also [4, Theorem 3.2, p. 488]). By Mercer’s theorem (see, fc
instance, [12, p. 65]), we get

/Zzt(x,x) dx < oo,
R
and then, by (10),

/a,(x,x)dx < 00.
R
Again by Mercer’s theorem, we deduce tliais a trace class operator

Remark2. — In the particular casg = 1/2 we can find, by straightforward calcula-
tion, an equivalent of/; (x):

2
Vj(x) ~exp{—§x3/2+2ﬁkj}, asx — oo.

This enables to think tha®/3In p?(x) tends tor1(2/]x] — 1), if (¢, x) lies between the
extremal solutiong »(t) = +12/4 (heres(e) = &%/3).



564 M. GRADINARU ET AL./Ann. I. H. Poincaré — PR 37 (2001) 555-580

The second part of this remark can be proved in the following simplexcases (¢)*/2
but for any O< y < 1:

COROLLARY 2.—Fort>0,0<y <1,
Iimos(e) In p? (ss(g)l/z) = —A1l. (1D

Moreover, the convergence is uniform on any compact subget of

Proof. —By (9) we get

p; (es(e)V?) =

(8)1/2 p{ o 5 } Z et t/s(s)w (0) w] 1).

SinceV is bounded from below, there exists a const&nt 0 such that

forall j =21, ¥l < KlIY,ll2
(see [4, Lemma 3.1, p. 488]). Therefore, by classical convergence theorems,

At

1/2
)= es(e)l/z (y +l) s(e)

p; (es(e) } (Y10 ¥1(1) + 0(s(e)))

and we obtain the announced result. It is not difficult to modify this proof to obtain the
uniform convergence. O

2. Convergence of €2In p¢(x)

The purpose of this section is to study the behaviour?d p¢(x). The result will be
sharp if(¢, x) does not lie between the two extremal solutions of (3).

THEOREM 1. —If |x| > {t(1 — y)}¥*~7 then there exists a positive functiénsuch
that

Iimoazln pE(x) = —k,(|x]). (12)
Remark 3. — We also prove that ifc] < {t(1— y)}¥*"" then

lim supe?In pf(x) <0, (13)

e—0
but this result will be improved in Section 3.
Proof of Theorem 1. €learly, by (6) we can write

(x) = exp| P }E{ex F(eb) G(‘gb))}
Pt Nz (v +De2  2¢% p(— )T T2 ’
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where
1
F(eb) = %t / lxu — /teb,|” " du
0
and
1
G(eb) = %/|xu — Vieb, [ du.
0

(i) (An upper bound folimsup,_ ;&2In pf(x).)
We have

x| +1 x? } [ G(sb)}
e — E ——| =1 (x).
Vori P+ De? 267 P )
G is a continuous lower bounded functional of the Brownian bridge. Therefore, to study

r{ (x) we use the Varadhan principle (see, for instance [7, p. 43]). Hence, applying the
logarithm we obtain

p;(x) <
&

|x|y+1 x2 1

- 2 & -
IITjéJpe In p7 (x) < Vo kv §¢IQ;&A(¢),
where, forg € Hg,
1 1
Ap) := t/ |xu — «/;¢(u)|2y du + /¢’2(u) du. (14)
0 0

Here
H&z{mozjf@mxfeL%mJmem3=0}
0

endowed with the norm

1 1/2
whg=</mem>.
0

We compute the infimum of the functionalin the following:

PROPOSITION 6. —There exists a positive functidn such that

Aty x? if x| < {r(1— )}/
inf A(p)=1 "% L. _ (15)
peHy T 7t 2k;(|x]) otherwise.
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We can finish the proof of the theorem and we postpone the proof of Proposition 6.
Using (15) we deduce (13) and

lim supe?In pf (x) < —k;(|x]).

e—0

(i) (A lower bound foliminf._.g&?In pf(x).)

