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ABSTRACT. — Let u = u,, be the branching measure on the boundsdryof a supercritical
Galton-Watson tred = T(w). Denote byd(u,u) and d(u,u) the lower and upper local
dimensions ofx atu € dT. It is well known that almost surely(it, u) = d (i, u) = logm for
u-almost allu € 9T, wherem is the expected value of the offspring distribution. Here we find
exactly when the result holds fatl « € 9T, and obtain some limit theorems about the uniform
local dimensions oft. We also find the exact local dimensionwfitu € 9T for u-almost allu.
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RESUME. — Soitu = u, la mesure de branchement sur le béiidd’un arbre super-critique
de Galton—Watsoil = T(w). Notonsd (., u) etd(u, u) les dimensions locales inférieures et
supérieures dg enu € dT. Il est bien connu que presque stremeit, u) = d (i, u) = logm
pour u-presque tout: € 3T, oum est la moyenne de la loi de reproduction. Ici nous trouvons
exactement quand le résultat vaut peamt u € 9T, tout en établissant des théorémes limites
pour les dimensions locales uniformesdeNous trouvons aussi la dimension locale exacte de
wenu € 3T pourpu-presque touk. 0 2001 Editions scientifiques et médicales Elsevier SAS

0. Introduction

SetN* ={1,2,...} andN = {0} U N*, and writeU = {#} U |J;2, (N*)" for the set
of all finite sequences = uy...u, = (ug,...,u,) including the null sequence. If
u=uy...u, (upy € N*), we write [u| =n andulk = uq...u;, k < n; by convention
¥ = 0 andu|0 = @. For two sequence8 = uy...u, andv = v;...v,, we write
uv =uq...u,v1...v, for the juxtaposition; by conventiond = du = u. If uu’ =v
for some sequencg, we writeu < v or v > u; otherwise we write: < v orv * u. The
notations are extended to infinite sequences in an evident manner.

E-mail addressliu@univ-rennesl.fr, Quansheng.Liu@univ-ubs.fr (Q. Liu).
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Let (2,TF, P) be a probability space,p,: n € N} be a probability distribution on
N, and{N,: u € U} be a family of independent random variables definedreach
distributed according to the layp,}. Let T = T(w) be the correspondingalton—
Watson treq19] with defining element§N,: u € T}: we have@ € T and, ifu € T
andi e N*, thenui € T ifand only if 1< i < N,,. We shall write

Zo={ueT: |ul=n)
for the set of individuals imth generation, and, for its cardinality. Let
oT ={uquy...:Vn>20,uy...u, €T}
be theboundaryof T endowed with the ultra-metric
du,v)y=¢€", wheren=maxk eN: ulk =vlk}, u,veaT.
We always assume that = 0, thatN = Ny is not almost surely (a.s.) constant, and that
ENlogN < oo, (0.2)
unless otherwise specified. Write
m=EN and «=Ilogm. (0.2)

It is well known that the limit
W=Im Z,/m"
n—oo

exists a.s. WitlEW =1 andP (W > 0) = 1.

Forallu € U, let T, be theshifted treeof T atu: this is the tree with defining elements
{N,,: veU}: we haved € T, and, ifv € T,, then for alli e N*, vi € T, if and only
if 1 <i< Ny LetdT, ={vivs...: Vn >0,v;...v, € T, } be the boundary oT,,
and letB, = {uv: v € 3T,} be the set of infinite descendantsuofThereforeT = Ty,
0T =0Tgand ifu € T,thenB, ={v € dT: u <v}isaball indT with centeru € T
and diametefB, | = e /. Let u = ., be thebranching measuren dT: it is the unique
Borel measure such that for alle T,

# .
. ETu. =
M(Bu):W lim {U |v| n}’
n—oo #Hy eT: |v| =n}

(0.3)

where#{.} denotes the cardinality of the sgt. Equivalently, . is the unique Borel
measure ol T (w) such that for alk € T,

:u'(Bu) :milulwu’ (04)

where

W, = ILmoo#{v eT,: lv|=n}/m" fuel. (0.5)
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It proves convenient to define(B,) by (0.4) for allu € U, and it will be useful to remark
thatW = Wy, thatW, and W, are independent of each other if neitle v norv < u,
and that each of them follows the law Bf.

The branching measure plays an essential role in the study of branching processe
and has been studied by many authors: see for example [9,11,13,16,18,20,15] and [17
For eachu € 9T, letd(u, u) andd(u, u) be the lower and upper local dimensions of

watu:

—1 B, - _
d(u,u) = Iimiorgf M, d(, u) =limsup

n n—o00

- IOgM(Buln)
— (08)

Whend (i, u) =d(u, u), we writed (u, u) for the common value. It is well-known (see
[9] and [18]) that a.s.

dlu,u) =« 0.7)

for u-almost allu € dT. A natural question is to know when (0.7) holds &k u € 9T .
We shall answer this question in Theorem 4.1, where we give a hecessary and sufficiel
condition, and where we also establish a similar resultifor, 1) instead ofd (u, u).

Our approach to Theorem 4.1 is divided into two steps.

First, we establish some limit theorems about the uniform local dimensions iof
other words we obtain asymptotic properties of

m, =minu(B,) = minu(B,,) and M, =maxu(B,) =maxu(B,,)  (0.8)
UEZy uedT UEZy uedT

asn — oo. In fact, we shall prove that there are some constants « ando, < «,
explicitly determined by the given distributidm, }, such that a.s.

. —logm . —logM
lim ﬁza_ and I|m¢=

n—00 n n—00 n o+
(Theorems 2.1 and 3.1).Sincem, <d(u,u) <d(u,u) < M, forall u, «, is a uniform
lower bound ofd(u, u) while «_ is a uniform upper bound af (i, u) (Lemma 4.1).
The conditione_ = & is then sulfficient for (0.7) to hold foall «. Our proof of the
asymptotic properties uses two basic tools given in Section 1: one is an interesting
convergence result about the convergence of iterations of a probability generating
function (Proposition 1.1), the other is the “first moment method” (Proposition 1.2).
Secondly, we prove that there are exceptional points ik «_ (Lemma 4.3). The
main idea of the proof is to construct a non-homogeneous branching process by choosir
“good” generations and “good” individuals of the initial branching process, and to prove
that the new process does not terminate (cf. the proof of Lemma 4.3). In the proof, we
need the fact that the martingdl&, /m"}, converges irL.” (p > 1) at a geometric rate,
which is shown in Section 1.

1we use the symbols_, p_, ... (respectivelyoy, B+, ...) to stand for numbers which are related to
some exponents of the left (respectively right) taiMof



198 Q. LIU/ Ann. Inst. H. Poincaré, Probabilités et Statistiques 37 (2001) 195-222

Since the study of asymptotic propertiesmaf and M,, is interesting by its own, we
shall also find exact equivalents ef, and M, in the case where the limit variable
W has exponential left or right tails (Theorems 5.1 and 6.1). These results give exac
uniform local dimensions gf, and lead to exact uniform bounds of the local dimensions
(Theorem 7.1).

Our final result concerns the exact local dimension pofat typical u € 9T
(Theorem 8.1): it gives a precise estimation of the large valugs,6B,,,) for P-almost
all w € Q andu,-almost allu € T (w), and solves a conjecture of Hawkes [9, p. 382].

