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ABSTRACT. — We consider a 2-dimensional spatially homogeneous Boltzmann equation
without cutoff, which we relate to a Poisson driven nonlinear S.D.E. We know from [8] that
this S.D.E. admits a solutioV;, and that for each > 0, the law ofV; admits a density (¢, .).

This density satisfies the Boltzmann equation. We use here the stochastic calculus of variatior
for Poisson functionals, in order to prove thatoes never vanisii 2001 Editions scientifiques
et médicales Elsevier SAS
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RESUME. — Nous considérons une équation de Boltzmann bidimensionnelle, spatialemen
homogéne sans cutoff. Nous associons a cette équation une équation différentielle stochastiq
poissonnienne non linéaire. Nous savons par [8] que cette E.D.S. admet une sBjutain
que pour chaque > 0, la loi de V, admet une densit¢ (¢, .). La fonction f(z, v) obtenue
satisfait I'équation de Boltzmann. Nous utilisons ici le calcul des variations stochastiques poul
des fonctionnelles de mesures de Poisson, afin de prouvef quees’annule jamaisa 2001
Editions scientifiques et médicales Elsevier SAS

1. Introduction and statement of the main result
The 2-dimensional spatially homogeneous Boltzmann equation of Maxwellian mole-

cules deals with the density(z, v) of particles which have the speede R? at the
instantr > 0 in a sufficiently dilute (2-dimensional) gas:

L= / / FDF@ ) = F(0) @00 BO) dOdv,,  (L1)

v.€R2 =—m7
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where, if Ry is the rotation of anglé,

U/:v+v*+Re<v—v*>; v;:U+U*—R9<U_U*>, (1.2)

2 2 2 2

The new speeds andv,, are the velocities of two molecules which had the speeaisd
v, after a collision of anglé. The “cross sectionp is an even and positive function on
[—7, w]1\{0} which explodes at 0 as/|* with s €]1, 3[ in the case of interactions in
1/r%, with « > 2. Thus, the natural assumption (which we will suppose) is

/025(0)d0 < 00. (1.3)
0

In this case, Eq. (1.1) is said to be without cutoff. The case with cutoff, namely when
Jo B(6)d6 < oo, has been much investigated by the analysts, and they have obtainec
some existence, regularity and strict positivity results.

In this paper, we prove, by using the stochastic calculus of variations on the Poissol
space, a strict lowerbound for the solutighof (1.1) built in [8], in the case where the
cross section sufficiently explodes.

To this aim, we use a probabilistic approach to the Boltzmann equations of
Maxwellian molecules first introduced by Tanaka [19], and more recently by Desuvil-
lettes, Graham and Méléard [7,11] in the one dimensional case, see also [8] for the ca:
of Eq. (1.1). Indeed, we build a non classical Poisson driven S.D.E., of which we denote
by V; the solution. This S.D.E. is related to Eqg. (1.1) in the following sense: its proba-
bility flow L£(V;) is a measure solution of (1.1). In [8], the Malliavin calculus is used to
prove that for each > 0, £(V;) admits a smooth densitg(z, v), which satisfies (1.1) in
a weak sense.

The strict positivity of f seems to be unknown by the analysts in the case without
cutoff, and might be useful to justify computations in which the entropy appears. In
the case with cutoff, much more is known: Pulvirenti and Wennberg have proved a
Maxwellian lowerbound in [18]. Their method is based on the separation of the gain
and loss terms, which typically cannot be used in the present case.

Lowerbounds of the density for Wiener functionals have been worked out by Aida,
Kusuoka and Stroock [1], Ben Arous and Léandre [3], see also Bally and Pardoux [2].
In the case of Poisson functionals, the strict positivity of the density in small time has
been studied by Léandre [15], Ishikawa [12], and Picard [17].

The first result of strict positivity of the density for Poisson functionnals is due to
Léandre [16], who was considering simple jump processes with finite variations. In [10],
we have given a sufficient condition for the strict positivity in every time for one-
dimensional Poisson-driven S.D.E.s, and this approach does allow to deal almost onl
with processes with infinite variations. In [9], we have applied this method to the Kac
eguation without cutoff, which is a caricatural one-dimensional version of the Boltzmann
eqguation.

The strict positivity of the density for general 2-dimensional Poisson driven S.D.E.s
seems to be a very difficult problem, but in the case of the S.D.E. related to (1.1),
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the method works quite easily. The main differences between the one-dimensiong
caricatural Kac equation and Eq. (1.1) are the following. First, we have to deal with
a determinant. We thus have to assume an additional condition on the support of th
initial distribution. Furthermore, we have to prove that for each 0, the support of
f(,.) contains that of the initial distribution. Another technical problem is that one
cannot solve explicitely Doléans—Dade equations with valuesty »(R).

Let us now be precise. First, we define the solutions of (1.1) in the following (weak)
sense.

