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ABSTRACT. – Consider{Xε
t : t � 0} (ε > 0), the solution starting from 0 of a stochastic

differential equation, which is a small Brownian perturbation of the one-dimensional ordinary
differential equationx ′

t = sgn(xt )|xt |γ (0 < γ < 1). Denote bypε
t (x) the density ofXε

t . We
study the exponential decay of the density asε → 0. We prove that, for the points(t, x) lying
between the extremal solutions of the ordinary differential equation, the rate of the convergence
is different from the rate of convergence in large deviations theory (although respected for the
points(t, x) which does not lie between the extremals). Proofs are based on probabilistic (large
deviations theory) and analytic (viscosity solutions for Hamilton–Jacobi equations) tools. 2001
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RÉSUMÉ. – On considère{Xε
t : t � 0} (ε > 0), la solution issue de zéro d’une équation

différentielle stochastique définie comme une petite perturbation brownienne de l’équation
différentielle ordinairex ′

t = sgn(xt )|xt |γ (0< γ < 1). On notepε
t (x) la densité deXε

t . Le but
de cet article est d’étudier la décroissance exponentielle de la densité quandε → 0. On montre
que la vitesse de convergence est différente de celle rencontrée dans la théorie classique des
grandes déviations lorsque le point(t, x) est situé entre les trajectoires des solutions extrémales
de l’équation différentielle ordinaire. En revanche, pour les points qui ne sont pas situés
entre les extrémales, la vitesse est identique à celle de la théorie des grandes déviations. Les
preuves reposent sur des arguments probabilistes (théorie des grandes déviations) et analytiques
(solutions de viscosité pour des équations de Hamilton–Jacobi). 2001 Éditions scientifiques et
médicales Elsevier SAS
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Introduction

Let 0< T < ∞, {Bt : t � 0} an one-dimensional Brownian motion, and consider the
stochastic differential equation on[0, T ]:{

dXε
t = εdBt + b(Xε

t )dt,
Xε

0 = x0.

Let us denote byPε the law of the processXε· . It is classical that the family{Pε: ε > 0}
is weakly relatively compact and, asε tends to zero, every cluster valueP has its support
contained in the set of pathsx which are solutions of the dynamical system{

x′(t) = b(x(t)),
x(0) = x0.

(1)

If (1) has an unique solution (for instance, if b is a Lipschitz function), then by
the large deviations theory, it is known thatPε is exponentially tight and thereforePε

converges toP exponentially fast, asε tends to zero.
If (1) has more than one solution, in [1] it is proved that, under suitable conditions,

there is just one limit value in law, concentrated on at most two paths: the extremal
solutions of (1) (see Fig. 1).

The aim of this paper is to study the precise convergence ofPε towardsP in the
following case: take 0< γ < 1 and letPε be the law of the solution of the stochastic
differential equation: {

dXε
t = ε dBt + sgn(Xε

t )|Xε
t |γ dt,

Xε
0 = 0. (2)

We can see this equation as a small random perturbation of the dynamical system:{
x′
t = sgn(xt )|xt |γ ,
x0 = 0.

(3)

Let us denote bypε
t (·) the density ofXε

t with respect to the Lebesgue measure. We
observe that if|x| �= (t (1− γ ))1/1−γ , i.e. if (t, x) does not belong to the graph of one of
the extremal solutions of problem (3), then the density tends to zero, corroborating the
results in [1].

Fig. 1. Solutions of the dynamical system.
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Let us describe our main results. According to the position of the point(t, x), we
emphasize two kinds of rate.

If the point(t, x) is such that|x| > {t (1− γ )}1/1−γ , there exists a positive functionkt
such that:

lim
ε→0

ε2 lnpε
t (x) = −kt(|x|).

This means that the density has an exponential decay with rateε2, as in large deviations
theory. The rate is the same as in the case when the dynamical system has an unique
solution. For instance, if the drift b is a Lipschitz function the rate agrees to the rate in
Freidlin–Wentzell theorem for random perturbations of the dynamical systems (see, [7,
p. 31]).

If the point (t, x) lies in the domain between the two extremals, that is, if|x| <
{t (1− γ )}1/1−γ , then the density has an exponential decay with a different rate, namely
ε2(1−γ )/(1+γ ). Precisely, we show that, for such points(t, x):

lim
ε→0

ε
2(1−γ )
(1+γ ) lnpε

t (x)= λ1

(
x1−γ

1− γ
− t

)
.

Hereλ1 is the first positive eigenvalue of the Schrödinger operator:

−1

2

d2

dx2
+ γ

2|x|1−γ
+ |x|2γ

2
.

Let us note that, in the particular caseγ = 0, the calculation is explicit (see
Proposition 3 below).

The plan of the paper is as follows. In the first section we recall some existence
results for stochastic and ordinary equations and also the results of [1], for the drift
b(x) := sgn(x)|x|γ , 0 � γ < 1. Moreover we give some representations of the density
pε
t . In particular, we give an expansion in terms of eigenvalues and eigenfunctions of the

Schrödinger operator. This was already studied by Kac [10] for continuous potentials and
we adapt this result to our situation. Section 2 is devoted to the convergence of the density
in logarithmic scale with rateε2. We compute the limit for the points(t, x) which does
not lie between the extremals (see Theorem 1) and we give an upper bound for the other
points. In the last section we treat the convergence of the density in logarithmic scale
with the rateε2(1−γ )/(1+γ ), for the points(t, x) lying between the extremals. The precise
limit is obtained in Theorem 2 by the study, developed in Section 3, of the viscosity
solution of a Hamilton–Jacobi equation (see [2] or [8]). Although the ideas are inspired
by [2], there are several new difficulties, since, for example, b is not a Lipschitz function.

1. Preliminaries

1.1. Existence results

In this subsection we recall some existence results for the stochastic differential
equation (2), for the ordinary differential equation and the convergence result of [1].
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PROPOSITION 1. –There exists a unique strong solution of(2). Moreover, for any
Borel measurable functionf ,

E
[
f (Xε

t )
]= E

[
f (εBt)exp

{ |Bt |γ+1

(γ + 1)ε1−γ
− γ

2ε1−γ

t∫
0

|Bs|γ−1 ds

− 1

2ε2−2γ

t∫
0

|Bs|2γ ds

}]
. (4)

Proof. –The existence, weak uniqueness and non explosion results are consequences
of Girsanov theorem and Novikov criterion (which is satisfied here sinceγ < 1).
Pathwise uniqueness is a consequence of Proposition 3.2 in [13, p. 370]. Applying
Girsanov theorem, we get

E

[
f

(
Xε

t

ε

)]
= E

[
f (Bt)exp

{
1

ε1−γ

t∫
0

sgn(Bs)|Bs|γ dBs − 1

2ε2−2γ

t∫
0

|Bs|2γ ds

}]
,

and (4) is a consequence of Itô–Tanaka formula (thanks to convexity) and the occupation
time formula. ✷

We study now the dynamical system (3) and the behaviour of the lawPε of the process
Xε· , asε → 0:

PROPOSITION 2. –Eq. (3) admits an infinity of solutions:{
cγ (t − λ)

1/1−γ
+ , λ� 0;−cγ (t − λ)

1/1−γ
+ , λ� 0

}
,

wherecγ is a constant. Let us denote by

ρ1,2(t)= ±{(1− γ )t}1/1−γ

the extremal solutions of the dynamical system. ThenPε tends to1
2δρ1 + 1

2δρ2, asε → 0.