An interesting phenomenon revealed by our results is that, in some cases, th
branching measure behaves like the occupation measure of a stable subordinator
a Brownian motion: for example, our Theorems 4.1(a)(ii), 5.1 and 6.1 correspond to
Theorem 3.1 of Hu and Taylor [10], Theorems 1 and 2 of Hawkes [8] and Théoréme 52.2
of Lévy [12]; but in other cases the branching measure has some properties which th
occupation measure does not share: cf. parts (b)(i) and (b)(iii) of Theorem 4.1.

1. Iteration of a probability generating function and thefirst moment method.
Exponential convergenceratein L? of Z,,/m"

The following three propositions will be used several times in the paper. The first is
an interesting result about the convergence ofriHfield composition of a probability
generating function, evaluated at a paiptwhich converges to 1 at a geometric rate; the
second concerns the “first moment method”; the third says that the seqi&nce”}
converges inL.? (p > 1) at a geometric ratgif EN? < oo.

Throughout the paperf denotes the probability generating function /6f f(x)=
> n>o0Pax", @nd f, is its n-fold composition. In the following proposition we do not
need the condition (0.1).

PROPOSITION 1.1. —Assume onlypy =0 andm = f'(1) < oo, and letp, ¢ be two
numbers in(0, 1]. Then the following assertions hold
(i) if 1/m < p, then there are some constanits< 1 and 0 < K < oo such that for
all n > 1large enough,f, (1 — cp™) < KA";
(iiy if 1/m = p, thenliminf,_ o f,(1 —cp™) > € ¢;
(i) if 1/m > p, thenlim,,_, o f(1—cp™) =1.
In particular, >°,~; f,(1—cp") < oo ifand only if 1/m < p.

Remark— If p < 1, the conclusions also hold for eaclk- 1, and so for all O< ¢ < o¢;
of course in this case in the series we should change 1" to “n > ng”, whereng > 0
is large enough such thatdcp” > 0 for all n > ng. This will be easily seen by the proof.
If p =1, we naturally need the conditian< 1 to ensure that & cp”" > 0.

Proof. —(a) We first prove that for alt € (0, 1] and allp € (1/m, 1],
|i_>moo fu(l=cp") =0.

By the famous Seneta—Heyde theorem, there is a sequéhiaf positive numbers
which converges teo with n, such thatC,,1/C, — m and thatZ,/C, converges a.s.
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to a strictly positive random variable (recall thag = 0). Therefore linZ}/" = m a.s.
Consequently,

limZ,log(1—cp") =—0c0 as.ifYm<p<1

The conclusion then follows by the dominated convergence theorem and the fact the
(L= cp") = EeFn1o8—r"),
(b) We next prove that it € (0, 1] andp € (1/m, 1], then there are some constants
A <1 and O< K < oo such thatf,, (1 — cp™) < KA" for all n > 1 large enough. Let
8§ € (0, 1) be sufficiently close to 1 such that = p'/* > 1/m. Denote by{sn} the least
integer> én. Then
Ju(L=cp") = furtsm (fsm (L—cp"))
< foetom (fiom (L= cpt™)).

Because lim_, o, fi(1— cp*) =0, there is1g € N large enough such that for all> no,
fism(@ = coi®™) < 1/2. It follows that

(1 =cp") < fuiony(1/2),  n = no.

Now since f (x) < x, fi(1/2) decreases to a limit 1; this limit is equal to 0 because
it is a fixed point of f. Let ¢ > 0 be small enough such thédt(¢) < 1, and letk, be
large enough such thgt (1/2) < ¢ for all k > k.. Therefore, using’ (x) < xf'(x) gives
Fie1(1/2) < f/(fi(1/2) < f'(¢e) fr(1/2), k > k.. It follows that for someK, > 0 and
all k e N,

fi(1/2) < Kof' ().

Using this fork = n — {§n} and the preceding inequality fgf, (1 — cp™), we see that for
all n > ny,

fu(L=cp") < Kof'(e)" P < KA,

whereK = Ko/f'(¢) andr = f'(e)* % < 1.
(c) Finally by Jensen’s inequality, we have

In (1 - C,On) — Ee/n'09d—cr") > g Iog(l—cp")’

from which liminf f,(1 —cp") > 1if p <1/m,and> e if p = 1/m. The proof of the
proposition is then finished, remarking that we have alwgyd —cp™) <1. O

PrROPOSITION 1.2. — Let B be a Borel set on the real line and sat= {W < B}.
Define, forn > 0,

A,={3uez,, m"uB,)eB}, and A,={Yuez, m"uB,) < B}.

ThenAg=Ay=A,and foralln > 1, P(A,) <m"P(A)and P(A)) = f,(P(A)).
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Proof. —If {.} is a set or a statement, we writg, or 1{.} for its indicator function. It
is easily seen that

A <> UYm"uw(B)eB}=> UW, e B}

UEZn UEZy
and
1y, =[] 1{m"w(B,) € B} = [] {iw. € B}.

UEZ, UEZy,

The conclusion then follows by taking expectations on each side of the above displays
using the fact that for each fixed the random variableW,, |u| = n, are independent
of each other and have the same distributioiVas O

PROPOSITION 1.3. — Fix p > 1 and write W) = Z;/m* (k > 1). If EN? < 0o, then
for some constant > 0 and allk > 1,

—(p—Dk
Wi cm ifl<p<2,
E W = WI" < {cm”k/2 if p>2.

The result is well-known fop = 2 (cf. [7, p.13]), and seems to be unknown fo 2.
The proof uses the following very useful inequality.

LEmMMA 1.4.—If {X;: i > 1} are independent and integrable real random variables
with EX; =0 (Vi), thenforallx > 1and all p > 1,

(%

whereB, = 2min{k¥2 k e N,k > p/2} (so thatB, = 2if 1 < p < 2).

It is a direct consequence of the Marcinkiewicz—Zigmund inequality [3, p. 356]:
E(X_y XilP) < BLE( X1, X217/%), remarking that(S>_, X2)P/2 < 301 [Xq17 if
1 < p < 2 (sub-additivity), and2 =7 X)Y2 < (230, |X;|P)YP if p > 2 (Holder).
Proof of Proposition 1.3. By the construction of the Galton—Watson process, we can
write

(Bp)PE(3Z{_1 1X:17) fl<p<2
{(B WEQGQ 1|X Pn@2=1if p > 2,

Zy
Wiesmy — Wiy =m™ > (W, = 1), k.n>1,
i=1
where{W, ;};>1 are independent of each other and independe#j, ciind have the same
distribution asW,,,. So by the preceding lemma,

kPP 7 E|Wiy — 1]P ifl<p<?2
_ p m k ) D <2,
EllWan = Wl 124 <{m—kﬂ(Bp>P<zk>P/2E|W<n>—1|” if p>2.
Therefore

—kp=Dor E\w,, — 1|7 ifl<p<?2
_ Pl (n) _ PS4
EWicon = Wol'1 < { 1tz o0 B P2 — 20 1 92 .
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Using the inequality fom = 1 and an easy argument of induction [gf] (the integral
part of p), we obtain the following classical result: for each fixed> 1, EN? < oo
implies sup E[W,)1? < oo, so thatWy, — W in L?; therefore lettingn — oo in the
preceding inequality, we obtain the desired resutti

2. An equivalent of logm,,

In this section, we prove that without any condition other than (0.1), almost surely
(logm,)/n has a constant limit that we determine explicitly.
Let p_ > 0 be defined by

__logp:
~ logm

if p1 >0, and p_=o0 if pp=0. (2.1)

It is known that: (a) ifp; > 0, then for some constants, ¢, > 0 and allx > 0 small
enough,

cxP’~ < P(W < x) <cpx?P- (2.2)

(see, for example, [1], p. 217); (b) whether > O or not,

_ . logP(W < x)
: b )
p-=sup{b>0: EW ™’ <oo}= )Iclmo g . (2.3)

In the following theorem and in all this paper, we shall wrifed = 0 by convention.
THEOREM 2.1. —With probability 1,
—1 n 1
lim —29"n _ <1+ —)a. (2.4)

n—oo n p7

We need two lemmas for the proof.