DEFINITION 1.1.— LetP, be a probability oriR? that admits a moment of order 2.
A positive functionf on R* x R? is a solution of (1.1) with initial dataPy if for every
test functionp € C2(R?),

/f(t,v)¢(v)dv:/¢(U)Po(dv) // / (@' (v),v—v*)dv*dvds

veR2 veR2 0 veR2 p*eR2

+// //f(s V) £ (s, v)[pV) — (V)

0 veR2 p*eR2 —7

—{(¢'(),v" = v)|B(O)dO dv* dvds, (1.4)

where¢’ denotes the gradient @f, where(., .) stands for the scalar product &?,
wherev’ is defined by (1.2), and where

b= /(1—cos@)ﬂ(9)d9. (1.5)

In [8], one assumes that

Assumption(H):

1. The initial distributionP, admits a moment of order 2, apdsatisfies (1.3),

2. B = Bo+ B1, whereg, is even and positive o7, 7]\{0}, and there existi > 0,
6o €10, 7[, andr €]1, 3[ such thatBo(6) = %1 g, 401(6),

3. P is not a Dirac mass.

Let us also consider the following random elements:

Notation 1.2. — Assumeg H)-1. We denote byV a Poisson measure df, oo[ x
[0, 1] x [—m, 7], with intensity measure:

v(dO,da,ds) = B(0)dodads (1.6)

and by N the associated compensated measure. We consid&-valued random
variable V, independent ofv, of which the law isP,. We will consider[0, 1] as a
probability space, denote hix the Lebesgue measure ) 1], and denote by, and
L, the expectation and law aifi0, 1], B([0, 1]), d«).
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If (H)-2 also holds, we suppose that = Ny + N1, where Ny and N1 are two
independent Poisson measured@ro[ x [0, 1] x [—, 7], with intensity measures:

vo(dl, da, ds) = Bo(0)dO da ds; v1(dO,da,ds) = p1(0)dOda ds. a.7)
In this case, we also assume that our probability space is the canonical one associat
with the independent random elemefmts Ng, andN;:
€, F {F:}, P)
=(Q, F (F}),P)e (@ F° {F2), PO o (@Y, 7L {F1), PY).  (1.8)
The following theorem is proved in [8] (Theorems 2.8 and 2.9).

THEOREM 1.3. — Assumg H)-1. There exists &?-valued cadlag adapted process
{Vi(w)} on Q and aR?-valued proces$W, («)} on [0, 1] such that, if

l/cosh -1 —sind
AO) =3 ( sing  cosd — 1) : (.9)
then
t 1
V(@) = Vo) + AB) (Vy_(@) — W,_(c)) N (o, d6 dat ds)
/1]
/ (1.10)

2
0

0
1
b
-2/ 0/ (Vy—(@) — W,_(@))dads,

Lo(W)= L(V); E([:gu;])HVZHZ) < 0.
T

The obtained lawC (V) = L, (W) is unique.
Finally, the main theorem of [8] (Theorem 3.1) is the following.

THEOREM 1.4.— AssumdH). Let(V, W) be a solution of1.10) Then for allr > 0,
the law of V, admits a densityf (¢, .) with respect to the Lebesgue measureRmn
The obtained functiory is a solution of the Boltzmann equati¢h.1) in the sense of
Definition1.1

It is also proved in [8] (Theorems 3.2 and 3.3) that under an additional assumption,
the solutionf is regular in the following sense: for eachk 0, f(z, .) is in C*(R?), and
f is continuous 0n0, oo[ x R?.

Let us now give our assumption, which is more stringent t{tFjt we need a stronger
explosion of the cross section, and the support of the initial distribution has to be large
enough.

Assumption(SP:
1. The same agH)-1,
2. The same a6H)-2, but withr € [2, J[,
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3. For eachX, € R?, there exist O< ¢ < < co such that
Po({X e R¥/|X* — X3l <&, |X¥ — X31 > n}) >0, (1.11)
Po({X eR?/|X” — X3| <&, |X* — X3l > n}) > 0. (1.12)
Our main result is the following:

THEOREM 1.5.— Assume(SP), and consider the solutionf in the sense of
Definition 1.1 of Eq. (1.1) built in Theoreml.4. There exists a strictly positive function
g(t, v) on]0, +-o00[ x R?, continuous irv, such that for all > 0, all ¢ € Cj(]Rz),

/¢(v)f(t, v)dv > /¢(v)g(t, v)dv. (1.13)
R2 R2

In particular, if f is continuous irv, then f is strictly positive o0, 4+oo[ x R?.

Let us say a word about our assumptiofSP-1 is quite reasonable. Indeed, the
analysts almost always assume tRatadmits a density (see, e.g., Desvillettes, [6]); the
assumption/ [|v]|?Po(dv) < oo means that the energy of the initial system is finite; and
(1.3) is physically natural(SP-2 means that the cross section contains a sufficiently
“large” and “regular” part, which will allow us to use the Malliavin calculus. Notice that
the fact that- > 2 means thaj |0|8(6) d6 = oo: we really need a strong explosion of
the cross section. FinallySP)-3 is a technical condition. Notice thésP)-3 is satisfied
if suppPy contains{(x, 0), x > 0} U {(0, y), y > 0}, or even{(n,0),n € N} U {(0, n),

n € N}. If the support ofP, is bounded, then the condition is not satisfied.

Finally, let us notice that in our proof, we check the following lemma:

LEMMA 1.6.— Assumeg H)-1, and consider a solutiotV, W) of (1.10) Then for
eachr > 0,

SuppPo C suppL(Vy). (1.14)

The present work is organized as follows. In Section 2, we prove Lemma 1.6. In the
third section, we state a criterion of strict positivity of the density for Poisson functionals,
which we apply toV; in the next sections.