Proof. –The existence result is obvious. By Theorem 5.2 in [1, p. 291]: ifP is any
cluster value of{Pε}, asε → 0, thenP is concentrated on the extremal solutionsρ1 and
ρ2:

P = 1

2
δρ1 + 1

2
δρ2. ✷

1.2. The particular case: γ = 0

Let us note that in the caseγ = 0 the calculation is explicit, we compute the density
and we show that the diffusion tends towards the extremal solutions (in a generalized
sense, namely a.e. differentiable) of the following differential equation:{

x′
t = sgn(xt ),
x0 = 0,
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which areρ1,2(t) = ±t . In this particular case, the diffusionXε· is solution of the
following stochastic differential equation:{

dXε
t = ε dBt + sgn(Xε

t )dt,
Xε

0 = 0, (2′)

and we can compute the densitypε
t (x) of Xε

t with respect to the Lebesgue measure:

PROPOSITION 3. –Let us denoteϕ(x)= ∫∞
x e−y2/2 dy. Then,

pε
t (x) = 1

ε
√

2πt
exp−

{
(|x| − t)2

2ε2t

}
− 1

ε2
√

2π
ϕ

( |x|
ε
√
t

+
√
t

ε

)
exp

2|x|
ε2

. (5)

Moreover, asε → 0,

pε
t (x)∼ 1

ε
√

2πt

(
1− t

(|x| + t)

)
exp−(|x| − t)2

2ε2t
, if x �= 0,

pε
t (x) ∼ ε√

2πt3
exp− t

2ε2
, if x = 0.

In particular, for all (t, x) ∈ R+ × R
∗

lim
ε→0

ε2 lnpε
t (x)= −(|x| − t)2

2t

and

lim
ε→0

ε2 lnP
(∣∣|Xε

t | − t
∣∣� δ

)= −δ2

2t
.

Proof. –Using Girsanov theorem and the Itô–Tanaka formula we get

E
[
f (Xε

t )
]= E

[
f (ε|Bt |)exp

{ |Bt |
ε

− 2Lt

ε
− t

2ε2

}]
,

wheref is a Borel measurable even function (one can consider only even functions since
−Xε is a solution of (2′) too) andLt is the Brownian local time at level 0.

Moreover, by Levy’s theorem,(|Bt |,2Lt) has the same law as(St − Bt, St), where
St = sup0�s�t Bs , hence

E
[
f (Xε

t )
]= E

[
f
(
ε(St −Bt)

)
exp
{

−Bt

ε
− t

2ε2

}]
,

where the law of(Bt , St ) is well known (see, for instance, [11, Proposition 8.1, p. 95]):

P(Bt ∈ da,St ∈ db)= 2(2b − a)√
2πt3

exp
{

−(2b − a)2

2t

}
da db, for a � b, b � 0.
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Hence

E
[
f (Xε

t )
]= ∞∫

0

b∫
−∞

2(2b − a)√
2πt3

exp
{

−(2b − a)2

2t
− a

ε
− t

2ε2

}
f
(
ε(b − a)

)
da db.

We make the change of variablesx := ε(2b − a) andy := ε(b− a) and we obtain

E
[
f (Xε

t )
]= 2

ε3
√

2πt3

∞∫
0

∞∫
y

x exp
{

− x2

2ε2t
+ 2y

ε2
− x

ε2
− t

2ε2

}
f (y)dx dy

= 2

ε
√

2πt

∞∫
0

f (y)exp
{

2y

ε2
− (y + t)2

2ε2t

}
dy

− 2

ε2
√

2π

∞∫
0

( ∞∫
(y+t )/(ε

√
t)

exp−v2

2
dv

)
f (y)exp

2y

ε2
dy.

From this equality we get the expression of the density (5). Moreover, using the Laplace
method we obtain the equivalents in the statement of the proposition.✷
1.3. Some representations of the density

In this subsection we shall describe some useful representations of the density ofXε
t ,

solution of Eq. (2), for arbitrary 0< γ < 1.

PROPOSITION 4. –For t > 0, ε > 0, x ∈ R:

pε
t (x) = 1

ε
√

2πt
exp
{ |x|γ+1

(γ + 1)ε2
− x2

2ε2t

}

× E

[
exp

{
− γ t

2

1∫
0

∣∣xs + ε
√
tbs
∣∣γ−1

ds − t

2ε2

1∫
0

∣∣xs + ε
√
tbs
∣∣2γ ds

}]
,

(6)
where{bt : t ∈ [0,1]} is the standard Brownian bridge.

Proof. –By (4) in Proposition 1 and by the scaling property of the Brownian motion,
we obtain

E
[
f (Xε

t )
]= E

[
f (ε

√
tB1)exp

{
t (γ+1)/2

(γ + 1)ε1−γ
|B1|γ+1

− γ t(γ+1)/2

2ε1−γ

1∫
0

|Bs|γ−1 ds − tγ+1

2ε2−2γ

1∫
0

|Bs|2γ ds

}]
.

Let us decompose the Brownian motion as follows:

Bt = gt + bt ,
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whereg is a standard Gaussian random variable independent of the Brownian bridgeb.
Therefore,

E
[
f (Xε

t )
]= ∫

R

f (ε
√
ty)√

2π
exp
{

t (γ+1)/2

(γ + 1)ε1−γ
|y|γ+1 − y2

2

}
dy

× E

[
exp

{
−γ t(γ+1)/2

2ε1−γ

1∫
0

|ys + bs |γ−1 ds − tγ+1

2ε2−2γ

1∫
0

|ys + bs |2γ ds

}]
.

By the change of variablex = ε
√
ty, the above formula becomes

E
[
f (Xε

t )
]= ∫

R

f (x)

ε
√

2πt
exp
{ |x|γ+1

(γ + 1)ε2
− x2

2ε2t

}

× E

[
exp

{
− γ t

2

1∫
0

|xs + ε
√
tbs |γ−1 ds − t

2ε2

1∫
0

|xs + ε
√
tbs |2γ ds

}]
dx

and we obtain the expression of the density (6).✷
Another useful expression of a density is contained in the following:

COROLLARY 1. –For t > 0, ε > 0 andx ∈ R,

pε
t (x)= 1

ε
√

2πt
exp
{ |x|γ+1

(γ + 1)ε2
− x2

2ε2t

}

× E x

ε(s(ε))1/2

[
exp

{
−

t/s(ε)∫
0

V (Bs)

2
ds

}∣∣∣∣∣B t
s(ε)

= 0

]
, (7)

where we denoteds(ε) := ε(2(1−γ ))/(1+γ ) and the potentialV is given by:

V (x) := γ

|x|1−γ
+ |x|2γ . (8)

Proof. –By conditioning with respect to{Bt = x} in (4) we obtain

E
[
f (Xε

t )
]= ∫

R

1√
2πt

f (εx)exp
{

1

(γ + 1)ε1−γ
|x|γ+1 − x2

2t

}
dx

× E0

[
exp−

{
γ

2ε1−γ

t∫
0

|Bs |γ−1 ds − 1

2ε2−2γ

t∫
0

|Bs|2γ ds

}∣∣∣∣∣Bt = x

]
.