Let us just note thatF' explodes when, x) lies between the extremals. In the
following we assume that > {r (1 — y)}/*~". Let us denote := 1(x — /1¢((0)) > 0.
Heregy is the function which minimizes the functional(see the proof of Proposition 6
below). It results from the proof of Proposition 6 below thgtbelongs to the following
open set

U:={¢peC(0,1]): xu—t¢p(u) > «u, Yu €0, 1]}.
Moreover, there existg > 0 such that

maxF <
ma (@) <n

Takeé > 0 and letV be a neighbourhood @f; such that

maxG (¢) < G(¢o) + 6.
peV

Let us denotéV :=U NV. Then we can write

IimiE\f szlnE[exp (F( b) + G(gb)ﬂ

> lim iQf e?InE {exp (F( b) + Geb )>1{8bew}}
> . . 2 _ _ .
> IIT_JQf e InP(eb e W) 5IILHOE n (rbT;%(G(qb)

By Schilder’s theorem (see for instance [7, p. 18]), we obtain

lim i(r;f 2InE [exp (F(eb) + G(gb) )}

>_ inf /|¢<u)| du — G (o) — &

PpeWNHE 2

1
>——A — 3.
> (¢0)
Letting § — O we get

|x|y+1 x2

1
———=inf A
y+1 2t 2g4ent @).

liminf £2In pf (x) >
e—0

By (15) we obtain the limit (13). This ends the proof of Theorem 1 except for the proof
of Proposition 6. O
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I{w)

0 a 1
Fig. 2. Description of:.
Proof of Proposition 6. First, we can assume that> 0. Indeed, ifx < 0 it suffices

to replace in (6p, by —b, which are identical in law, to obtain the result.
(i) Let ¢ € HE and let us denote (see also Fig. 2)

azsup{Oéugli qﬁ(u):%}.

It is obvious that on [0,1], the straight lirdés) := xs/4/t minimizes the functional

1
¢ / |xs — «/;¢(S)|2y ds.
0

Moreover
2 a
/¢’2(u)du T:/ ')’ du, Ve € HL.
0
Indeed
a 1/2
ﬂ_ 12
= b@= /¢<u>du a<0/¢ (u)du>

(i) We show that there exisigy € H such thatA (¢o) = inf A(¢). Take a minimizing
sequence, of A. Since this sequence is boundedHp there exists a subsequence, still
denoted byp,, weakly convergent to songg. This implies pointwise convergence @f
to ¢, and by Lebesgue theorem, convergence of the first pati@f) to the first part
of A(¢o). As a byproduct one gets convergence of iifenorm of ¢/, to the one ofp;,
and combined with weak convergence it yields strong convergence. He@ge goes
to A(¢o) which, in turn, realizes the infimum. By (i) we see that[0na], ¢o =1I. Let us
notice also that

¢o(u) <l(u) foralluela,l]. (16)
For anyh € Hy compactly supported ifu, 1]

d
—A A =
g Aot =0
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(this differentiation is allowed since, farc |a, 1], xu — «/t¢o(u) > 0). By (14) and (16)
we obtain

1 1
/ y 132 xu — o) |~ h(u) du — / Po(u)h' () du = 0. (17)
0 0

Let us denotey(u) := xu — «/t¢o(u) > 0. Then from (17) we obtain that verifies the
differential equationy” (1) = yt2y? ~1(u) in a weak sense oja, 1], with y(a) = 0 and
y(1) = x (thanks to continuity ofy). We deduce tha verifies in a weak sense

d(y)? _ _
» — y/y//=2y/(yt2y2y 1) =2yt2y2y 1y/.

Therefore, for alk > 0,

0%m2=0Ma+mf+2w2/y@V“W%mm
a+te
= ((a+9)’ +2yw? — Py +e)¥. (18)

This equality implies thay’ can be extended as a continuous function on the whole
[a, 1].
(iif) We shall prove that, fou > 0, y satisfies:

N yu)tr

a7 for all u € [a, 1]. (29)

We need to compute’(a+). Let us suppose that’(a+) > 0 then |y(u)|? 1 is

integrable in a neighborhood af and formula (17) extends to any. Now, this

implies that the second derivative pfis a function. Since’(a—) = 0, this contradicts
y'(a+) > 0. Hencey'(a+) = 0 and we obtain by (18)

Y @)=ty

or,

y(u) 1—
n dx + y)=v
u=a — =a .
txv t(l—y)

y(a)
Finally takeu = 1, sincey(1) = x, we get

xtr
azl—m, (20)

and the conditior: > 0 can be written as

x < {t(L— ),
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namely(z, x) lies between the two extremals.
(iv) We need to compute the minimum gf

inf A(¢) = A(go) = A(y(-) /vt —1(-))

1

=1 [ xu=igotw)|” Vdu+/¢ (u) e

0
:—+t/|xu—\/_¢o(u)| ydu+/¢ (u) du,

sincego(u) =1(u) on [0, a], or
1

2 1 o 2
A<¢o)=¥+z/y<u)%u+/%du

a

1
x%a x2(1—a)

1 1
:T+t/y(u)zy du + — ?/y/(u) du + %/y/z(u) du.