In the whole work, we will assume at ledg$f)-1, use Notatiorl.2, and consider a
solution (V, W) of (1.10) We will always work on the time interv@lD, 7], for some
T > 0 fixed. We will denote bi a constant of which the value may change from line to
line.

2. Conservation of the support

This section is dedicated to the proof of Lemma 1.6, which will be useful to prove
Theorem 1.5. We fiXXo € suppPy = SuppP o V5 %, ¢ > 0, andr > 0. We have to show
that

P(|[V: = Xoll < &) > 0. (2.1)
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The main idea of the proof is very simple: singgand N are independent, we can build
a subset of2, of positive probability, on whict, is nearX, and N is very small. On
this subsety, will be nearV,, and thus neakg.

For p e N*, we denote byV? the restrictionV ;o 71x(0,1)x{[—=,1/[-1/p.1/p1}» WhICh IS &
finite Poisson measure. Then, we splitinto

Vi=VWo+ Al + B!, (2.2)
where
t 1 n
///A(e) . — W,_(@))N?(d6 da ds) (2.3)
00—
and, ifb, = [}/ (1—cosd)p(9)do,
t 1 1/p
B —// / AO)(V,_ — W,_(a))N(db da ds)
0 -1/p
t 1
— %’//(VS_ — W,_(a))dads. (2.4)
00
We consider the set
Q,={lIVo— Xoll <€¢/2; N? =0} (2.5)

of which the probability is strictly positive (for eaclp), since V, and N’ are
independent, sinc&, € suppP o V%, and sinceN” is afinite Poisson measure.

It is clear from (2.2) and (2.5), sinc&, belongs too (Vp, N?), and thanks to
the Bienaymé—Tchebichev inequality applied to the conditional probability measure
P(.|o(Vy, NP)), that

P(|V: — Xoll <&) = P(|IVo— Xoll < &/2; AP =0,
> P(Qp; )
> E(le, P(||Bf||<&/210(Vo.N")))

p

B[ <e/2)

£(10,{1- SE(B P06 an)}). @9)

SinceN |jo, 71x10,11x[-1/p,1/p1 IS INdependent ofp and N7, it clearly is a Poisson measure
under the conditional probability measuk . |o (Vy, N?)). Thus, using Burkholder’s
inequality, the facts thak,, (Supq 7, | W; [1?) < 0o, and||A(0) || < K62, we see that

E(|B?|? 1o (Vo. N7))
t 1 1/p
<K///QZ[E(”V‘”z'G(VO’NP))+||Ws(0!)||2]ﬂ(9)d«9dozds
0

0 -1/p
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r 1

+Kb§//[E(||vs||2|a(vo, N)) + W @)[12] da ds
00

<up

1+/E(||Vs||2|a(V0, N?))ds]|, (2.7)
0

where the sequence, decreases to 0 whep goes to infinity. Furthermore, thanks
to (2.2) and the definition o2 ,,

1o, IVill < 1o, [1Xoll +& + || B[] (2.8)

from which we deduce the existence of a const&nnot depending op, such that

Lo, E(IVil? [0 (Vo. N?)) < 1q,

K+K [ EQVIP o (Vo N)ds|. (29
0

Gronwall’s lemma allows us to conclude that
1o, E(IVilI*1 0 (Vo, N?)) < K1g,. (2.10)
Finally, using (2.7), we obtain
1o, E(|B?|* 10 (Vo. N7)) < Kuyla,. (2.11)
Using (2.6), we see that
P(|lVi = Xol < &) > E[lq, (1~ Kup/e®)] > (1= Ku,/e®) P(Q,).  (2.12)

Recalling that for eaclp, P(2,) > 0, and choosingp large enough, in order that
u, <&?/K, we deduce (2.1), and Lemma 1.6 follows.

3. A criterion of strict positivity

This section contains two parts. We first introduce some general notations anc
definitions about Bismut’s approach of the Malliavin calculus on our Poisson space.
Then we adapt the criterion of strict positivity of Bally and Pardoux [2] (which deals
with the Wiener functionals) to our probability space.

In the following definition, we precise the perturbations we will use. We have already
introduced such a perturbation in [8], but we have to define here all the possible
perturbations.

DEFINITION 3.1.— A predictabléR?-valued functionv(w, s, 60, ) on 2 x [0, T] x
[—60, 6o] x [0, 1] is said to be a “perturbation” if for all fixed, s, «, v(w, s, ., a) is C*
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on [—6p, 6], and if there exist some even positive (deterministic) functipasdp on
[—60, 5] such that

lv(s, 0, )|l < n(b); [v'(s, 0, )| < p(6), (3.1)
0
n(®) < |—2|; 1n(=60) =n(6o) =0, (3.2)
1
if £0)=p©®)+ r2r+2% then||€ ||« < > and¢ € LY(Bo(0) db). (3.3)

Notice that thanks to (3.3) andp are inL* N L>®(By(6) d6).
Consider now a fixed perturbatian For 1 € B(0, 1) (this ball is that ofR?), we set

yH(s,0,0) =60+ (A, v(s,0,a)), (3.4)

where(, ) denotes the scalar product &f. Thanks to (3.1), (3.2), and (3.3), it is easy
to check that for each, s, o, w, y*(s, ., «) is an increasing bijection fror-6y, 65]\ {0}
into itself. Then we denote by} = y*(No) the image measure @, by y*: for any
Borel subsetA of [0, T'] x [—0, 6p] x [O, 1],