The functional of the Brownian motion which appears in the integral on the right hand
side of the previous equality is time reversal invariant. Therefore we obtain

E0

[
exp−

{
γ

2ε1−γ

t∫
0

|Bs|γ−1 ds − 1

2ε2−2γ

t∫
0

|Bs|2γ ds

}∣∣∣∣∣Bt = x

]
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= Ex

[
exp−

{
γ

2ε1−γ

t∫
0

|Bs|γ−1 ds − 1

2ε2−2γ

t∫
0

|Bs|2γ ds

}∣∣∣∣∣Bt = 0

]
.

By scaling we get (7). ✷
The following result contains an expansion of the density ofXε

t in terms of the
eigenvalues and the eigenfunctions of a Schrödinger operator. This type of expression
was already considered in [10, p. 194] for continuous potentials.

PROPOSITION 5. –For t > 0, ε > 0 andx ∈ R:

pε
t (x)= 1

εs(ε)1/2
exp
{ |x|γ+1

(γ + 1)ε2

} ∞∑
j=1

e−λj t/s(ε)ψj (0)ψj

( |x|
εs(ε)1/2

)
, (9)

whereλj andψj are the eigenvalues and the normalized eigenfunctions of the operator
onL2(R):

−1

2

d2

dx2
+ 1

2
V (x),

whereV is given by(8). Moreover the series is uniform convergent for fixedt and x

belonging to a compact set ofR.

Proof. –Let us consider the following one-parameter semi-group:

(Ttf )(x) := Ex

[
f (Bt)exp−1

2

t∫
0

V (Bs)ds

]
,

and we shall denote byat (x, y) the density of the semi-group with respect to the
Lebesgue measure:

at (x, y) := e−(x−y)2/2t

√
2πt

Ex

[
exp−1

2

t∫
0

V (Bs)ds

∣∣∣∣∣Bt = y

]
.

Therefore, by (7) we can write

pε
t (x) = 1

εs(ε)1/2
exp
{ |x|γ+1

(γ + 1)ε2

}
a t

s(ε)

(
0,

x

εs(ε)1/2

)
.

Let us note that, by the definition, the semi-groupTt preserve the positivity. More-
over, the generator ofTt = e−Ht is −H , with H a positive self-adjoint operator. In-
deed, this second property is true for self-adjoint contraction semi-groups (see, [5, The-
orem 4.6, p. 99]) and we can prove that

‖Tt‖L2(R),L2(R) � sup
x∈R

Ex

[
exp−1

2

t∫
0

V (Bs)ds

]
� 1,
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sinceV (·)� 0 (see, for instance, [3, p. 271]).
It can be shown (see [6, Lemma 2.1, p. 339]) that the density of a semi-group satisfying

the previous properties and which is a trace class operator, can be developed as

at(x, y) =
∞∑
j=0

e−λj tψj (x)ψj (y).

Here theλj andψj are the eigenvalues and the normalized eigenfunctions of the discrete
spectrum of the equation

−1

2
ψ ′′(x)+ 1

2
V (x)ψ(x) = λψ(x).

Moreover the convergence of the series is uniform over all compact sets ofR × R.
To obtain the result (9) we shall prove thatTt is a trace class operator. Clearly,

at (x, x) � 1√
2πt

E

[
exp−1

2

t∫
0

∣∣x + b0,t
s

∣∣2γ ds

]
=: ãt (x, x), (10)

whereb0,t
s is the Brownian bridge from 0 to 0 over[0, t] (thus the standard Brownian

bridge is bs = b0,1
s ) and ãt (x, y) is the density of the semi-group generated by the

Schrödinger operator

−1

2

d2

dx2
+ 1

2
Ṽ (x) with Ṽ (x) := |x|2γ .

SinceṼ ∈ L2
loc(R) and limx→∞ Ṽ (x)/|x|γ = +∞ we can deduce that this operator is a

class trace operator (see also [4, Theorem 3.2, p. 488]). By Mercer’s theorem (see, for
instance, [12, p. 65]), we get ∫

R

ãt (x, x)dx <∞,

and then, by (10), ∫
R

at (x, x)dx <∞.

Again by Mercer’s theorem, we deduce thatTt is a trace class operator.✷
Remark2. – In the particular caseγ = 1/2 we can find, by straightforward calcula-

tion, an equivalent ofψj(x):

ψj(x)∼ exp
{

−2

3
x3/2 + 2

√
xλj

}
, asx → ∞.

This enables to think thatε2/3 lnpε
t (x) tends toλ1(2

√|x| − t), if (t, x) lies between the
extremal solutionsρ1,2(t)= ±t2/4 (heres(ε)= ε2/3).
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The second part of this remark can be proved in the following simple casex = εs(ε)1/2

but for any 0< γ < 1:

COROLLARY 2. –For t > 0, 0< γ < 1,

lim
ε→0

s(ε) lnpε
t

(
εs(ε)1/2)= −λ1t. (11)

Moreover, the convergence is uniform on any compact subset ofR
∗+.

Proof. –By (9) we get

pε
t

(
εs(ε)1/2)= 1

εs(ε)1/2
exp
{

1

(γ + 1)

} ∞∑
j=1

e−λj t/s(ε)ψj (0)ψj (1).

SinceV is bounded from below, there exists a constantK > 0 such that

for all j � 1, ‖ψj‖∞ �K‖ψj‖2

(see [4, Lemma 3.1, p. 488]). Therefore, by classical convergence theorems,

pε
t

(
εs(ε)1/2)= 1

εs(ε)1/2
exp
{

1

(γ + 1)
− λ1t

s(ε)

}(
ψ1(0)ψ1(1)+ o(s(ε))

)
and we obtain the announced result. It is not difficult to modify this proof to obtain the
uniform convergence. ✷

2. Convergence of ε2 ln pε
t (x)

The purpose of this section is to study the behaviour ofε2 lnpε
t (x). The result will be

sharp if(t, x) does not lie between the two extremal solutions of (3).

THEOREM 1. – If |x| > {t (1 − γ )}1/1−γ then there exists a positive functionkt such
that

lim
ε→0

ε2 lnpε
t (x) = −kt(|x|). (12)

Remark3. – We also prove that if|x| � {t (1− γ )}1/1−γ then

lim sup
ε→0

ε2 lnpε
t (x) � 0, (13)

but this result will be improved in Section 3.

Proof of Theorem 1. –Clearly, by (6) we can write

pε
t (x) = 1

ε
√

2πt
exp
{ |x|γ+1

(γ + 1)ε2
− x2

2ε2t

}
E

[
exp
(

−F(εb)− G(εb)

ε2

)]
,



M. GRADINARU ET AL. / Ann. I. H. Poincaré – PR 37 (2001) 555–580 565

where

F(εb)= γ t

2

1∫
0

∣∣xu− √
tεbu
∣∣γ−1

du

and

G(εb)= t

2

1∫
0

∣∣xu− √
tεbu
∣∣2γ du.