LEMMA 2.1. - If there exist some constaris> 0 andc¢ > 0 such thatP[W < x] <
cx? for all x > 0 small enough, then for al} > (1+ 1/b)«,

P[m, >¢e"" for all n € N large enough= 1. (2.5)

Proof. —Notice thatm, > ™" if and only if u(B,) < € for someu € z,,. So by
Proposition 1.2, we have, for alle N,

Plm, <€ <*P[W <e"Im9],

By our condition, there is a constaiit > 0 large enough such that for all > 0,
P[W < x] < Cx". Hence by the preceding inequalit§[m, < e < Ce"bt——al,
Therefore Y72, P[m, < €] < oo whenevern > (1 + 1/b)«, and the desired
conclusion follows by Borel-Cantelli’s lemma.c
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LEMMA 2.2.—

(i) With probability1, m, < e for all n € N large enough

(ii) if P[W < x] > cx” for some constants, ¢ > 0 and allx > 0 small enough, then
forall n < (1+1/b)a,

P[m, < e for all n € N large enough= 1. (2.6)

Proof. —By Borel-Cantelli's lemma, it suffices to prove that the seh&s ; P[m, >
e "] converges in each of the following cases: far «, (b) the condition of (ii) is
satisfied and < n < (1+ 1/b)a. Notice thatm, > e if and only if w(B,) > e "" for
all u € z,,; so by Proposition 1.2, forall > 1,

Plm, >e™] = f,(P(W=e")),

Therefore by Proposition 1.1 (with = 1), the series converges in case (a). In case (b),
there is a constant € (0, 1) small enough such th&(W < x) > c1x? for all x € (0, 1],
sothatP(W > e"0=9) < 1—cqp", wherep = e ?0—% > e« = 1/m; hence the series
also converges, again by Proposition 1.10

Proof of Theorem 2.1. ¥ p; > 0, then (2.2) holds, so that the conclusion follows
from Lemmas 2.1 and 2.2(ii). b, = 0, then for eaclb > 0, there is a constant> 0
such thatP (W < x) < cx? for all x > 0 small enough, so that the conclusion follows
from Lemmas 2.1 and 2.2(i). O

3. An equivalent of logM,

In this section we find an equivalent of 1a¢, which is similar to that of log:,
obtained in the last section.
Let p, €[1, oo] be defined by

p+=sup{a >1: EN® < oo}. (3.2)

Thereforep, = oo if and only if EN? < oo for all ¢ > 1. Recall that for all fixed: > 1,
EN® < ocoifand only if EW* < oo (cf. [2]). So we can replac® by W in the definition
of p,. Consequently by Theorem 3.1 of Ramachandran [21],

.. .—logP(N .. . —logP(W
e = liminf Z9PN > _ iy Z1OGPW > 1) (3.2)
xX—>00 logx xX—>00 logx
We shall sometimes need the condition that
. —logP(W > x)
= lim . 3.3
P+ o logx (3.3)

Notice that by (3.2), condition (3.3) holds automaticallyif = co; whenp, < oo, itis
equivalent to the condition that for all> p_, there is a constant> 0 such that

P(W=>x)>cx™ (3.4)
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for all x > 0 large enough. Standard results from [2] and [5] show that (3.4) holds if
p+ > 1 and if the functiont > P (N > x)x?+ slowly varies abo.

The following result is the counter part of Theorem 2.1. Recall that & 0 by our
convention.

THEOREM 3.1. —Let p, be defined by3.1), then

IiminfM=<

n— 00 n

1
1- —>a a.s. (3.5)
P+

If, furthermore, conditior(3.3) holds, then théiminf above is in fact dim: we have

fim —1°09Mn _ (1— i)a as. (3.6)

n—00 n P+

For the proof, just as in the proof of Theorem 2.1, we first establish two lemmas.
LEMMA 3.1.—If P(W > x) < cx“ for some constants, ¢ > O and allx > O large
enough, then for alh < (1 — 1/a)«,
P[M, < e forall n € N large enough= 1. (3.7)

Proof. —Notice thatM, > e " if and only if there isu € z,, such thatu(B,) > e,
Therefore by Proposition 1.2,

P[M,>e"| <e*P[W >e "],

By the condition we can choose a constant- 0 large enough such th@[W > x] <
Kx~“ for all x > 0, so thatP[W > e "~®] < Ke'=9% Therefore}">°, P[M, >

e "] < oo whenevery < (1 — 1/a)a. So the desired conclusion follows by Borel—
Cantelli's lemma. O

LEMMA 3.2.—
(i) With probabilityl, M, > e for all n € N large enough
(iiy if P(W > x) > cx~* for some constants, ¢ > 0 and all x > 0 large enough,
then for alln > (1 — 1/a)a,

P[M, > e for all n € N large enough= 1; (3.8)

(iii) if P(W > x) > cx~* for some constants, ¢ > 0 and a non-bounded set of values
of x > 0, then for allp > (1 — 1/a)«,

P[M, > e for infinitely manyn € N] = 1. (3.9)

Proof. —Since M,, < " if and only if u(B,) < e for all u € z,,, by Proposi-
tion 1.2, we have

P(M, <& = f,(P[W <@“]) = f,(1— P[W > 7)),
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Under the condition of (ii), there is a constant € (0, 1) such thatP(W > x) >
cix~® for all x > 1. ThereforeP[W > €@ ] > ;@@ if ¢ > p, so that by
Proposition (1.1), the seriés >, P[M, < e "] converges if either (a) = «, or (b) the
condition of (i) is satisfied and > n > (1 — 1/a)a. Hence the conclusions in parts (i)
and (i) follow from Borel-Cantelli’'s lemma.

For part (iii), notice that if (3.9) holds for somge= g, then it also holds for alf > no;
therefore we need only prove the resultdot n > (1 — 1/a)x. By the monotonicity of
P(W > x), itis easily seen that

.. . —logP[W .. —log P[W > g'e—m
liminf M = liminf gPIW > ]
x—>00 logx n—>00 log a(a—n)

By the condition, their common value is boundeddyTherefore, for alle > 0, there
are infinitely many: € N* such that

P [W - en(a*n)] > e*n(a*n)(aJrS),
so that by the preceding argument, for all these
P [Mn < e—'m] < fa (1 _ e—n(a+8)(a—n)).