T 1 =
Ng(A):///1A(s,y*(s,e,a),a)No(dedads). (3.5)
0 0 -

We also define the shiff* on Q by
Voo S* = Vg Noo S* = N{; Nio S* = Ny. (3.6)
We will need the following predictable function:

Yi(s, 0,0y = PR @) 4,6, ). (3.7)

Bo(9)
Then it is easy to check that for al|
y*(Y*.vo) = vo. (3.8)
Indeed, for any Borel set C [0, T] x [0, 1] x [—m, 7],
Yy (Y*.v0)(A)

T 1 n
///1A(s,a,yl(s,9,a))YA(s,e,a)ﬂo(e)dedads
0 -7

1
//1A s,0, 7" (s,0,)) xiy (s,0,a) x Bo(y"(s,0,0))dO dads
0 -

Il
O\\]
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T

T 1
// L4(s, 0, 0")Bo(0) dO' da ds
0 0 -

T

vo(A), (3.9)

where the last inequality comes from the substitutioe: y* (s, 0, ).
We will also need the following inequality: for all, © € B(0, 1) (recall that¢ is
defined in (3.3)),

|Y’\(s,9,oz)—Y”(s,9,a)|§ A — |l x &) (3.10)

which we now prove, using (3.1), (3.2), and (3.3).

|Y*(s,0,0) — Y"(s,0,0)|

_Bolyrs b))

500 A = mll x flv'(s, 0, )

|Bo(y" (5,0, @) = Bo(y* (5,6, )|

+ |14 (e, v'(s, 0, 0))| x

Fol®)
745, 0,0) = 0] X SURy 1000 |B6(®)]
<=l p(®) x |14+ oy 0. 1o
ol®)
3 1V5.6.0) — (5,0,00] X SUR, e e 1B4O)

2 Bo(0)

(we have used the fact that< 1/2, which is obvious from (3.3)). But for all, u, it is
easily checked that

sup 1Bo(P)| < sup 1Bo(@)| < kor/ (18] — n(®))""

[y (s.0,0),y*(s,0,a)] [181=n(8),161+n(0)]
< 2r+1rk0/|0 |r+l,

sincen(0) < 160]/2. We finally obtain
|Y*(s,60,0) — Y"(s,0,a)|
3
<A —ull x p©) x [1+r27n©6)/10]] + §r2’+1||x — 1l x n(®)/16]

0
1% X (p(8) +3/2)

S A =l < £(6) (3.11)

<h =l x {p(9)+r2’+

and (3.10) is proved.
We also consider the following martingale

t 1 7
A A TSy
M, —O/O/_Z(Y (s,0,a) — 1) No(df da ds) (3.12)
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and its Doléans—Dade exponential (see Jacod and Shiryaev [14])

Gr=¢g(M*), =" T[ (1+AaMM)e 2™, (3.13)

0<s <t

Since|Y* — 1| < & < 1/2, itis clear thatG* is always strictly positive of0, 7']. We now
set P* = G%.P. Using Eq. (3.8), and the Girsanov theorem for random measures (see
Jacod and Shiryaev [14], p. 157) one can show fias (S*)~! = P, i.e. that the law of
(Vo, N§, N1) under P* is the same as the one @fy, No, N1) underP.

Finally, it is quite easy, by using the explicit expression (3.13)56f to check the
following lemma.

LEMMA 3.2.— Letv be a perturbation, and>* the associated exponential martin-
gale. Then for alk > 0, all w € 2, the map\ — G?(w) is continuous orB(0, 1).

We now give the criterion of strict positivity we will use.

THEOREM 3.3. — Let X be aR?-valued random variable o2, and let X, € R2.
Assume that there exists a sequeng®f perturbations such that, k" (1) = X o S*,
then for alln, the map

A X" (3.14)

is a.s. twice differentiable oB(0, 1). Assume that there exist> 0, § > 0, andk < oo,
such that for allr > 0,

nILmoo P(A"(r)) >0 (3.15)
where

A'(r) = {IIX — Xol <,

d
det—X"(0) ‘ =,
oA

iX”(A)H + HB—ZX”(A)‘H <k} (3.16)
ER 922 = '

sup {

IAl<s

Then there exists a continuous functi@g)(.) :R? — R,, such thatdy,(Xo) > 0, and
such that for allp € C;' (R?),

E(¢(X)) > / 6 (1)0x, () dy. (3.17)

R2

In order to prove this criterion, it suffices to copy the proof of Theorem 3.3 in [10]
or Theorem 2.3 in [9]. Let us just recall the 2-dimensional version of the uniform local
inverse theorem used in the proof, that can be found in Aida, Kusuoka and Stroock [1]:

LEMMA 3.4.—Letc > 0,8 > 0, andk < oo be fixed. Consider the following set

G ={g:R?— R?/|detg’ (0)| > c, sup[llg)|l + llg' )l + llg”(0)Il] <k}. (3.18)

lx|<8
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Then there existx > 0 and R > 0 such that for everyg € G, there exists a
neighborhoodV, of 0 contained inB(0, R) such thatg is a diffeomorphism fromy,
to B(g(0), @).
We finally state a useful remark, of which the proof can be found in [10], Remark 3.5.
Remark3.5. — LetX be aR?-valued random variable of2. Assume that for every
Xo € suppP o X1, the assumptions of Theorem 3.3 are satisfied. Then the |avisf

bounded below by a measure admitting a strictly positive continuous densRy with
respect to the Lebesgue measuréldn

From now on,T > O'is fixed, and so i, € R?.