(i) (An upper bound forlim supε→0 ε
2 lnpε

t (x).)
We have

pε
t (x) � 1

ε
√

2πt
exp
{ |x|γ+1

(γ + 1)ε2
− x2

2ε2t

}
E

[
exp−G(εb)

ε2

]
=: rεt (x).

G is a continuous lower bounded functional of the Brownian bridge. Therefore, to study
rεt (x) we use the Varadhan principle (see, for instance [7, p. 43]). Hence, applying the
logarithm we obtain

lim sup
ε→0

ε2 lnpε
t (x)� |x|γ+1

γ + 1
− x2

2t
− 1

2
inf
φ∈H1

0

A(φ),

where, forφ ∈H 1
0 ,

A(φ) := t

1∫
0

∣∣xu− √
tφ(u)

∣∣2γ du+
1∫

0

φ′2(u)du. (14)

Here

H 1
0 :=

{
φ(t) =

t∫
0

f (s)ds: f ∈L2([0,1]) andφ(1) = 0

}
,

endowed with the norm

‖φ‖H1
0

:=
( 1∫

0

|φ′(s)|2 ds

)1/2

.

We compute the infimum of the functionalA in the following:

PROPOSITION 6. –There exists a positive functionkt such that

inf
φ∈H1

0

A(φ)=


2|x|1+γ

γ+1 − x2

t
if |x| � {t (1− γ )}1/(1−γ ),

2|x|1+γ

γ+1 − x2

t
+ 2kt (|x|) otherwise.

(15)
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We can finish the proof of the theorem and we postpone the proof of Proposition 6.
Using (15) we deduce (13) and

lim sup
ε→0

ε2 lnpε
t (x)� −kt(|x|).

(ii) (A lower bound forlim inf ε→0 ε
2 lnpε

t (x).)
Let us just note thatF explodes when(t, x) lies between the extremals. In the

following we assume thatx > {t (1− γ )}1/1−γ . Let us denoteκ := 1
2(x − √

tφ′
0(0)) > 0.

Hereφ0 is the function which minimizes the functionalA (see the proof of Proposition 6
below). It results from the proof of Proposition 6 below thatφ0 belongs to the following
open set

U := {φ ∈ C([0,1]): xu− √
tφ(u) > κu, ∀u ∈ [0,1]}.

Moreover, there existsη > 0 such that

max
φ∈U

F(φ)� η.

Takeδ > 0 and letV be a neighbourhood ofφ0 such that

max
φ∈V

G(φ)�G(φ0)+ δ.

Let us denoteW := U ∩ V . Then we can write

lim inf
ε→0

ε2 ln E

[
exp−

(
F(εb)+ G(εb)

ε2

)]
� lim inf

ε→0
ε2 lnE

[
exp−

(
F(εb)+ G(εb)

ε2

)
1{εb∈W}

]
� lim inf

ε→0
ε2 lnP(εb ∈W)− lim

ε→0
ε2η − max

φ∈W
G(φ).

By Schilder’s theorem (see for instance [7, p. 18]), we obtain

lim inf
ε→0

ε2 lnE

[
exp−

(
F(εb)+ G(εb)

ε2

)]

� − inf
φ∈W∩H1

0

1

2

1∫
0

|φ′(u)|2 du−G(φ0)− δ

� −1

2
A(φ0)− δ.

Letting δ → 0 we get

lim inf
ε→0

ε2 lnpε
t (x)� |x|γ+1

γ + 1
− x2

2t
− 1

2
inf
φ∈H1

0

A(φ).

By (15) we obtain the limit (13). This ends the proof of Theorem 1 except for the proof
of Proposition 6. ✷
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Fig. 2. Description ofa.

Proof of Proposition 6. –First, we can assume thatx � 0. Indeed, ifx � 0 it suffices
to replace in (6)bu by −bu which are identical in law, to obtain the result.

(i) Let φ ∈H 1
0 and let us denote (see also Fig. 2)

a = sup
{

0� u� 1: φ(u) = xu√
t

}
.

It is obvious that on [0,1], the straight linel(s) := xs/
√
t minimizes the functional

φ �→
1∫

0

∣∣xs − √
tφ(s)

∣∣2γ ds.

Moreover
a∫

0

φ′2(u)du� ax2

t
=

a∫
0

(
l′(u)

)2
du, ∀φ ∈H 1

0 .

Indeed

ax√
t

= φ(a) =
∣∣∣∣∣

a∫
0

φ′(u)du

∣∣∣∣∣� √
a

( a∫
0

φ′2(u)du

)1/2

.

(ii) We show that there existsφ0 ∈H 1
0 such thatA(φ0)= infA(φ). Take a minimizing

sequenceφn of A. Since this sequence is bounded inH 1
0 there exists a subsequence, still

denoted byφn, weakly convergent to someφ0. This implies pointwise convergence ofφn
to φ0, and by Lebesgue theorem, convergence of the first part ofA(φn) to the first part
of A(φ0). As a byproduct one gets convergence of theL2 norm ofφ′

n to the one ofφ′
0

and combined with weak convergence it yields strong convergence. HenceA(φn) goes
toA(φ0) which, in turn, realizes the infimum. By (i) we see that on[0, a], φ0 = l. Let us
notice also that

φ0(u) < l(u) for all u ∈]a,1]. (16)

For anyh ∈H 1
0 compactly supported in]a,1]

d

dλ
A(φ0 + λh)

∣∣∣∣
λ=0

= 0
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(this differentiation is allowed since, foru ∈]a,1], xu−√
tφ0(u) > 0). By (14) and (16)

we obtain

1∫
0

γ t3/2
∣∣xu− √

tφ0(u)
∣∣2γ−1

h(u)du−
1∫

0

φ′
0(u)h

′(u)du = 0. (17)

Let us denotey(u) := xu − √
tφ0(u) > 0. Then from (17) we obtain thaty verifies the

differential equation:y′′(u)= γ t2y2γ−1(u) in a weak sense on]a,1], with y(a) = 0 and
y(1) = x (thanks to continuity ofy). We deduce thaty verifies in a weak sense

d(y′)2

du
= 2y′y′′ = 2y′(γ t2y2γ−1)= 2γ t2y2γ−1y′.

Therefore, for allε > 0,

(
y′(u)

)2 = (y′(a + ε)
)2 + 2γ t2

u∫
a+ε

y(x)2γ−1y′(x)dx

= (y′(a + ε)
)2 + t2y(u)2γ − t2y(a + ε)2γ . (18)

This equality implies thaty′ can be extended as a continuous function on the whole
[a,1].