By (19) we obtain:
X2 ¢ 2y 1 y
Aldo) = I’y + ZI/{t(l_ Y)Y —a) T du — Zx/{t(l— Y)u—a)}T7 du,

which can be written, by change of variahle-= (1 — y)(u — a) and by (20), as

2

2 Y Y
A(¢o)—x——|—— / vlzf_y dv — 2 / v dv.
0 0

t 11—y

Then we get the first part of (15) by straightforward calculation.
(v) Assume nowz = 0 which means, by (iii), that:

x> (t@—y)) Y
As in (iii), the solution of the problem (18) satisfies
Y ) =y +y'(0)% (21)

However in this casé: = 0) we have not the explicit value of (0), as in (iii).
(vi) We need to compute the minimum gaf

; 2
inf A(¢) = A(¢o)—t/y(u)2Vd +/w
0
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2 1 ) y/(0)2 X2
=7 [yerta- =m0
0
Sincey is positive on]0, 1], y" does not vanish thanks to the differential equation (21)
thus is positive. Therefore it is allowed to apply the following change of variable

du _ 1 (22)

& 0T A

and we get

2x /02 2
Awm=;/wymﬁ+ﬂﬁww—yi)—§a
0

By straightforward calculation we obtain

2x/y'(02+12x2  (y —1)y' (0% x? 2xrtl x?
Ago) = + S — T 2k (),
(%) A+ )t Qv 1 1ty 1 THW

-1
mr+whuw=xvymﬁ+ﬂﬂy—””V+Z§—ymﬂ

Let us prove that,(x) > 0. By the change of variable (22), we get

1:/%dy=/ dy .
) dy ) VY (02 12y

Therefore as a function of, y’(0) is continuous, strictly increasing and differentiable
for x > {t(1 — y)}*~7. Moreover the derivative with respect.toof y'(0) is equal to

yy'(0) 0
X+ = DVy 02 + 1%

where

Therefore we can compute(x) for x > {t(1—y)}/1-7:

1
kj(x) = A (y/y/(O)2 + 12x2%r — th) >0, sincey’(0) > 0.

Observe thak, ({t(1 — y)}¥*~7) = 0 by (iv) and thatk/(x) is positive forx > {r(1 —
YY" sok,(x) > 0. This ends the proof of the second part of (15)

Remark4. — Using a probabilistic method (see [9]), we can obtain an upper bound in
the particular casg = 1/2. Precisely we can prove that, forf < ¢2/4,

limsupe?3In pf (x) < a4 (t/2 — /1x]),

e—0
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where @] is the greater negative zero of the derivative of the Airy functian In

the proof of this upper bound we use the following result concerning a functional of
the standard Brownian bridge,, u € [0, 1]}, which can be interesting in itself. For
0<a<1,

a a
I|m 82/3InE[exp——/|b |du‘| = 2;/3

(see also [16], [14]). The improvement of the upper bound in the general case will be
presented in the following section.

3. Viscosity solution of a Hamilton—Jacobi equation

In Theorem 1 we obtained the behaviourgf(x), if (¢, x) does not lie between the
extremals. The aim of this section is to study the behaviourttor) lying between the
extremals, namely we studye) In p¢ (x), with s(g) = g@1-)/3+7),

THEOREM 2. —If (¢,x) belongs to the domain contained between the extremal
solutions of(3), then

. lx |17
lim s(e)In pf(x) =—Ay (t — ) (23)
e—0 1— )4

Here 1, is the first positive eigenvalue of the Schrodinger operator

1 o y |x |27
=+ — +
2dx2  2|x|tv 2

Our study is based on a particular tool: the viscosity solutions of parabolic partial
differential equations. For a study of these solutions the reader may consult the book ¢
Barles [2] or the one of Fleming [8].