In the next section, we will consider a fixed perturbatign and we will compute
V/"(») and its derivatives for anye [0, T']. Section 5 is devoted to the explicit choice of
the sequence, of perturbations. In Section 6, we will first prove that for sofhe 0,
somes > 0, a.s.,

L d
||r|1’]llor<])f ‘deta—k V;(O)‘ = 51{I\VT—X0H<6}- (319)

Then we will check that for some constakit for all n € N, all A € B(0, 1),

| axvio| + vaan <K. (3.20)

Finally, we will easily conclude.

4. Differentiability of the perturbed process

In this section, we consider a fixed perturbatignWe computeV (1) = V, o §* and
its derivatives with respect td. The rigorous proof of the differentiability of similar
processes can be found in [8] or [9].

In order to computeV* (1), it suffices to replace each by S*(w), and to use the
definition of 5%

V”(A)_Vo+///A(9) V(L) — W_()) N (d6 da ds)

r 1

2//(Vs”_()») — Ws_(«))dads (4.1)
0

| S

1
A . " B
+O/O/_[(A(Vn (5.0, 0)) — A©®) (V- (M) — W,_()) No(df da ds).

We now introduce the following semi-martingale, with values\ity, >(R):

Kt”(k):/t/l/nA(@)N(deads)—glt
00—
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t 1 =n
+///(A(yn*(s,9,o¢)) — A(0))No(db da ds), (4.2)
0 0 -7
wherel is the unit 2x 2 matrix. Differentiating (4.1), we obtain
iV”(k)—/tdK”(k) 9y (A)+/j]A/( Hs,0,0))
T A Yo' %) &

x (VI (L) — W (a))v] (5,0, ) No(dO de ds). (4.3)

We have used the notation

a _(ax ay
(5)e »=( 0):
The 2x 2 matrix 2 V" (1) is given by
! VI'(x) ! V(%)
(g r® gww).

We thus see thaéfi V(1) satisfies a linear S.D.E. We thus are able to compute its explicit
expression, which we now do.
First consider the Doléans—Dade exponerflidd” (1)) defined as the solution of:

E(K"(V), =1+ / dK" (). E(K"(3)), . (4.4)
0

Sincel + AK! (1) is always invertible (use the explicit expressionA®)), we know
from Jacod [13], thaE (K" (1)) is a.s. invertible for alt € [0, T].
Using the main result of Jacod, [13], we deduce that

t 1 n
9 n — n n -1 n -1/ a
VG =E(K (A))t!!_/S(K ()21 + AKT (1) A (1) (5. 0. @)

x (VI (L) — W (a))v] (5,60, ) No(dO do ds)
t 1w
:g(K"()\)),///S(K"(A))S‘_l(l+A(y,j(s,e,a)))‘lA/(y;(s,e,a))
0 0 —m

x (VI (A) — W_(@))v! (5,0, @) No(d6 da ds). (4.5)

The last equality comes from the fact thé§ and N, are independent, thus they never
jump at the same time (a.s.), and herdce AK] (1) is taken in account in the integral
againstNg only when the jumpA K7 (o) comes fromiNo.

Exactly in the same way, one can compute the second derivative:
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2 t 1 =n . .
5PWHM=EMWML!!/5mwmg4phuﬁ@ﬁﬂ»y
X {ZA’()/”A(S, 0, oz))(% VE) + A" () (5,0, @) (4.6)

x (VI (L) — W (), (5,6, oz)} v! (5,0, ) No(d0 da ds).
Here,%;zvtn (1) is given by

o 8 5 8
(——v, 0w Ly (x)),
0y ON ox, 9%

and we have used the notation

a b _(ax bx ay by
(c d>(x y)_<cx dx cy dy)'

We will frequently use the following lemma. Recall thathf is a 2x 2 matrix, then
[M]lop = SUR xy=1 IMX].

LEMMA 4.1.—Forall 0<s <11,

§—

1€ (K" (), E(K" M) 2, <L 4.7)

To prove this lemma, we first solve the Doléans—Dade equation in a very simple case

LEMMA 4.2. — LetU be aM;,»(R)-valued process that can be written as the finite
sum of its jumpsfor someO< Ty < --- < T < T,

k

U => AURLz <. (4.8)
i=1

Then

k
EW), =[] + AUz <). (4.9)
i=1
where[[*_, A; = A;. Ar_1... AL

Proof. —It is immediate. Since

k

EW) =1+ L5,<yAUr. EWU)r,— (4.10)
i=1

it suffices to work recursively on the time intervdig, 7; .1[. O

Proof of Lemma 4.1- Let us denote by*, Ng, andN; the restrictions td0, T'] x
[0,1] x {[—m,]/[—¢,e]} of N, Nog, and N;. We also seth® = f{[_m]/[_s’s]}(l —
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cos9)B(0) dh. We denote byk* (1) the semi-martingale given by (4.2) witk, N§,
andb® instead ofN, Np, andb. A standard computation shows that