Notice that by Proposition (1.1) , the term on the right hand side tends tq0=f
g (@te)e=n - e~ — 1/m. Therefore for al) > «[1 —1/(a + )],

P(liminf[M, <e™]) <liminf P[M, < &™) <lim f,(1 — e @ty =,

This implies that (3.9) holds for alk > n > «[1 — 1/(a + ¢)], and hence for all
a>n>a(l—1/a) sinces > 0is arbitrary. O

Proof of Theorem 3.1. Notice that by (3.2), for each fixed 9 a < p; (< 00),
P(W > x) < x@ for al x > 0 large enough, so that by Lemma 3.1,
liminf,_ . (—logM,/n) > (1— i)a a.s. By Lemma 3.2(i), limsyp, ..(—logM, /n) <
a a.s. Hence the proof is finished ff, = oco. Assumep, < co and leta’ > p,
be arbitrarily fixed. ThenP(W > x) > x* for a non-bounded set of > 0 by
(3.2), and for allx > 0 large enough if (3.3) is satisfied. So by Lemma 3.2(iii),
liminf,_ . (—logM,/n) < (1— %)a a.s., and by Lemma 3.2(ii), limsyp . (—log M, /

n) < (1— Yo as. if (3.3) is satisfied. The proof is then finished by letiihg> p.. O

4. A necessary and sufficient condition for no exceptional point, and uniform
bounds of local dimensions

The main result of the present section is the following theorem.

Recall thatp_ and p, are defined by (2.1) and (3.1), that = oo if and only if
p1 =0, and thatp, = oo if and only if EN“® < oo for all a > 1; recall also that the
condition (3.3) automatically holds ifp, = cc.

THEOREM 4.1. —If EN¥ < 0o for somes > 0 and if (3.3) holds, then
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(&) The following assertions hald
() a.s.d(u,u)=d(u,u)=aforall ucaT ifand only if p, = p_ = o0;
(i) a.s.d(u,u)=«aforall u edT ifand only if p, = co.
(b) More precisely, we have
(i) if pp =p_=o0,thena.sd(u,u) =d(u,u)=a forall u cdT;
(i) if p, =00 andp_ < oo, then a.sd(u,u) =« forall u € dT butd(u, u) >
o for someu € 9T;
(i) if p, < oo, then a.sd(u,u) <« for someu € 9T.
(c) Moreover, a.ssup,cyt d(i, u) =a and inf,cord(u, u) = (1 — i)“'

Remark— As we shall see in the proof, Part (b)(i), the conclusionsdfQr, «) in
parts (b)(ii) and (c), and therefore the “if” parts of (a)(i) and (a)(ii), all hold without the
conditions of the theorem.

Part (a)(i) gives a necessary and sufficient condition under which therw is
exceptional pointz in (0.7), for almost allw. Similarly, part (a)(ii) gives a criterion
for {u € 9T: d(u,u) # a} =@ a.s. We conjecture that a similar result would also hold
for the upper local dimension: the conditipn = co would be necessary and sufficient
for {u e dT: d(u,u) #a} =0 a.s.

Part (b)(ii) shows that, whep, = oo and p_ < oo, the branching measure and the
occupation measure of a stable process [10] have the same property that a.s. the low
local dimension is constant but the upper local dimension is not so. Parts (b)(i) anc
(b)(iii) show that in the other cases, a new phenomenon occurs for the branching measu
compared with the stable occupation measure.

Part (c) gives the exact uniform bounds of the lower local dimension. We presume tha
the following similar result for the upper local dimension would also hold: a.s.

_ — 1
inf d(u,u)=a and supd(u,u)= <l+ —)a.
uedT uedT P-

(This conjecture is of course sharper than the preceding one about a necessary and su
cient condition for{u € 9T: d(u, u) # a} = #.) Therefore, since a.s. sPpr d(u, u) =

a, in the case wherp_ < oo or p, < 00, a.s. there would be no pointe 3T for which
d(u,u) =d(u, u) # a; in other words, a.s. the limit in (0.7) would not exist at every
point where (0.7) is false.

One would be able to calculate explicitly the Hausdorff dimensions of some sets of
exceptional points: where (0.7) fails; in some special cases this has been done very
recently by Shieh and Taylor [23], using Theorem 4.1.

We need three lemmas for the proof of our Theorem.

LEMMA 4.1. —With probability 1, for all u € 8T, (1 — i)a <d(p,u) <d(u,u) <
1+ e

2 Note added in Proof. — A more complete description of the multifractal spectra of the branching measure
is recently given by Quansheng Liu and Zhiying Wamalyse multifractale de la mesure de branchement
(in preparation).
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Proof. —The conclusion comes directly from Theorems 2.1 and 3.1, remarking that
for all u € dT, m, < uw(By,) < M,, n € N, so that limsup_ (—logM,/n) <
d(u,u) < limsup, . (—logm,/n) and liminf,_ (—logM,/n) < d(u,u) <
liminf,_ o (—logm,/n). O

LEMMA 4.2. —With probability1, for all u € 0T, d(u, u) < .

Proof. —Let n > o be arbitrarily fixed. We need to prove th&{sup, ,r d(u, u) <
nl = 1. Notice thatd (u, u) < n if n(By,) > € for infinitely manyn € N. Hence

w: supd(u,u) <n] = () [d(w, u) <7l

uedT wedT

S () [w(Buyn) > € for infinitely manyn € N]

uedT
= m ﬂ U [M(Buln) > efnn] = ﬂ ﬂ U [M(Buln) > efnn].
uedT k=21 n>k k=21 uedT n2k

Therefore we need only to prove that forialk 1, P(N,cot Unsielt(Bun) > €7"]) =1,
or, equivalently,

(U ) [(Buw) < ‘""]) (4.1)

uedT n>k
Denote byA, the event in the left hand side of (4.1). For/all: 1 and alll > k, we have

AacclU ) B <e™ =] () [wBu) <e™]

uedT k<n<l uez k<n<l
C U n { u|n > 1] N [M(Buln) —nn]} U uln — 1]} (42)
uez k<n<l

Now for eachn > 0 and eacl = (uy, ..., up11) = (u|n, u,1) € N given{N, .},

we defineu, = (uln, u,11 + 1) if either 1< u, 11 < Nyjy, OF Ny =1, OF i1 > Ny,
and u, = (u|n,1) if u,11 = N, > 1. Then a.s. for eachh € N***D i (B,,) >
w(Bun+1)),) If Ny > 1 andu,q1 < Nyjp. If Nyjy =1 0Or w1 > Ny, the sequence
(u|(n + 1)), will play no role for our purpose; we have defined it as well only for the
sake of convenience. By (4.2), for &> 1 and alll > k,

PAY<EY  [I MNuw> B pn(Bun) <€} + LNy =1}]

u€z] k<n<l

g E Z H [1{Nu|n > 1}1{M(Bu|(n+1)*) g einn} + 1{Nu|n = 1}] . (43)

u€z] kn<l

Denote by, (1) the last expectation. We shall prove thatlim, I, (1) =0 forallk > 1
For convenience, let us only consider the case whketel, the general case being very
similar. By the definition ot;, we have

Il(l) =F Z 1{“1 N}l{MZ ul}

uq...u eN¥

X [UNuy > B (Bugup,) <€} + LNy = 1}]L{uz < Nugu,}
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X [1{Nu1u2 > 1}1{M(Bu1u2u3*) g 87217} + 1{Nu1u2 = 1}] e 1{1/![ < Nul...ulfl}
X [1{Nu1...ul,1 > 1}1{M(Bu1...u[*) < e—(l—l)n} + 1{Nu1...u1,1 = 1}] . (44)