(iii) We shall prove that, fora > 0, y satisfies:

u = a + y(u)1−γ

t (1− γ )
for all u ∈ [a,1]. (19)

We need to computey′(a+). Let us suppose thaty′(a+) > 0 then |y(u)|2γ−1 is
integrable in a neighborhood ofa and formula (17) extends to anyh. Now, this
implies that the second derivative ofy is a function. Sincey′(a−) = 0, this contradicts
y′(a+) > 0. Hencey′(a+) = 0 and we obtain by (18)

y′(u)2 = t2y(u)2γ

or,

u= a +
y(u)∫

y(a)

dx

txγ
= a + y(u)1−γ

t (1− γ )
.

Finally takeu= 1, sincey(1) = x, we get

a = 1− x1−γ

t (1− γ )
, (20)

and the conditiona > 0 can be written as

x < {t (1− γ )}1/(1−γ ),
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namely(t, x) lies between the two extremals.
(iv) We need to compute the minimum ofA

inf A(φ)=A(φ0)=A
(
y(·)/√t − l(·))

= t

1∫
0

∣∣xu− √
tφ0(u)

∣∣2γ du+
1∫

0

φ′2
0 (u)du

= x2a

t
+ t

1∫
a

∣∣xu− √
tφ0(u)

∣∣2γ du+
1∫

a

φ′2
0 (u)du,

sinceφ0(u)= l(u) on [0, a], or

A(φ0)= x2a

t
+ t

1∫
a

y(u)2γ du+
1∫

a

(x − y′(u))2

t
du

= x2a

t
+ t

1∫
a

y(u)2γ du+ x2(1− a)

t
− 2x

t

1∫
a

y′(u)du+ 1

t

1∫
a

y′2(u)du.

By (19) we obtain:

A(φ0)= x2

t
+ 2t

1∫
a

{
t (1− γ )(u− a)

} 2γ
1−γ du− 2x

1∫
a

{
t (1− γ )(u− a)

} γ
1−γ du,

which can be written, by change of variablev = t (1− γ )(u− a) and by (20), as

A(φ0)= x2

t
+ 2

1− γ

x1−γ∫
0

v
2γ

1−γ dv − 2x

t (1− γ )

x1−γ∫
0

v
γ

1−γ dv.

Then we get the first part of (15) by straightforward calculation.
(v) Assume nowa = 0 which means, by (iii), that:

x �
(
t (1− γ )

)1/(1−γ )
.

As in (iii), the solution of the problem (18) satisfies

y′(u)2 = t2y(u)2γ + y′(0)2. (21)

However in this case(a = 0) we have not the explicit value ofy′(0), as in (iii).
(vi) We need to compute the minimum ofA

infA(φ) =A(φ0)= t

1∫
0

y(u)2γ du+
1∫

0

(x − y′(u))2

t
du
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= 2

t

1∫
0

y′(u)2 du− y′(0)2

t
− x2

t
.

Sincey is positive on]0,1], y′ does not vanish thanks to the differential equation (21)
thus is positive. Therefore it is allowed to apply the following change of variable

du

dy
= 1√

y′(0)2 + t2y2γ
, (22)

and we get

A(φ0)= 2

t

x∫
0

√
y′(0)2 + t2y2γ dy − y′(0)2

t
− x2

t
.

By straightforward calculation we obtain

A(φ0)= 2x
√
y′(0)2 + t2x2γ

(1+ γ )t
+ (γ − 1)y′(0)2

(1+ γ )t
− x2

t
= 2xγ+1

1+ γ
− x2

t
+ 2kt (x),

where

t (1+ γ )kt(x) := x

√
y′(0)2 + t2x2γ − tx1+γ + γ − 1

2
y′(0)2.

Let us prove thatkt (x) > 0. By the change of variable (22), we get

1=
x∫

0

du

dy
dy =

x∫
0

dy√
y′(0)2 + t2y2γ

.

Therefore as a function ofx, y′(0) is continuous, strictly increasing and differentiable
for x � {t (1− γ )}1/1−γ . Moreover the derivative with respect tox of y′(0) is equal to

γy′(0)
x + (γ − 1)

√
y′(0)2 + t2x2γ

� 0.

Therefore we can computek′
t (x) for x > {t (1− γ )}1/1−γ :

k′
t (x) = 1

t

(√
y′(0)2 + t2x2γ − txγ

)
> 0, sincey′(0) > 0.

Observe thatkt ({t (1 − γ )}1/1−γ ) = 0 by (iv) and thatk′
t (x) is positive forx > {t (1 −

γ )}1/1−γ , sokt(x) > 0. This ends the proof of the second part of (15).✷
Remark4. – Using a probabilistic method (see [9]), we can obtain an upper bound in

the particular caseγ = 1/2. Precisely we can prove that, for|x| � t2/4,

lim sup
ε→0

ε2/3 lnpε
t (x)� a′

1

(
t/2−√|x|),
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where a′
1 is the greater negative zero of the derivative of the Airy functionAi. In

the proof of this upper bound we use the following result concerning a functional of
the standard Brownian bridge{bu, u ∈ [0,1]}, which can be interesting in itself. For
0� a < 1,

lim
ε→0

ε2/3 ln E

[
exp−1

ε

a∫
0

|bu|du
]

= a′
1a

21/3

(see also [16], [14]). The improvement of the upper bound in the general case will be
presented in the following section.

3. Viscosity solution of a Hamilton–Jacobi equation

In Theorem 1 we obtained the behaviour ofpε
t (x), if (t, x) does not lie between the

extremals. The aim of this section is to study the behaviour for(t, x) lying between the
extremals, namely we studys(ε) lnpε

t (x), with s(ε)= ε(2(1−γ ))/(1+γ ).

THEOREM 2. – If (t, x) belongs to the domain contained between the extremal
solutions of(3), then

lim
ε→0

s(ε) lnpε
t (x) = −λ1

(
t − |x|1−γ

1− γ

)
. (23)

Hereλ1 is the first positive eigenvalue of the Schrödinger operator:

−1

2

d2

dx2
+ γ

2|x|1−γ
+ |x|2γ

2
.

Our study is based on a particular tool: the viscosity solutions of parabolic partial
differential equations. For a study of these solutions the reader may consult the book of
Barles [2] or the one of Fleming [8].

First we shall introduce some domains of the first quadrant plane:

2 := {(t, x): 0< t < T, 0< x < {(1− γ )t}1/1−γ
}
,

2̃ := {(t, x): 0< t � T , 0< x < {(1− γ )t}1/1−γ
}
,

2̂ := {(t, x): 0< t � T , 0� x < {(1− γ )t}1/1−γ
}
,

2ε := {(t, x): (1− γ )ε4/(1+γ ) < t < T, εs(ε)1/2 < x < {(1− γ )t}1/1−γ
}
,

2̃ε := {(t, x): (1− γ )ε4/(1+γ ) < t � T , εs(ε)1/2 < x < {(1− γ )t}1/1−γ
}
,

2̂ε := {(t, x): (1− γ )ε4/(1+γ ) < t � T , εs(ε)1/2 � x < {(1− γ )t}1/1−γ
}
.
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Fig. 3. The domain2ε.