E( sup ||E(K™ (), — E(K"W),|)? )—>0 (4.11)

te[0,T]

Furthermore, spIittingVE (dOdads) into N°(d6 dads) — Lygie[e..yB(0) dO dads, one
can check that

t 1w t 1 n
K;LS(A):O/O/_ZA(y;(s,e,a))Ng(dedads)+O/O/_ZA(@)Nf(dedads). (4.12)

ThusK"¢(1) satisfies the assumptions of Lemma 4.2. Thusdf D, < --- < T denote
the successive times of its jumps, we know that

k

E(K™ M), =1+ AK7 W Lin<n)- (4.13)
i=1

Hence, if 0< s < ¢,

k

E(K™ (), E(K™ ). =TI + AKE (WL <rcr))- (4.14)
=1

But every jump ofK™¢(A) can be written asi(¢), for some¢ € [—n, w]. One easily
checks that for alip, |7 + A(¢)ll,, < 1. Thusitis clear that for at > 0, all 0< s <,

€K™ ), E(K™* 1) 2], <L (4.15)
From (4.11), we deduce that there exists a sequendecreasing to 0 such that a.s.,

SEBJ?] |E(K™* ), —E(K" (L)), H — 0. (4.16)

One easily concludes: a.€.(K"™% (1)), goes to€(K" (1)), for all t € [0, T]. Thus a.s.,
for all 0 < s <, E(K™* (1)), and E(K™% (1)1 go to E(K"(A)), and E(K" (M)
respectively, and hen@ K" (1)), £ (K™ (), 1 go toE(K" (M), E(K"(W)L O

5. Choice of the sequence of perturbations

Our aim is now to choose a sequence of perturbations such that (3.19) and (3.20) al
satisfied. An easy computation, using (4.3), shows that

—V”(O) ——S(K)T///S(K) 17,5, 0, ) No(df da ds), (5.1)
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whereK = K" (0), which obviously does not depend ansee (4.2) and (3.4), and where
the 2x 2 matrix J, (s, 6, ) is given by

ur (s, 0, ) [(V — W) (@) v (s, 0, ) [(V,o — W) (@)

+ /O V2 =W ()] + O (V2 =W ()]
v, (5,0, ) [= (V2 = W () v, (5.0, ) [~ (VL = W (o))

+ fO) (V2 = W ()] + f(O) (V2 = W_(@))]

(5.2)

where f(6) = (1 + cosd)~tsing. The main idea for choosing, is the following:
first, we will get rid of the random term§(K); and £(K);%, by using a localization
procedure af’, and by using the a.s. continuity 6fK) at 7. Then we will compute the
determinant of% V7(0) in the most natural way: we will write it asd — bc. Then we
will choosev! andv. in such a way thatd is large butbc is small.

Let us now define rigorously our perturbation. First, we recall the following Lemma,
that can be found in [9]. This lemma uses the fact tha{S®-2, r > 2, i.e. that
J1018(0) do = oco.

LEMMA 5.1. — AssumgSP-1, 2. One can build a sequengsg of positive, eveng'!
functions on[—6y, 6o] such thatg, (—6y) = ¢,(6p) = 0, such thatp, () < k|6| A (1/2)
for somek < 1/2, such that if

$a(0)
6]

£,(0) =14,(0)| +r2+? (5.3)

then &, € LY(Bo(8)do) and &, < 1/2, and such that there exists a sequengg
decreasing t® whenn tends to infinity, and satisfying

)

& / $(0)Bo(8) df —> o, (5.4)
—6o
)

a, / 101¢(0)Bo(8) d6 —> 0. (5.5)

_00

Then we prove alemma which uses assumptiP-3. For some &< ¢ < n < k < 00,
we set

Hy ={a €[0,1)/|W (@) — Xg| <&, n < |[W_(a) — Xp| <k}, (5.6)
HY ={a €[0,1]/|W,_(a) — Xp| <&,n < |W () — X§| <k} (5.7)

LEMMA 5.2. — AssumeSP), and recall thatXy € R? is fixed. There exisy > O,
0 < e <n<ksuchthatforalls € [T/2, T],

Po(HY)>q;  Pu(H))>q. (5.8)



496 N. FOURNIER / Ann. I. H. Poincaré — PR 37 (2001) 481-502

Proof. —First we consider the constants<®: < n associated wittXy by assumption
(SP)-3. It is clearly possible to chooge< oo large enough, in such a way that

Py (HE) > O Py (Hp) > 0. (5.9)
It is thus clear from Lemma 1.6 that for alk [0, T],
Py (H;) > O P,(H}) > 0. (5.10)

On the other hand, the map~> L£L(V;) = L,(W,) is weakly continuous, sincg satisfies

a quite simple S.D.E. We also know from Theorem 1.4 that for all0 (and thus for all

t €[T/2,T]), L(V,) is absolutely continuous with respect to the Lebesgue measure on
R2. SinceH* (respectivelyH?) can be written a§W, _ € O~} (respectivelyW,_ € 0*})

for some open subsét* (respectively0”) of R?, we deduce that the maps> P, (HY)

ands — P,(H?) are continuous. Since continuous functions which never vanish on a
compact interval are bounded below by a strictly positive consjantO, one easily
concludes. O