Notice that for each fixed:; ...u; € N* and for given{N, N, ..., Ny, u,_,}, the
random variables

M(Buluz*)s I’L(Buluzug*)s ey //L(Bul...ul*)

are (conditionally) independent each other, and their conditional distributions are the
same as

eXW, e W, ... elew,

respectively. Therefore by exchanging the order of the expectétiand the sun}_ in
(4.4) and by calculating the conditional expectation of each general term conditional or
the family of random variablegVv, N,,, ..., Ny, 4, .}, We obtain

L= Y Elur < N}up < Ny} [N, > BP{W < e "} + 1N, =1}]
uq...ueN*
X L{uz < Nugup} [UNupuy > BBP{W < €2 4+ 1N,y = 1)] x - -
x Uty € Nugoa 1} UNupowy > BP{W < e TV LN, 0 =1,
That is

-1
n=£ Y J][MNy.w > BP{W <me"" 9} + 1N, ., =1})]. (45)

uy...uj€z; n=1

Now for each fixedis . ..u;—q € N*¢=D,

yi— E Z [1{Nul...u14 > 1}P{W < me*(lfl)(nfa)} + 1{NL11...L11,1 = 1}]
1Sur<Nug.uy_q

1{N,

= ENyy oy [UNuyposy > BP{W <me D0~ Ly, 0 =13

= EN[L{N > 1} P{W < me D=1 L 1N = 1}]

= (m — p) P{W <me” (700~} 4 py.
Therefore by calculating the conditional expectatior@f) given{N,: |v| <! —1}, we
see that

I1(1)
L(-1)

Since p; < 1, this implies lim. . I1(I) = 0. A similar argument implies that
lim;_. I (1) =0 for all k > 1. BecauseP (A;) < I;(k) for all [ > k, we see that (4.1)
holds, so that the proof is finished o

=x — p1, asl— oo.

LEMMA 4.3. -The following assertions hald
(i) if EN < oo for somes > 0 and if (3.3) holds, then a.sfu € dT: d(u, u) <
al#@foralla>a(l—1/p,);



208 Q. LIU/ Ann. Inst. H. Poincaré, Probabilités et Statistiques 37 (2001) 195-222

(i) if EN*™® < oo for somes > 0, then a.s.{u € T: d(u,u) > a} # ¥ for all
a < ag = a{l + (”;:ﬂﬁ} where one sets";—;l =1if p, = o0, and
1

Notice that (ii) implies that a.s. spptd(u, u) > @o, SO that sup.,r d(u, u) > « if
p_ < o0, and sup.,rd(u, u) =« if p_ = oo, using Lemma 4.1.

The conclusion in part (i) may seem to be a direct consequence of Theorem 3.1
But a difficulty occurs when we use the standard argument by compactness: by
Theorem 3.1 a.s. for each> 0, there is a sequende,), C T such that, for all,
—n~togu(B,, ) < (1—1/p,)a + &; by the compactness ofT, we can assume that
u, — u for someu € 0T; however all these implies nothing for the sequepg®,,).

We therefore present a new approach; the main idea is to construct a non-homogeneo
branching process whose infinite descendants satisfy the desired property.

Proof. —(i) We shall prove the following slightly more general result: whether (3.3)
holds or not, we have, with probability 1,

-1 1
{uedT: d(u,u) <a}l#0 fOI‘a||a>010::o{{l—<p+ >

P+ Py — 1] ’ (4.6)

wherep, =limsup,_, ., —log P(W > x)/logx, and one seteg =« if p, =o00. The
result is evident ifp, = oo, since a.sd(u, u) = « for u-a.e.u. So we assumg, < oo.
By (3.2) and the definition op,, if 0 <b < p, < p. < b < o0, then there is some
xo > 0 large enough such that for all> xo,

xP<PW>x)<x7t 4.7)

SinceEN'® < 00, py > 1. Fixa >a>0,b> p, and 1< b < p,. Setn;, = A for

k > 1, wherex € N* will be chosen large enough. Writg = n, ands, = ny — ny_q if

k > 1. For simplicity, let us assume that falt v € Q, 1 (B,) is well-defined for all finite
sequence: € U with lim;_, o uB,x = n({u}) =0 for all u € 9T (recall thatu has no
atom a.s. [16]); otherwise we can restrict ourselves to a subsetath probability 1.
Define a sub-tred = ;o Di of T as follows (O, represents the nodes ith level):

Do= {@}, D, = {Ltl eT: |Ltl| = 111}, and fork >1,

Dyi1= {ul. g1 €T ug. . uy € Dy, [ugsa] = Spras
M(Bulmuk) - M(Bul...uk+l) > e M — e‘“"k+1},

Then for allk > 1,

k
# —an; —an;
Dii= Y, JIYuBupw) = 1u(Buy.y,,) > €4 —e st}
ug..uf1€T, i=1
Vi |u,-|:8,-

= E Xul...uka

uq...ug €Dy
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where

Xul"'”k = Z 1{M(BL11~-~MI<) - /'L(Bu1...uk+1) > e—ank - e—ank+1}.

uk+leTul...uk s
[kr1|=0k+1

Notice that for each fixed; ...u;,1 € U with |u;| = §;, the random variable

M(Bul...ltk) - M(Bul...ukJrl) = Z M(Bul...ukv)

UGTul...uk JNvl=6k+1, vFuUk+1

is independent Ofu(By,. ,.,); similarly, {it(By,. ) — (Buy. 4} (L<i<k)isa
sequence of independent random variables. This is the reason why we consider tt
eventS{M(Bul...u,-) - M(Bul...u,url) >e M — eian'#l}i rather than{M(Bul...u,-) > 67CIni}i-
It is easily seen that for each fixed ...u; 1 € U with |u;| = §;, the random variable
U(Buy..u) — (Buy..uy,,) (Which depends only ofW,: v > u;...u}) is independent of
each of the following three families:
(@) {(Buy.w;)) — H(Buy..upyy): i < k — 1} (which is independent ofN,: v >
ui...u}),
(0) {(Byy.vy) = (Byy.y ) i <k —=Lvgi o ovipa Lus..oug, |vj| =6; Vj<i+1}
(which is also independent §N,: v > u;...u;}), and
©) {Hvr... v €T} |v;| =6; Vi <k} (which depends only ofW,: |v| < ng}).
Therefore X,,, ,, is independent of the familff1{v € D;}: v € U}, so that it is
independent of D;. It is then clear that*D;) (k > 0) forms a branching process
with varying environments; each individua . . . u; € Dy (k > 1) gives birth toX,,, .,
children whose distribution does not depend on the choice of the sequence:,
(but only on the generational numbir. We shall claim that with positive probability,
the genealogical tre® does not terminate at finite time. Puy = E* D9, mg“” =
E[(*D1)***] and, fork > 1,

mite = ExHe

Ug...ug’ e>0.