Let us consider the following parabolic partial differential equation inU ⊂ R
2 (we shall

preciseU below):

∂u

∂t
+H

(
t, x, u,

∂u

∂x
,
∂2u

∂x2

)
= 0, (24)

whereH is a real Hamiltonian defined onR ×U × R × R. We assume thatH is elliptic
in the following sense:

H(t, x, u,p, q1)�H(t, x, u,p, q2), if q2 � q1.

We recall the notion of viscosity solution for (24) and we need a slightly different
definition than the one in [2] (see Definition 2.1, p. 11 or Definition 4.1, p. 80), since
the domains which we consider are not open nor closed.

Definition 1. – Letu be a bounded upper semi-continuous (u.s.c.) (respectively lower
semi-continuous (l.s.c.)) function on a connected setU with connected boundary.u is
a viscosity sub-solution (respectively super-solution) of (24) onU , if for all ϕ ∈ C2(U),
whenever(t0, x0) ∈ U is a point of local maximum (local minimum) ofu− ϕ, then

∂ϕ

∂t
(t0, x0)+H

(
t0, x0, u(t0, x0),

∂ϕ

∂x
(t0, x0),

∂2ϕ

∂x2
(t0, x0)

)
� 0 (respectively� 0). (25)

PROPOSITION 7. –Let us define

uε(t, x) := −s(ε) ln
(
pε
t (x)+ e−D/s(ε)

)
, (26)

whereD > 0. Thenuε is a viscosity solution of

∂uε

∂t
+Hε

(
t, x, uε,

∂uε

∂x
,
∂2uε

∂x2

)
= 0 in 2̃ε, (27)

corresponding to the Hamiltonian:

Hε(t, x, u,p, q) := −ε2

2
q + ε

4γ
1+γ

2
p2 + xγp − γ xγ−1s(ε)

(
1− exp

u−D

s(ε)

)
. (28)
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Remark5. – The reason to introduce the exponential term, withD > 0, in the
definition ofuε is that this last function is bounded. Clearly, by choosingD large enough,
this term in the logarithm scale will not change the limit asε → 0.

Proof of Proposition 7. –
(a) First, we shall prove that Eq. (27) is verified on2ε in classical sense.
SinceV , the potential given by (8) of the Schrödinger operator in the statement of

Theorem 3, is uniformly Hölder continuous on a neighbourhood of anyx �= 0 (see [15,
Definition 2 p. 122]), by Theorem 1 p. 127 in [15] we deduce that the function

(t, x) �→ 1√
2πt

exp
(

−x2

2t

)
E

[
exp−1

2

t∫
0

V (Bs)ds
∣∣∣∣Bt = x

]

is a classical solution of the equation

∂u

∂t
= 1

2

∂2u

∂x2
− 1

2
V u on ]0, T ] × R

∗.

Thus, by similar arguments, using (7) we obtain thatpε ∈ C1,2(2ε). By logarithmic
transform, we get thatuε is a classical solution of

∂u

∂t
+Hε

(
t, x, u,

∂u

∂x
,
∂2u

∂x2

)
= 0 on2ε,

whereHε is given by (28).
(b) Moreover all classical solutions are viscosity solutions, henceuε is a viscosity

solution on2ε. It suffices to verify thatuε is a viscosity solution oñ2ε \ 2ε. Take
now ϕ ∈ C2(2̃ε) such that(T , x0) ∈ 2̃ε is a local maximum ofuε − ϕ. Replacingϕ by
ϕ+ (x − x0)

4 + (t −T )2 the first and the second derivative at(T , x0) do not change, and
so we can assume that(T , x0) is a point of local strict maximum. The idea is to adapt the
reasoning for the points of2ε to the point(T , x0). To do this, we need the following:

LEMMA 1. –Let (uη)η be a sequence of u.s.c. functions which converges towards
u, uniformly over all compact subsets of a bounded setU . We suppose thatu can be
extended to an u.s.c. function on̄U . If (τ, ξ) is a local strict maximum ofu then there
exists(τη, ξη) ∈ Ū which is a point of local maximum ofuη such thatlimη→0(τη, ξη) =
(τ, ξ).

We can finish the proof of Proposition 8. Let us consider the function:

9η(t, x) := uε(t, x)− ϕ(t, x)− η

T − t
, η > 0.

By Lemma 1 applied on2ε, there exists a sequence(tη, xη) ∈ 2̃ε of local maxima of9η

which converges to(T , x0), asη → 0. Clearly, limt→T 9η(t, x) = −∞. Hencetη < T



574 M. GRADINARU ET AL. / Ann. I. H. Poincaré – PR 37 (2001) 555–580

and forη small enough(tη, xη) ∈2ε. Sinceuε is a viscosity sub-solution on2ε we get:

η

(T − tη)
2

+ ∂ϕ

∂t
(tη, xη)+Hε

(
tη, xη, u

ε(tη, xη),
∂ϕ

∂x
(tη, xη),

∂2ϕ

∂x2
(tη, xη)

)
� 0.

By the continuity ofuε, lettingη → 0 we obtain

∂ϕ

∂t
(T , x0)+Hε

(
T , x0, u

ε(T , x0),
∂ϕ

∂x
(T , x0),

∂2ϕ

∂x2
(T , x0)

)
� 0.

The same argument can be used to prove thatuε is a super-solution. This ends the proof
of Proposition 8 except for the proof of Lemma 1.✷

Proof of Lemma 1. –The result is clear for(τ, ξ) ∈ U (see [2, Lemma 4.2 p. 88]).
Let us suppose that(τ, ξ) ∈ ∂U . Take r > 0 and we define the compact setKr =
B((τ, ξ), r)∩ Ū , whereB is an Euclidean ball centred in(τ, ξ) with radiusr such that
(τ, ξ) is a global strict maximum onKr . The u.s.c. functionuη reaches its maximum on
the compact setKr at (τη, ξη). We extract a sub-sequence, denoted for simplicity again
by (τη, ξη), which converges to(τ̄ , ξ̄ ), asη → 0. Assume that(τ̄ , ξ̄ ) /∈ ∂U . Sinceu is
u.s.c. and since(τ, ξ) is a strict maximum, there exists(t, y) ∈Kr such that

u(τ, ξ) > u(t, y) > u(τ̄ , ξ̄ ).

This inequality can not be true! Indeed,uη(τη, ξη) tends tou(τ̄ , ξ̄ ) anduη(t, y) tends to
u(t, y), these two convergences being uniform. Hence,(τ̄ , ξ̄ ) ∈ ∂U . Moreover, we know
that ‖(τ̄ , ξ̄ ) − (τ, ξ)‖ � r . We can choose a sequence(τ̄ r , ξ̄ r) which tends to(τ, ξ),
asr → 0. By diagonalization, we can find a sequence(τη, ξη) ∈ Ū which converges to
(τ, ξ), asη → 0. ✷

Our aim is to take the limit asε → 0 in the Hamilton–Jacobi equation (27). We prove
the following stability result:

PROPOSITION 8. –Let us denote

ū(t, x) := lim sup
ε→0,s→t,y→x,(s,y)∈2̂ε

uε(s, y), for all (t, x) ∈ 2̂. (29)

Thenū is a viscosity sub-solution of the equation

∂u

∂t
+H0

(
x,

∂u

∂x

)
= 0 on 2̃, (30)

with the Hamiltonian

H0(x,p) := xγ p. (31)

If we denoteu = lim inf uε, with a limit taken as previously, thenu is a viscosity super-
solution of(30).
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The proof of this result is similar to that of Theorem 4.1 p. 85 in [2], except for the
fact that the stability result is stated on a closed set. Here we only need the following:

LEMMA 2. –Let (vε)ε be a sequence of u.s.c. functions having a local uniform bound
on 2̂ε. Let us denote bȳv = lim supvε as in (29). We assume that̄v has a local strict
maximum on2̂. Then, there exists a sub-sequence(vε′)ε′ of (vε)ε and a sequence
(rε′, zε′)ε′ ∈ 2̂ε such that: for all ε′ > 0, vε′ reaches a local maximum on̂2ε at (rε′, zε′)
and

lim
ε′→0

(rε′, zε′)= (r, z), lim
ε′→0

vε′(rε′, zε′)= v̄(r, z).