We now are able to define our perturbation. First consider the procesgEs-ar, T']
(recall thata, and¢,, were defined in Lemma 5.1):

t 1 n

7 - _/ 0/ _{ 1y (@), (0) No(d6 dou ds), (5.11)
t 1 n

Zm = / / / 1,y (@), (0) No(d0 dot ds). (5.12)
T—a, 0 —m

We fix ¢ > 0 (which will be chosen later), and we set
Tr=inf{t>T —a,/Z"" >c}, (5.13)
T)=inf{t >T —a,/Z" >c}. (5.14)
We now denote byg(x) the sign ofx. The constané > 0 will be chosen later. We set
Uy (5,0, @) = Ly, —xol<8) L7 —apn. 17 a1 () L3 (@)sg (V= — Wi_(@)) 9, (0),  (5.15)
v (5,0, 0) = =1yv,_—xol<6)Li7—a,. 70 a1 () Ly (@)sg (V2 — W ()9, (0). (5.16)

For eachn, v, is a perturbation (see Definition 3.1), since it is predictable, and since it
satisfies (3.1), (3.2), and (3.3) thanks to Lemma 5.1.
The following lemma is the key of the proof.

LEMMA 5.3. — The following convergence holds

lim P(Tf <T; T) <T)=1 (5.17)

n—oo

Proof. —Let us just check the convergence .
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P(TX <T)=P(Z:" >¢)
>1-€E(€7%)

>1-e€exp{—/T /](l—e‘¢"(9))ﬂo(9)d0dads}

T—a, Hf —7
1 bid
>1-— eCexp{—an xq x5 /¢n(9)50(9)d9} (5.18)

which goes to 1 thanks to Eq. (5.4). We have used Lemma 5.2 and the fact thap,since
issmallerthan 12, 1—e % > ¢,/2. O

6. Conclusion

We are now able to prove Theorem 1.5. We begin with the following proposition:

PROPOSITION 6.1. — Recall thatX, € R? is fixed. There exist some constahts O,
B > 0such that a.s.,

. d
IIm)I(Q)f ’detﬁ VYI?(O)’ > ;Bl{HVT—XoH<5}- (61)

First recall that

T 1 n
ad _
v =k [ [ [ei+ae) oo
0 0 -7
x (Vi — Ws_(a))v] (5,0, a) No(dO da ds), (6.2)
wherek,; = K'(0). First, we get rid of the random terrd$K ) andé’(K)S‘_l.

LEMMA 6.2. —Consider

T

T 1
Dy = ///(1 +A®©) A O) (Vs — Wo_ ()0 (5,6, @) No(dO da ds). (6.3)
00

-7

Then a.s.,
o 0 o
lim inf ‘deta—k V;(O)‘ = liminf |detD7.. (6.4)
Proof. —We just have to check that a.s., whegoes to infinity,

5 —o (6.5)

avﬁ(o) - Dj

First, it is clear that|A’(9)|| < K. From (5.6), (5.7), and (5.15), (5.16), we deduce that

VeIl + IWs— (@) ] va (s, 8, )|l < [211 Xoll +8 + k] [va(s, 0, )l (6.6)
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Thus

<K _sup ||€<K>T5<K>— — 1|

[T—an,T

a n n
S Vi) =Dy <

/ // |v (s, 0, a)|+‘vy(s 0, oz)HNo(deads)

T—a,
<K sup ||8<K)T5<K> 1| x (25 + 2]
[T—a,,T
<K(2c+ 1) sup [|EK)r EK)E—1| (6.7)
[T—an,T]

thanks to the definitions ob,, Z", and 7,. This term goes to 0, because the map
t— E(K); is a.s. continuous &. O

Proof of Proposition 6.1- Thanks to the previous lemma, it suffices to check the
proposition withD?. instead of— V7 (0). First notice that

—_%O/to/l_/: Jo(s,0, ) No(d6 da ds), (6.8)

whereJ, was defined by (5.2). Computing the determinant in the most simple way, we
write it of the form

1
detD} = 2 x [Hy™ H™" — Hp ™ H ™). (6.9)

We want to prove thatl;** and H;*” are Iarge and that;™ and H; " are small.

First, we prove a lowerbound fdi; ™" = [, fo ST T (s, 0, @) No(db da ds). First,
we deduce from (5.6) and (5.15) that

I3 (s, 0,0) = (Vi = W_(e)| — 1OV — W ()])
X 1H§ (Ol)luvs,—xond 1[T—a,7,T/\T,f](s)¢n @)
> ((n—8) — 1O+ 8) L (@) yy,_—xo)<s

X l[T—an,T/\T,f](S)¢n @). (6-10)
Furthermore,
O < |1 oo | < oo | < K10
1+ cosf 1+ cosbp

We thus obtain

TATY 1

Hza-9 [ f / L1v,—xo1 <0y L1t (@8 (O) No(d8 dar ds)
T—a, 0 —m

— K(e +9) // 10¢,(0) No(d6 do ds)

T—a
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Z (=38 inf Lyv._—xol<s) X Zrry
TATY 1

- K / //I@Iq&n(@)No(d@dozds) (6.11)