First we shall introduce some domains of the first quadrant plane:

Q:={(t,x): 0<t<T, O<x <{(1—y)r}¥/+7},
Q:={(t,x): 0<t<T, O<x < {(L—y)}¥*7},
Q:={(t,x): 0<t<T, 0<x <{(1—y)}Y*7},
Q i={(t,x): A=) <1t < T, es(e)/? <x < {((L— y)r}¥+77},
Q= {(t,x): L—y)e¥ M <1 KT, es(e)? <x < {1 —y))V+7},

S/-\ZE = {(t,X): (1_ y)84/(1+}’) <t<T, 8S(8)l/2 <x< {(1_ y)t}l/l—y}.
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the extremal {1 —y) T}/

A
solution AN

Fig. 3. The domair2®.

Let us consider the following parabolic partial differential equatiovix R? (we shall
preciseU below):

ou du 9%u
T~ H ta sy Uy Ty T o :09 24
T (x”ax 8x2> 24)

whereH is a real Hamiltonian defined dd x U x R x R. We assume tha is elliptic
in the following sense:

H(t,x,u,p,q1) < H(t,x,u, p,q2), if g2 <q1.

We recall the notion of viscosity solution for (24) and we need a slightly different
definition than the one in [2] (see Definition 2.1, p. 11 or Definition 4.1, p. 80), since
the domains which we consider are not open nor closed.

Definition 1. — Letu be a bounded upper semi-continuous (u.s.c.) (respectively lower
semi-continuous (l.s.c.)) function on a connectedigetith connected boundary. is
a viscosity sub-solution (respectively super-solution) of (24Y/iif for all ¢ € C?(U),
whenever(ty, xo) € U is a point of local maximum (local minimum) af — ¢, then

dp

2
2 gZZJ(to, x0)> < 0 (respectively> 0). (25)

ap ]
(t09 xO) + H t09 X0, M(t09 x0)9 _(t09 x0)9 )
ox ox

PROPOSITION 7. —Let us define
ut(t, x) == —s(e) In(pf (x) + e /5@, (26)
whereD > 0. Thenu? is a viscosity solution of

dut 9%ut

ou®
+H8 t,x,ME, a_

ot

o W) =0 inQ° (27)

corresponding to the Hamiltonian

4y
2 Y=
Hs(f»X,M»P»Q) :_Eq-i_ 2

u

P24+ x"p —yx"s(e) (1—exp )D> (28)

s(e
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Remark5. — The reason to introduce the exponential term, with> O, in the
definition ofu® is that this last function is bounded. Clearly, by choosin@rge enough,
this term in the logarithm scale will not change the limitsas> 0.

Proof of Proposition 7. —

(a) First, we shall prove that Eq. (27) is verified @h in classical sense.

SinceV, the potential given by (8) of the Schrédinger operator in the statement of
Theorem 3, is uniformly Holder continuous on a neighbourhood ofxagy0 (see [15,
Definition 2 p. 122]), by Theorem 1 p. 127 in [15] we deduce that the function

B[=X

(tx) b ex( x2)E ex 1/V(B)d
, X — - —= ;) ds
N P 2

is a classical solution of the equation

du 190%u 1
—=—-——=Vu on]0, T] x R*.

or —29x2 2 " oM Tl

Thus, by similar arguments, using (7) we obtain tpéate C*?(Q¢). By logarithmic
transform, we get that® is a classical solution of

ou Y H (t ou 0%u
?xﬂu? 9
ot ¢ ax’ 9x?

) =0 onQ?,
whereH, is given by (28).

(b) Moreover all classical solutions are viscosity solutions, herices a viscosity
solution on*. It suffices to verify that® is a viscosity solution or2¢ \ ©¢. Take
now ¢ € C2($) such that(T, xo) € Q° is a local maximum ofi® — ¢. Replacingy by
¢ + (x —x0)* + (t — T)? the first and the second derivative(at x,) do not change, and
S0 we can assume thek, xg) is a point of local strict maximum. The idea is to adapt the
reasoning for the points @®¢ to the point(T, x¢). To do this, we need the following:

LEMMA 1.-Let (u,), be a sequence of u.s.c. functions which converges towards
u, uniformly over all compact subsets of a boundedgeiVe suppose that can be
extended to an u.s.c. function &h If (z, &) is a local strict maximum of then there
exists(t,, &,) € U which is a point of local maximum af, such thatim,_o(z,, &,) =

(t, ).