The proof of this lemma is similar to the proof of Lemma 4.2, p. 88 in [2].
We also prove an uniqueness result contained in the following:

PROPOSITION 9. –For all (t, x) ∈ 2̂,

ū(t, x) = u(t, x). (32)

Proof of Proposition 9. –(i) First, we prove (32) for(t, x) ∈]0, T ] × {0}. Take
ϕ ∈ C2(2̂) such that(t0,0) is a local maximum of̄u − ϕ. By Lemma 2, there exists
a sequence of points(tε, xε) of local maxima ofuε on 2̂ε such that:

lim
ε→0

(tε, xε)= (t0,0).

We take a sub-sequence if necessary and we study then two different situations:
(a) either(tε, xε) ∈ 2̃ε and taking the limit asε → 0 in Eq. (27) we get

∂ϕ

∂t
− 1� 0; (33)

(b) or (tε, xε) ∈ 2̂ε \ 2̃ε. Since, forD large enough,

uε(tε, xε)= −s(ε) ln
(
pε
tε

(
εs(ε)1/2)+ e−D/s(ε)

)
tends toλ1t0 asε → 0 (see Corollary 2), we get̄u(t0,0)= λ1t0.

Take a particular functionϕ0 which does not verify (33):

ū(t, x)− ϕ0(t, x) := ū(t, x)− x

η
− η2 cosh

(
t − t0

η2

)
− t − t0

η
. (34)

Denote by(tη, xη) the point of maximum ofū − ϕ0 on 2̂ and we shall prove that
(tη, xη) /∈ 2̃. Clearly

(ū− ϕ0)(tη, xη)� (ū− ϕ0)(t0,0)= ū(t0,0)− η2.

Since ū is bounded, we obtain, by (34) limη→0 xη = 0, limη→0 tη = t0 and
limη→0

tη−t0
η

= 0. Moreover sincēu is a viscosity sub-solution, if(tη, xη) ∈ 2̃, we get

∂ϕ0

∂t
(tη, xη)+ xγη

∂ϕ0

∂x
(tη, xη)� 0. (35)
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Clearly, by (34),

∂ϕ0

∂t
(tη, xη)= sinh

(
tη − t0

η2

)
+ 1

η
and

∂ϕ0

∂x
(tη, xη)= 1

η
.

It is obvious that neither Eq. (33) nor Eq. (35) can be verified byϕ0 with η small enough.
Hence(tη, xη) /∈ 2̃ and so(tη, xη) ∈]0, T ] × {0}. Moreover, since we are in case (b),
ū(tη,0)= λ1tη. We deduce that

ū(t0,0)� λ1tη + η − ϕ0(tη,0).

As η → 0 we get

ū(t0,0)� λ1t0.

Using the same reasoning foru we obtain that̄u= u on ]0, T ] × {0}.
(ii) Second, we prove (32) for(t, x) ∈ 2̃. It suffices to verify (32) on the compact set

Kδ = {(t, x): x �
(
(t − δ)(1− γ )

)1/1−γ}∩ 2̃

for anyδ > 0. Let us note that the inequation

∂ϕ

∂t
(t, x)+ xγ

∂ϕ

∂x
(t, x) � 0

is verified on the boundary{(t, x): x = {(t − δ)(1− γ )}1/1−γ } ∩ 2̃. To show this fact we
proceed as in the proof of Proposition 7(b) by takingϕ ∈ C2(Kδ) and the sequence of
functions

9η(t, x) := ū(t, x)− ϕ(t, x)+ η

x1−γ − (t − δ)(1− γ )
.

We shall compute

M := sup
Kδ

(ū− u ). (36)

Let us assume thatM > 0 and, as we have already seen, this maximum cannot be reached
for x = 0. Takeα > 0. The function

ūα(t, x) := ū(t, x)− αt

is a sub-solution of the equation

∂u

∂t
+H0

(
x,

∂u

∂x

)
+ α = 0.

Let us denote

=η(t, s, x, y) := ūα(t, x)− u(s, y)− (x − y)2

η2
− (t − s)2

η2
, (37)
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and let (tη, sη, xη, yη) be a point where=η reaches a local maximum. Then̄uα − χ1

reaches a local maximum at(tη, xη), whereχ1 denotes the function

χ1(t, x) := u(sη, yη)+ (x − yη)
2

η2
+ (t − sη)

2

η2
.

By the same argument,χ2 − u reaches a local maximum at(sη′, yη′) whereχ2 denotes
the function

χ2(s, y) := ūα(tη, xη)− (xη − y)2

η2
− (tη − s)2

η2
.

To finish the proof we need the following:

LEMMA 3. –There existρ > 0 and (tη, sη, xη, yη), a sequence of maxima of the
function=η given by(37), such that

lim
η→0

(xη − yη)
2/η2 = 0, (38)

xη > ρ and yη > ρ for η small enough. (39)

We return to the proof of Proposition 9. By Lemma 3, there exists a sub-sequence
(tη′, sη′, xη′, yη′) of (tη, sη, xη, yη), such thatxη′ > 0. Sinceūα is a viscosity sub-solution,
we get

∂χ1

∂t
(tη′, xη′)+H0

(
xη′,

∂χ1

∂x
(tη′, xη′)

)
+ α � 0,

hence

2(tη′ − sη′)

η′2 +H0

(
xη′ ,

2(xη′ − yη′)

η′2

)
+ α � 0. (40)

By the same argument, sinceu is a viscosity super-solution we get

2(tη′ − sη′)

η′2 +H0

(
yη′ ,

2(xη′ − yη′)

η′2

)
� 0. (41)

Subtracting (41) from (40) we obtain

−2(xη′ − yη′)

η′2 (x
γ

η′ − y
γ

η′)=H0

(
xη′ ,

2(xη′ − yη′)

η′2

)
−H0

(
yη′,

2(xη′ − yη′)

η′2

)
� −α.

Taking the limit asη → 0, and using (38) and (39), we get 0� −α. This is in
contradiction with the assumptionα > 0. The proof is complete except for the proof
of Lemma 3. ✷

Remark6. – Obviously,

u(t, x) = λ1

(
t − x1−γ

1− γ

)
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is a classical solution of (30), which verifyu(t,0) = λ1t . Hence, by the proof of
Proposition 9, we deduce an uniqueness result and we get thatū= u= u.