T—ay -7
Thanks to (5.5), the second term clearly goes to 0 a.s. On the other hand, we know fror
Lemma 5.3 that

Ilmlorgf AN (6.12)
Since V is a.s. continuous af’, we deduce that inf_,, 1 1yv,_—x,i<s; 90€s to
Lovr—xoll<s)- _
This way, we obtain a.s.,
liminf Hch,xx >(n—38) xcx 1{HVT—XOH<5}' (613)

nvy

The same lowerbound holds for limjnf . H
We now computeH; ™ = fo fo ST TG, 9, a)No(d du ds). Thanks to the defini-
tion of v} andH?,

T2 (s,0,0) < (6 +8) + [ f(O)(k +8)) 1y (@)

X Lyvi_—xoll<sLir—a,. 7A71(5)9n (6). (6.14)
Hence,
Hp™ < sup Ly, xgl<s) X (& +8)Zr
[T—a,,T)
T
+ K / //|9|¢n(9)N0(d9dOldS). (6.15)
T—a, 0 —7

The second term goes to 0 a.s., thanks to (5.5). The definitiog$-band 7, and the
fact thatg, < 1/2 yield thatZTATr < ¢+ 1/2. Finally, using the a.s. continuity of at
T, we deduce that a.s.,

lim SUp‘H;’xy| <(+6)(c+ 1/2)1{\|VT—X0\|<5}' (6.16)

n,yx
l.

The same upperbound holds for lim sup, |H;
We finally deduce from (6.9) that

||m |nf | detD’ ‘ [ 2(7) —(c+ 1/2)2(8 + 5)2] 1{HVT—X0H<5}- (617)

Thus Proposition 6.1 will be proved if we exhildit- 0 andc > 0 such that(n — §) >
(c+1/2)(e +6). Since O< ¢ < n, this is clearly possible: choose

n—e n+ 2¢
: =

; = : 6.18
3 — (6.18)

The first part of our criterion is satisfied.O
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We still have to check the following result.
PROPOSITION 6.3. — There exists a constaif < oo such that for alln,

P( sup{
A<

Proof. —First, we prove a Lipschitz property (i) for V*(1). SettingU;" (A, n) =
Vit (h) — Vi (),

Vi) + vam)H} <k)=1 (6.19)

t t 1 =n
U["(k,u):/sz"()»).US"_()»,;L)+///[A(yn’\(s,0,a)) — Ayl (s,0,a))]
0 0 0 -7

x [V (1) — Wy_ ()| No(d6 da dss). (6.20)
Thus, using again the result of Jacod [13],

t 1 =n
Ut"(x,;L):5(1(”(,\)),///S(K"(A))S‘_l(l+A(y,j(s,9,a)))‘1
00—

X [A(yy (5,0, 0)) = A(y'(5,6, )]
x [V (w) — W,_(a)] No(d6 da ds). (6. 21)

s

But, smcely” (s,0,a)| < 0y < m, it is clear that| (I + A(yn (s,0,0))7 1 <
Furthermore, one easily checks that

[A(y,(s,6,0) = A(rl (5,0, )| < KA = pll x [[va(s, 6, @)ll. (6.22)

Using also Lemma 4.1, we deduce that

UG )| < KA — uu/// IV ()| + W, @)Il]

-7

X ||v, (s, 0, a) |No(d6 do ds). (6.23)
In particular, ifu =0,
IVl <IVil+ KY, (6.24)

where

T

T 1
YZO/O/_/[”Vs—” + [ Wo—(@)Il] X |lva(s, 0, @) | No(d6 da ds)

<[21Xoll +8 + k1 x (275 + Z37)
<[2|| Xoll +8 +k] x 2c+1) < K. (6.25)
We have used the definitions of, Z,, T,,, andH,.

Let us now turn to the first derivative. We use expression (4.5). Using the same

arguments as above, and inequalities (6.24) and (6.25),
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~
-

Ve

H—V”(k)H <K///(HVY"_(MH+||Ws_(a>||)||vn<s,e,a)uNo(d@dads)

T

1
// IViell + Y + [Wy_ @) lva (s, 6, @) | No(d8 da ds)

X O\'ﬂ o

<K
0 -
<K x (25 + Z37)
<K (6.26)
Exactly in the same way, one can check that for some conatafar all A, 7, n,
H—V”(A)H <K. (6.27)

A2
We thus have proved Proposition 6.30

We are now able to conclude.

Proof of Theorem 1.5- We have fixedXy € R?, and we have found a sequence of
perturbations such that, for sorfe- 0,8 > 0, K < o0,

o ad
a.s, Illm)lorgf deta—)L V# (O)‘ > ﬂl{HVT—XngtS}’ (628)
VneN*, P A — V7i(A <K | =1, 6.29
nes (|f|u<p1{ 3)»VT( )H Ha)»2 ( )H} ) ( )

from which we easily deduce, for ail> 0,

9
liminf P <||VT — Xoll < r; o V#(O)‘ = B/2;

’_V"(“H HﬁV"mH} < 1<> > P(IVy = Xol| <7 A 9).

sup{
Irl<1
(6.30)

It is thus clear that ever)y, in the support ofL(Vy) satisfies the assumptions of
Theorem 3.3. Applying Remark 3.5 drives immediately to the conclusian.
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