my = EXul...uka
By the argument of the proof of Theorem 3(ii) of [6] about the survival probability of a
branching process in varying environments, it can be easily shown that fopdll and
all0<e <1,
—1/e

k—1 m(l+s)
P*D; >0) > {1+ZP1.5{ S —1” , (4.8)
i=0 m;

where P =1, P = H;‘:%,mj if i > 1. Consequently lim, . P(*D; > 0) > 0 if for
some O< ¢ < 1,

[ee) m{lJrs)
> P <o0. (4.9)
i=0 m;

To prove (4.9), we need a lower boundmef and an upper bound (nifl+8). Using

l{l’L(BMLnuk) - M(Bul...leJrl) >e M — e*‘”’k+1}
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2 1{'U“(B“1~~~Uk) = eiank} - 1{:““(Bu1...ztk+1) > e—ank+1}’
we obtain that

_ #
mi = El{M(Bul...uk) >€ ank} {ukJrl € Tul...uk: |uk+l| = 8k+1}

—E Z 1{:“’(Bu1...uk+1) > e7ank+l/3}

U+1€Tuq. oy |Uk+11=0k+1
=ELW > e<°‘*“)”"}#z5k+1 — P[W > = mint] i
where the last equality holds because for each fixed .u;,1 € U with |u;| = §;,

the random variable.(B,,. .,,,) is independent of the evell;...u;1 € T}, and
P{(Byy. uy,y) > € 951} = P[W > e@~9m+1], Therefore for alk > 1,

my > (I — P[W > @~ Om]) piet (4.10)

wherel, = ELW > e("_“)"k}W(akH), with W(j) = (#zj)m_-/ if j € N*, USing W(5k+1) =
W — Wi — W] and the lower bound ofP (W > x) (cf. (4.7)), we see that if
gl@=am > x, then for allk > 1,

Iy > EL{W > "} W — EL{W > e} W, ) — W]
> N P 5 O

2 e—(a—a)(b—l)nk —ry,

wherer, = E{W > e“~9"}|W, ., — W|. By our condition, EN? < oo for some
p € (1, 2]; therefore by Proposition 1.3, there is a constant 0 such that for allj € N*,
E|W(;) — W|? < Cm~?~DJ_ Using this together with the upper bound®fW > x) (cf.
(4.7)), we obtain

1 1
e < (P{W > e\ E[|We,,,, — WIP])T? (Where; +o= 1>
< g @—wbnk/q ~1/py, —(p=Ddkt1/p

= CYP expl—(a — a)bn /g — a(p — D11/ p).
It follows that if A is large enough, say > Aq, then for some constamt > 0 and all
k>1,
Iy = crexp{—(ax — a)(b — Dny}.

Therefore by (4.10) together with the upper boundRfW > x) given in (4.7), if
A is large enough, say > A, (it suffices to choosé.; such thati; > Ag and that
(b — 1) < bi,), then there is some constant> 0 such that for alk > 1,

—— = c2eXp{— (o —a)(b — Dny}. (4.11)
1M %k+1

Let 0 < n < 1 be small enough such that= (b — )n < 1. Using X, ., <" {us41 €
Tuy. u: |uks1] = 8k+1} and Holder’s inequality (wittp’ = 1/(1 — ) andg’ = 1/13), we
have
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ml(<l+s)

SE{X, Fluggr € Tug gt luaga] = 842

< (EXul...uk)lin{E(#{Mk+l € Tul...uk: |uk+1| = 8k+l})(s+n)/’7}n
1—

=my n{E [(#Z3k+1)(8+n)/n] }n.

Remarking that + = by and dividing the above display by}, we obtain

m[((l—&-s)

b
mlll.+s < [E W(3k+1)] ’7<

m5k+1>8+’1

my

Since EN% < oo, the sequenceéW,;,) is bounded inL%. Therefore for some constant
Ci;>0andallk > 1,

(I+¢) Sk4+1 e+n
my m
my m

Remark thatng = m". It then follows from (4.11) and (4.12) that if > A, is large
enough and it = (b — 1)n < 1is small enough, then for some const@at= C,(A, €) >
Oandallk > 2,

(1+¢)

_.m
P * mk,%“ < C'Z‘ exp{—ean; +e(a@—a)(b—1D(ny+---+ng_1)

+ (@ —a)(b— 1D (e +n)ng}. (4.13)

Using this and the fact that, = A* andny + - - - +nx_1= (A — 1)/ (L — 1), itis easily
seen that (4.9) holds whenever

1
sa>8(a—a)(b—1)m+(a—a)(b—1)(e—|—77). (4.14)

Notice thate + n = ¢b/(b — 1). We can always choose> A, large enough for (4.14)
to be true if

o > (a—a)(b—l)%, (4.15)

which is equivalent to

a>ao:=a{l— (%) bfll} (4.16)

Notice thatag — g if b — p, andb — p,. So if & > a > ag, then we can choose
l1<b<p, andb > p, for which @ > a > ag. We have therefore proved that if
a > a > ag, then we can choosee N* large enough such that (4.9) holds, so that

P(ﬂ{Dk £ @}) = lim P(*D;>0) >0.

k=1
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LetdD ={u € 0T: Yk > 1, uln; € D;} be the set of infinite descendants of the non-
homogeneous branching procéss ). What we have proved above implies that

P(3D #%) >0 (4.17)

if @« >a > agandifi e N* is large enough. lfi € 9 D, then by the definition of D and
Dy, forall k > 1,

W(Buy.w) — W (Buy.upy1) > @ ank _ @—ank+l
Adding up the consecutive inequalities, we obtain
M(Bul...ltk) - M(Bul...u[) >@ Y _ g4 f > k.

Letting! — oo gives

M(Bul...uk) > e ",

Clearly this impliesd (u, u) < a. Therefore writing
Ay ={uedT: d(u,u) <al,
we havedD C A,, so{dD # B} C {A, # ?}. Hence by (4.17), ift > a > «ag, then
P({A,#%}) > 0. (4.18)

By the monotonicity of the everjtd, # @} in a, if (4.18) holds for some = a; then it
also holds for alt > a;. Therefore (4.18) holds for adl > «p.

Now by considering the sub-trees ®f beginning with the nodesg € {1, ..., N},
it can be easily checked that the probabilgy := P(A, = @) is a fixed point of
f(x) =32, pix'. Since f has only two fixed points 0 and 1 d®, 1] (recall that
po = 0), the assertiog, < 1 (cf. (4.18)) impliesg, = 0. Therefore we have proved that
foralla > ag,a.s.A, # ¥. Hence a.s4, # ¢ for all rationala > «. By the monotonicity
of A, (in a), this implies that a.sA, # ¢ for all a > «o.