We can finish the proof of Proposition 8. Let us consider the function:

E’](tvx) ::Ms(t9x)_(p(t9x)_TL9 77>0

By Lemma 1 applied o®*, there exists a sequen¢s, x,) € Q¢ of local maxima ofg,
which converges t@7, xo), asn — 0. Clearly, lim_,; E,(t, x) = —oco. Hencer, < T
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and forn small enoughz,, x,) € Q°. Sinceu® is a viscosity sub-solution of2® we get:
n 2

d¢ ¢
(T —t )2 (t’)’x’l) + H (I,],X,], u (tr)’xr)) (ti]a x’]) (E;,)h;)) < 0]

By the continuity ofu®, letting » — O we obtain

9 2
So(Tox0) + H, (T xo. u (T, xo) So(Tox0). 55 (T. xo))

The same argument can be used to proveithi a super-solution. This ends the proof
of Proposition 8 except for the proof of Lemma 13

Proof of Lemma 1. Fhe result is clear forz, &) € U (see [2, Lemma 4.2 p. 88]).
Let us suppose thatr, &) € 0U. Taker > 0 and we define the compact s&t =
B((z, &), r) N U, whereB is an Euclidean ball centred i, &) with radiusr such that
(7, &) is a global strict maximum o&". The u.s.c. functiom, reaches its maximum on
the compact sek” at (t,, £,). We extract a sub-sequence, denoted for simplicity again
by (z,,&,), which converges to7, &), asn — 0. Assume that7, ) ¢ aU. Sinceu is
u.s.c. and sincer, &) is a strict maximum, there exists, y) € K" such that

u(t, &) >u(t,y) > u(z, §).

This inequality can not be true! Indeed,(z,, £,) tends tou(7, £) andu,(z, y) tends to
u(t, y), these two convergences being uniform. Heriéeé) € U . Moreover, we know
that ||(7, &) — (7, )| < r. We can choose a sequen@g, £") which tends to(z, &),
asr — 0. By diagonalization, we can find a sequerieg £,) € U which converges to
(t,8),asn— 0. O

Our aim is to take the limit as — 0 in the Hamilton—Jacobi equation (27). We prove
the following stability result:
PROPOSITION 8. —Let us denote

at,x) = limsup u(s,y), forall (s, x) € . (29)

£—>0,s—>t,y—>x,(s,y)€§2\5
Theni is a viscosity sub-solution of the equation

ou ou ~
a—FHo(x,a) =0 ongQ, (30)

with the Hamiltonian

Ho(x, p) :=x"p. (31)

If we denoter = liminf ¢, with a limit taken as previously, thenis a viscosity super-
solution of(30).
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The proof of this result is similar to that of Theorem 4.1 p. 85 in [2], except for the
fact that the stability result is stated on a closed set. Here we only need the following:

LEMMA 2. —Let(v;). be a sequence of u.s.c. functions having a local uniform bound
on Q. Let us denote by = limsupv, as in(29). We assume that has a local strict
maximum onQ Then, there exists a sub-sequereeg), of (v,), and a sequence

(re, zo)e € Q¢ such that for all ¢ > 0, v, reaches a local maximum o2 at (r,', z.)
and

lim (re, ze) = (1, 2), lim Ve (rer, 2e) = 0(1, 2).
e'—0 g'—0

The proof of this lemma is similar to the proof of Lemma 4.2, p. 88 in [2].
We also prove an uniqueness result contained in the following:

PROPOSITION 9. —For all (7, x) € £,
u(,x) =u(t, x). (32)

Proof of Proposition 9. i) First, we prove (32) for(z,x) €10, 7] x {0}. Take
¢ € C%(Q) such that(z, 0) is a local maximum ofi — ¢. By Lemma 2, there exists
a sequence of poinis,, x,) of local maxima of«* on ¢ such that:

Iimo(tsv xg) = (10, 0).