Proof of Lemma 3. –PutMη = supKδ
=η = =η(tη, sη, xη, yη). Then, by (37), for any

(t, x) and(s, y) belonging toKδ ,

ūα(t, x)− u(s, y)− (x − y)2

η2
− (t − s)2

η2
�Mη.

Taking(t, x) = (s, y) we get

(ūα − u )(t, x) �Mη,

hence

Mα := sup
Kδ

(ūα − u )�Mη.

Since

Mα � ūα(tη, xη)− u(sη, yη)− (xη − yη)
2

η2
− (tη − sη)

2

η2
,

and by the fact thatMα , ūα andu are bounded, there existsk > 0, such that

(xη − yη)
2

η2
+ (tη − sη)

2

η2
� k, for all η > 0.

We can extract a sub-sequence(tη′, sη′, xη′, yη′) which converges to(t, s, x, y) ∈ Kδ and
such that{(xη′ − yη′)2/η′2: η′ � 0} converges. Sincexη′ − yη′ → 0 andtη′ − sη′ → 0, as
η′ → 0, we deduce thatt = s andx = y.

Furthermore,

Mα � lim inf Mη′ � lim supMη′

� ūα(t, x)− u(t, x)− lim
η′→0

(xη′ − yη′)2

η′2 − lim inf
η′→0

(tη′ − sη′)2

η′2 �Mα.

Hence

lim
η′→0

Mη′ =Mα and lim
η′→0

(xη′ − yη′)2

η′2 = 0.

Assume that(t, x) ∈]0, T ] × {0}. The preceeding inequality yields

Mα � ūα(t, x)− u(t, x) = −αt

sinceū = u on ]0, T ] × {0}. Forα small enoughMα is positive which contradicts our
last inequality and (39) is justified.✷

Finally, by the symmetry ofpε
t (·), the result of Theorem 2 is an easy consequence of

Remark 6 and of the following:
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PROPOSITION 10. –For (t, x) ∈ 2̃,

lim
ε→0

s(ε) lnpε
t (x) = λ1

(
x1−γ

1− γ
− t

)
, (42)

and the convergence is uniform on each compact subset of2̃. Moreover,

lim
ε→0

s(ε) lnpε
t (0)= −λ1t, ∀t > 0.

Proof of the Proposition 10. –This proof is an adaptation of the proof of a result in
[2] (see Lemma 4.1, p. 86).

Let K be a compact subset of̃2. First, we show that limε→0u
ε = u, uniformly on

K . By Proposition 9,ū = u = u on K . This means thatu is a continuous function
(since ū is u.s.c. andu is l.s.c.). Hence, by (26)uε − u is also a continuous function
andMε := supK(u

ε − u) is reached at(tε, xε) ∈K .
Sinceuε is bounded, we can extract a sub-sequence(tε′, xε′), such that(tε′, xε′) →

(t, x) ∈K andMε′ → (lim supε Mε), asε′ → 0. By (29) we get

lim sup
ε′→0

uε
′
(tε′, xε′)� ū(t, x).

Hence

lim sup
ε→0

sup
K

(
uε − u

)= lim sup
ε′→0

(
uε

′
(tε′, xε′)− u(tε′, xε′)

)
� ū(t, x)− u(t, x) = 0.

By similar arguments, we obtain:

lim sup
ε→0

sup
K

(
u− uε

)
� 0.

Therefore,

lim sup
ε→0

sup
K

(
u− uε

)= 0.

On the other hand,

lim sup
ε→0

uε(t, x) = min
{

lim sup
ε→0

(−s(ε) lnpε
t (x)
)
,D
}
,

lim inf
ε→0

uε(t, x) = min
{

lim inf
ε→0

(−s(ε) lnpε
t (x)
)
,D
}
.

We deduce that, forD large enough, the term exp(−D/s(ε))will not change the limits as
ε tends to zero, sinceu(t, x) = λ1(t − x1−γ

1−γ
) is bounded. Hence,s(ε) lnpε

t (x) converges

uniformly on each compact set of̃2 to λ1(
x1−γ

1−γ
− t).

Finally, for x = 0, we use formula (9) which we proved in Proposition 5:

pε
t (0)= 1

εs(ε)1/2

∞∑
j=1

e−λj t/s(ε)ψ2
j (0).
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By a similar reasoning as in the proof of Corollary 2, we can show that:

lim
ε→0

s(ε) lnpε
t (0)= −λ1t. ✷

Note

This work is the starting point in proving a large deviations principle in a more general
context, subject which will be treated elsewhere (see [9]).

Acknowledgements

The authors are grateful to the anonymous referee for his comments on the first version
of the paper and to Saïd Benachour for its suggestions of references for Section 3. This
paper originates from a stimulating discussion with Youssef Ouknine on the Ouarzazate
road.

REFERENCES

[1] Bafico R., Baldi P., Small random perturbations of Peano phenomena, Stochastics 6 (1982)
279–292.

[2] Barles G., Solutions de Viscosité des Équations de Hamilton–Jacobi, Springer-Verlag, 1994.
[3] Carmona R., Regularity properties of Schrödinger and Dirichlet semigroups, J. Funct.

Anal. 33 (1979) 259–296.
[4] Davies E.B., Properties of the Green’s functions of some Schrödinger operators, J. London

Math. Soc. (2) 7 (1973) 483–491.
[5] Davies E.B., One-Parameter Semigroups, Academic Press, 1980.
[6] Davies E.B., Simon B., Ultracontractivity and the heat kernel for Schrödinger operators and

Dirichlet laplacians, J. Funct. Anal. 59 (1984) 335–395.
[7] Deuschel J.D., Stroock D.W., Large Deviations, Academic Press, 1989.
[8] Fleming W.H., Controlled Markov Processes and Viscosity Solutions, Springer-Verlag,

1993.
[9] Herrmann S., Ph.D. Thesis, Université Henri Poincaré, Nancy, 2001.

[10] Kac M., On some connections between probability theory and differential and integral
equations, in: Proceedings of the Second Berkeley Symposium of Math. Statist. Probab.
1950, University of California Press, 1951, pp. 189–215.

[11] Karatzas I., Shreve S.E., Brownian Motion and Stochastic Calculus, 2nd edn., Springer-
Verlag, 1991.

[12] Reed M., Simon B., Methods of Modern Mathematical Physics III: Scattering Theory,
Academic Press, 1979.

[13] Revuz D., Yor M., Continuous Martingales and Brownian Motion, 2nd edn., Springer-
Verlag, 1994.

[14] Rice S.O., The integral of the absolute value of the pinned Wiener process calculation of its
probability density by numerical integration, Ann. Probab. 10 (1982) 240–243.

[15] Rosenblatt M., On a class of Markov processes, Trans. Amer. Math. Soc. 71 (1951) 120–
135.

[16] Shepp L.A., On the integral of the absolute value of the pinned Wiener process, Ann.
Probab. 10 (1982) 234–239.