(i) The proof of part (ii) is similar: by (0.7) the conclusion is evidentjf =
00; SO we assume_ < oo, fix a > «, and consider the the eventg(B,, .,) —
P (Buy.uyyy) < €% — @@t} {1 (By, ) < €%} and {W < e~} instead of
(U (Buys) = 1(Buyoyy) > € 4% — €051} {u(By, ) > €} and{W > o=}
(k > 1) respectively, using

c3xP- < P(W <x) <cgxP~ and esxP-T1< EWLW <x} < cexP- 1L,

wherec; (3 <i < 6) are some positive constants independent,d < x < 1. Here to
see thatsx?- 1 < EW 1{W < x}, it suffices to take; € (0, 1) small enough such that
cs:=n(c3 — nP-c4) > 0, remarking that for alk € (0, 1],
EWHZ <x}ZEW 1{nx < W < x}
> nx[P(W <x) — P(W <nx)] = nx(ca —n’~ca)xP~.  (4.19)
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The displays corresponding to (4.11), (4.14) and (4.16) are, respectively,

mm ™% > coexp{—(a — o) (p— + Dny}, (4.20)
1
eo >8(a—Ot)(P—+1)m+(a—Ot)(P—+1)(8+77) (4.21)
and
_ b—1 1
a<ap .:a{l+<T) p—i—l]. O (4.22)

Proof of Theorem 4.1. Fhe assertions of part (a) follow easily from those of part (b).
In part (b), the assertion (i) is a direct consequence of Lemma 4.1, and holds withou
the conditions of the theorem; in the assertion (ii), the conclusiordfer, u) is a
combination of Lemmas 4.1 and 4.2, and also holds without the conditions of the
theorem, while the conclusion fa(u, «) follows from Lemma 4.3(ii), remarking that
the numbewg defined in that lemma is strictly greater thanthe assertion (iii) comes
immediately from Lemma 4.3().

It remains to prove part (c). Since adu,u) = o for u-a.e.u € 3T, we have a.s.
SUR,cqt d (i, u) > o; by Lemma 4.2, sup,rd(u, u) < a. So we have proved the first
assertion without the conditions of the theorem. By Lemma 4.1, a,gsqo#df (1, u) >
(1-1/py)a; by Lemma 4.3(i), a.s. infyr d(u, u) < (1 —1/p)a if ENY < oo for
somes > 0 and if (3.3) holds. This gives the second assertian.

5. An equivalent of m,

We shall see that Theorem 2.1 can be improved wiehas exponential left tail.
Assumep; = 0 and write

m=essinfN and B_=1-logm/logm. (5.1)
Then—oo < B_ < 0. Define
r_=sup{t >0: Eexp(tW"F-) <oo}; (5.2)
just as in (3.2), an equivalent definition «of is

.. . —log P{W < x}
r— = liminf LB

(5.3)

It is known that O< r_ < oo (Wheneverp; = 0). We shall sometimes need the condition
that
. —log P{W < x}
== )ICILnO x1/8-
THEOREM 5.1. —Assumep; = 0, let 5_ andr_ be defined irf5.1)and (5.3), and put
C_:=(a/r_)P-.Thena.s.

(5.4)

m'"m

liminf

n—oo pb-

~=C_. (5.5)
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If furthermore(5.4) holds, then théiminf above is in fact dim: we have a.s.

m'm,

lim

n—oo pb-

—C.. (5.6)

Remark— The result (5.6) can be re-written as Jim inf, ot 1 (Byp) / V- (| Bupn|) =
C_, wherey_(t) = t*(log(1/1))#-. This result is similar to a property of the occupation
mesure of a stable subordinator with index (0, 1), cf. Theorem 1 of Hawkes [8] and
the display (3.1) of Hu and Taylor [10] .

Proof of Theorem 5.1. a) We first prove that a.s. limipt o, "Lﬂ’j' >C_.LetO<
C < C_ be arbitrarily fixed, and let > 0 be small enough such that. — &)CY#- > q.
This is possible since_CY#- > r_CY?~ = . (Recall thatB_ < 0.) By (5.3), for alln
large enough,

P{W <nf-C} <exp{—(r_ —e)CY#-n}.
Therefore by Proposition 1.2,

m'm, o 3 B
P{ 5 <C} <€P{W <nf-C} <exp{—[(r- —&)CYF~ —a]n}.

Since (r— — £)CYf- — a > 0, the seriesy )2, P[“#"+ < C] converges, so that the
conclusion follows by Borel-Cantelli’'s lemma and by lettiig— C_.

(b) We next prove that a.s. liminf ”;ﬁ"j < C_. Letoo > C > C_ be arbitrarily
fixed, and lett > 0 be small enough such that

pi=e =T e gy (5.7)

(this is possible because CY#- < rocYP- = a). Since (5.3) also holds withreplaced
by n?-C (n — o00), there are infinitely many e N such that

P(W < nﬂc) > e—(r,+a)C1/ﬂ—n =", (5.8)
so that by Proposition 1.2, for all these
m"m, 0
{nm >C}:f,,(1—P{W<nﬂC})gfn(l—p). (5.9)

Therefore by Proposition (1.1),

liminf P

n—oo

{m M <C] < Ii_)moof,,(l—,o”) =0.

nbB-

Using P (liminf,_ o [25" < C] < liminf,_ P[" < C] and then lettingC — C_,
we obtain the desired conclusion.
(c) We finally prove that if (5.4) holds, then a.s. limsup, ”‘nﬁ’[‘ < C_. Let C and
¢ be as in the proof (b) above. By (5.4), we know that (5.8) and so (5.9) holds for all
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n € N large enough; by Proposition (1.1), this implies that the sérigs, P[% > (]
converges, so that the conclusion follows by Borel-Cantelli's lemma and by letting
C—>C_. O

6. An equivalent of M,

Just as in the case for,,, Theorem 3.1 can also be improved whHg&rhas exponential
right tail. Write

m= ess suyiN and B.=1-—logm/logm. (6.1)

Then 0< B, < 1. (By convention8, = 1 if m = o0.) Define

ry =sup{t > 0: Eexp(tW"P+) < oo}, (6.2)
or, equivalently,
.. —logP
ri = liminf o9 1{W > x) (6.3)
X—00 xlB

Of courser, € [0, oo]. We shall sometimes need the condition that

. —log P{W > x}
re=lim — 5.

(6.4)

The first part of the following theorem was proved in Liu and Shieh [17]. But for
convenience of readers, we shall give a complete proof of the theorem. The result is th
counter part of Theorem 5.1.

THEOREM 6.1. —Let 8, € (0,1] andr, € [0, co] be defined in6.1) and (6.3), and
putC, = (a/ry)?+. Then a.s.

m'M,

limsup =C,. (6.5)

n—oo nh+

If furthermore(6.4) holds, then théim supabove is in fact dim: we have a.s.

nMn
im 27 — ¢, (6.6)

n—oo pb+

Remarks— (i) If either m < oo or Eexp(tN) < oo for some but not allz > O,
then O< r, < oo (cf. [13]), so that O< C, < oo, and hence Theorem 6.1 improves
Theorem 3.1.

(ii) If N is of geometric distributionP (N = k) = p(1 — p)*~* for somep € (0, 1)
and allk > 1, we haveC, = 1, in this case (6.6) was proved by Hawkes [9, Theorem 3].

(i) As in the case form, (cf. the remark following Theorem 5.1), we may
rewrite the result (6.6) as lim,  SUR,cy1 1 (Bujn) /Y1 (1Bypl) = C4, wherey (1) =
t*“(log(1/t))#+; in this form the result is consistent with some well-known uniform
asymptotic laws associated with Brownian motions or stable processes, see for examp
[12, Théoréme 52.2, p. 172], [8, Theorem 2] and [22, Lemma 2.3 and Corollary 5.2].
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Proof of Theorem 6.1. Fhe proof is similar to that of Theorem 5.1.