We take a sub-sequence if necessary and we study then two different situations:
(a) either(z,, x.) € Q¢ and taking the limit as — 0 in Eq. (27) we get

dp
- —-1<0; 33
o (33)

(b) or (1., x,) € Q¢ \ Q¢. Since, forD large enough,
ut(ty, xe) = —s(e) |n(pfg (es(g)l/z) + e—D/S(s))

tends tor17g ase — 0 (see Corollary 2), we géi(zg, 0) = A1fo.
Take a particular functiomy which does not verify (33):

(1, x) — golt, x) 1= it x) — = — n2cosr<t _2“’) _Izh (34)
n n n

Denote by(z,, x,) the point of maximum ofi — ¢g on Q and we shall prove that
(t,, x,) ¢ Q. Clearly

(@t — o) (ty, X,) = (@ — @o) (10, 0) = it (10, 0) — 1.

Since u is bounded, we obtain, by (34) limox, = 0, lim,_ot, = o and
lim 0 — 0. Moreover since is a viscosity sub-solution, if,, x,) € 22, we get

d¢o d¢o
W(tn» xn) + 'xy})/ a(tna -xn) < 0. (35)
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Clearly, by (34),

d¢o [ty — 1o 1 990 1
E(tn,xn)ZSIn"( 772 ) +; and a(tn,xn)ZE.

Itis obvious that neither Eq. (33) nor Eg. (35) can be verifiegpbwith n small enough.
Hence(r,, x,) ¢ Q and so(t,, x,) €10, T'] x {0}. Moreover, since we are in case (b),
u(t,, 0) = r1t,. We deduce that

I/_l(lo, 0) < Altn +n— ¢0(tna O)

As n — 0 we get
u(to, 0) < Aato.

Using the same reasoning fewe obtain thati =« on ]0, T'] x {0}.
(i) Second, we prove (32) far, x) € Q. It suffices to verify (32) on the compact set

Ks={(t.x): x<(t =)A=y} NQ
for any§ > 0. Let us note that the inequation

dg dg
—(t, ¥ —(,x) <0
8t( x)+x 8x( X)

is verified on the boundari(z, x): x = {(t — 8)(1— y)}¥/27} N Q. To show this fact we
proceed as in the proof of Proposition 7(b) by taking C?(K;) and the sequence of
functions

Ui

Enl, )= =9I+ T Ay

We shall compute
M :=supit —u). (36)

Ks

Letus assume that > 0 and, as we have already seen, this maximum cannot be reachec
for x = 0. Takexa > 0. The function

Uy (t,x) :=u(t,x) —at

is a sub-solution of the equation

Let us denote

J— 2 _ 2
\Iln(t,s,x,y) =ug(t,x) —u(s,y) — S nzy) - ¢ ’7:) K

(37)
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and let(z,, s, x,, y,) be a point whereb, reaches a local maximum. Thef — x1
reaches a local maximum @, x,,), wherey; denotes the function

(X - yn)z

(t— 5,7)2
Xl(tv X) = l(snv yn) + nz + .

772

By the same argumeng,; — u reaches a local maximum &, y,/) where x» denotes
the function

(xr) - y)2 _ (tn - S)2
n? n?

X2(Sa )’) = "_ta(tr)’ xr)) -

To finish the proof we need the following:
LEMMA 3.-There existp > 0 and (1, s,, x,,, y,), a sequence of maxima of the
functionW, given by(37), such that

|im0(x,, —y)?/n*=0, (38)
7}—)

x,>p and y,>p fornsmall enough. (39)
We return to the proof of Proposition 9. By Lemma 3, there exists a sub-sequence
(ty, Sy, Xy, yy) OF (2, s, Xy, ), SUch thatc,, > 0. Sinceu, is a viscosity sub-solution,
we get
d X1 dx1
?(tn’a xr]’) + H0<xr)’a W(tr)’a xr)’)) +oa < 09
hence

2ty — sy) M) +a<0. (40)

’7/2 + Ho (x”/ ’ ,712
By the same argument, singds a viscosity super-solution we get

2([’-5’) 2(}('/— /)
% + H0<yn” %) >0. (41)

Subtracting (41) from (40) we obtain

2(xy — yy) 20y — yy) 2(xy — yy)
-SRI = ) = oy, S ) — g, T ) <

Taking the limit asy — 0, and using (38) and (39), we get<Q—«. This is in
contradiction with the assumptialn > 0. The proof is complete except for the proof
of Lemma3. O

Remark 6. — Obviously,

xtv
u(t,x):)q(t— >
1-y
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is a classical solution of (30), which verify(z, 0) = A,¢. Hence, by the proof of
Proposition 9, we deduce an uniqueness result and we get that= u.

Proof of Lemma 3. Put M, = sup, ¥, = W, (1,, s, X, y,). Then, by (37), for any
(t, x) and(s, y) belonging toKs,

ug(t,x) —u(s,y) — S zy) - v ZS)
n n

<M,

Taking (¢, x) = (s, y) we get
(e —u)(t, x) < My,

hence
M* :=supi, —u) < M,.

Ks
Since
(xy — yp)? U 5,)°
n? n?
and by the fact thaM*, i, andu are bounded, there exists> 0, such that

Ma < ’/_loz(tn» xn) _Z(sn» yn) -

2 2
— t —
oy 2y") + (O ZS") <k, forallp=>o0.
n n
We can extract a sub-sequeneg, s,/, x,/, y,y) Which converges te, s, x, y) € K and
such that{(x,, — y,)?/n*: n’ > 0} converges. Since, — y,, — 0 andt,, — s, — 0, as
n’ — 0, we deduce that=s andx = y.
Furthermore,

M <Iliminf M,, <limsupM,,

2 2
_ . Xy — / L. — Sy
il (t,x) —u(t,x) — lim M—Ilmmf(" ) < M~
7)/_)0 2 7]/_)0 77/2
Hence
2

. . Xy — /

lim M,, = M* and jim S —9)" _ g,

7)/_)0 7)/_)0 n/z

Assume thatt, x) €10, T] x {0}. The preceeding inequality yields
M“ < I/_l(x(t9x) _Z(tvx) = —ot

sincei = u on 10, T] x {0}. Fora small enoughM*® is positive which contradicts our
last inequality and (39) is justified.O

Finally, by the symmetry op?(-), the result of Theorem 2 is an easy consequence of
Remark 6 and of the following:
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PROPOSITION 10. —For (7, x) € ,

xtr
lims(e)In p;(x) = kl( — t), (42)
e—0 1— Y

and the convergence is uniform on each compact subset bforeover,

Iimos(e) Inpf(0) =—nr1t, Vt>0.

Proof of the Proposition 10. Fhis proof is an adaptation of the proof of a result in
[2] (see Lemma 4.1, p. 86). ~

Let K be a compact subset 6f. First, we show that lig,qu® = u, uniformly on
K. By Proposition 9,4 = u = u on K. This means that is a continuous function
(sincei is u.s.c. and: is I.s.c.). Hence, by (26)* — u is also a continuous function
andM, := sup, (u® — u) is reached atz,, x.) € K.

Sinceu® is bounded, we can extract a sub-sequefigex,’), such that(z,, x,/) —
(t,x) € K andM, — (limsup, M,), ase’ — 0. By (29) we get

lim supu® (1,7, x,) < (e, x).
&'—0

Hence

lim supsup(u® — u) = limsup(u® (1,7, xo) — u(ty, xp)) < ii(t, x) — u(t, x) = 0.

e—0 K g’—0

By similar arguments, we obtain:

lim supsup(u — u®) <O0.
e—>0 K

Therefore,
limsupsup(u — u®) = 0.
e—0 K
On the other hand,
limsupu®(z, x) = min{lim sup(—s(e) In pf(x)), D},

e—0 e—0
liminf u* ¢, ) = min{lizn_)igf(—s(a) Inp (), D}.

We deduce that, fob large enough, the term egp D /s (¢)) will not change the limits as

¢ tends to zero, since(t, x) = A, (t — );__;) is bounded. Hence(¢) In p! (x) converges

uniformly on each compact set & to Al(’ifyy —1).

Finally, for x = 0, we use formula (9) which we proved in Proposition 5:

1 Sy s(e
p;(0) = —35(8)1/2 Z:le Ajt/s( )wf(o)
j=
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By a similar reasoning as in the proof of Corollary 2, we can show that:

Iimos(s) In p7 (0) = —Aqt. O

Note

This work is the starting point in proving a large deviations principle in a more general
context, subject which will be treated elsewhere (see [9]).
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