We first prove that a.s. limsyp ”‘ﬁ"f" < Cy. If CL =00 (i.e.ry =0), there is
nothing to prove. Assume€, < oo (i.e. r. > 0), and letoo > C > C, be arbitrarily
fixed. Lete > 0 be small enough such that, — ¢)CY#+ > «. This is possible since
ryCY8+ > r CYP* = o. By Proposition 1.2, we have

"M,
P {m > C] <& P{W >nfCY;
nb+

by (6.3), we have, for alk large enough,

P{W > nf+C} <exp{—(r —&)C"Prn}.

Therefore" 2, P[ m[,"f" > C] < oo and the conclusion follows by Borel-Cantelli’'s
lemma and by Iettlngf — C,.

We next prove that limsyp, ., = m > C; a.s., and that limint, m,{‘f" > Cy as.
if (6.4) holds. IfC, =0 (i.e.r, = oo) there is nothing to prove. So we assu@e> 0

(i.e.r, <o0).Let0< C < C, be arbitrarily fixed. By Proposition 1.2, we have

P[m:;:[" <c} = f,(1— P{W =nPC}). (6.7)

Let & > 0 be small enough such that.= e+ +e)c**

because., CYA+ < r.CY#* = «. Then

> e % =1/m. This is possible

P(W > nﬂJrc) > ef(rJré‘)Cl/ngrn — pn

for infinitely manyn € N by (6.3), and for alln € N large enough if(6.4) holds.
Therefore by Proposition 1.1, we see that liginf, P[“#: < C] = 0, and that

S 1P[’"ﬁ"f" < C] < oo if (6.4) holds. This implies that limsyp, ., ™ M > C as.,

and that limsup, , = M" > C a.s. if (6.4) holds. Letting” — C™* g|ves the desired
conclusion. O

Let us give an example where Theorem 6.1 applies easily. If the probability generating
function of N has the form

f(s)=s/[m—(m—1s*]"",

wherem > 1, andk € N* is a positive integer, theW has al'(1/k, 1/k) distribution
with density

kl/k
dw)= ——u* ek 4 >0
r'Q/k)
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(see [7, p. 17)m = f'(D), a =logm, B =1, ry, = 1/k, C. = klogm, and the
condition (6.4) holds. So by Theorem 6.1,

n
. m n
lim

n—oo p

=klogm a.s.
If k=1 (i.e. the geometric case), this was proved by Hawkes [9].

7. Moreon uniform boundsof local dimensions

The results in Sections 5 and 6 can be used to obtain uniform bounds for the loca
dimension ofu. Sincem,, < w(By,) < M, for allu € 9T, by Theorem 6.1, we have

. " Bu n
suplim supm <C, as; (7.2)
uedT n—oo nﬂ+
and by Theorem 5.1, we have
. P mnM(Buln) .
— > S. =0. :
uIQBfTIIVI;TlLQf R >C_ as.ifpp=0 (7.2)

The following result shows that, andC_ are the exact uniform bounds:

THEOREM 7.1. —
() If (6.4)holds, then

. m”" (B,
suplim supM

5 —CJr a.s.
ueo n—oo n

(i) Assume thap; =0and EN? < oo for all p > 1. If (5.4) holds, then

. . . .m"u(B
inf liminf " 1 (Bujn) =
uedT n—oo nﬂ*

C_ a.s.

The proof relies on the following result, together with (7.1) and (7.2).

PROPOSITION 7.1. — .
(i) A.s.{u € 9T: limsup,_, ., i Bun) ay#¢forall0<a<C, := (%)ﬁﬁ if

nP+
Fro=limsup, ., Z290E=0 < oo;
(i) as.(uedT:liminf, o "2 <a) @ foralla>C_ = (L)F- (=4, if
P = limsup, ., 9EH=9 < o0 and if EN1*¢ < oo for somes > 0. (Where

—”;;1 is interpreted to b if p, = c0.)

Proof. —(i) The argument is similar to that of the proof of Lemma 4.3. Instead of (4.7),
we have

cgexp{—rxVP+} < P(W > x) < coexp{ —rx#+}, (7.3)
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where O< r < ry andoo > r > 7, are arbitrarily fixedcs, cg > 0 are some constants
independent of € (0, co); this implies clearly that for each> 0, there is some constant
¢10 > 0 such that for alk € (0, c0),

E[L{W > x}W] > croexXp{—(r + 8)x/P+}. (7.4)

Instead of the eventge(By,..,) — 4 (Buy..u,y) > € " — €} (B ) > €}
and{W > e~} considered in the proof of Lemma 4.3, we now consider the events
{u(Bu,.. uk) (Buy.oaip,y) > an m ™ — anftm =%}, {i(Byy. ) > anf m ="} and

{(W > ank*} where the value of > 0 is to be determined. The displays corresponding

to (4.11), (4.15) and (4.16) are

m
s = cunexp{—( +8)aV ) (7.5)
b
o> (r+ 6)al/’3+ﬁ (7.6)
and
B b—1 B
a< < al ) <——> , (7.7)
r+4 b

respectively. The conclusion then follows, remarking that the right hand side of the last
display tends t@-* )’3(’”‘1)'3 C, (notice that-, < oo implies p, = co) whens — 0,
r— 7, andb — p+

(i) The argument is very similar to the above one, by considering the events

{/L(Bul...uk) - M(Bul...uk+1) < anlfim_nk - an]f_;lm_nkJrl}a {M(Bul uk) Cll’lfi _nk}

and {W < ank*} instead of{u(By,..u;) — W (Buy..upsr) > an,’?*m’”k — an,’?*lm’”kﬂ},
{(1(Byy.y) > anim="} and{W > an}*} respectively. (For a lower bound & 1{W <
x}W] we use an argument similar to (4.19).0

Proof of Theorem 7.1. For part (i), the upper bound is given in (7.1). For the lower
bound, by Proposition 7.2 (i), if, < oo (< C; > 0) and if (6.4) holds, then

. m" (B,
suplim supM

>C, a.s.;
uedT n—oo nﬂ+ -

if . = o0 (& C, =0), the inequality is evident.
The proof of part (i) is similar: the lower bound is given by (7.2), while the upper
bound comes from Proposition 7.2(ii).0

The bounds infer limsup, ., 2 and sup,y liminf, . "4 are easier
to get, but less interesting because they are respectively ®anthder some mild
conditions, as is explained in the following. By Proposition 3.1(ii) of [13] and its proof,
we know that:
(@) if6 > 0 andEW™? < oo, then lim,_, . 242 — 0 for P-a.e.0 € 2 andu-a.e.
ueoT;
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(b) if 6 <0 and EW™ < oo, then lim,_, ., "2 — oo for P-a.e.w € 2 and -
aeuedT.
This implies clearly that:
(c) if p+ = oo, then infepr limsup, _, ,, "2 =
(d) if p1=0 (& p_ =00), then sup_,7 liminf,_, =o0a.s.
Of course, (a) and (b) are more precise than (c) and (d) and the conditions in (c) and (c
can be relaxed.

Oas.;
m ,u(Bu\n)
=

8. Exact local dimension at typical u € T

Recall that (cf. (0.7)) foP-almost allw € 2 andu,-almost allu € 9T, ,, has lower
local dimensionu: d(u.,, u) = . But this gives only a rough idea about large values
of u(B,,) at a typicalu € 9T: it says that forP-almost allw € © and u,,-almost alll
ueoT,

lim Supmnsﬂw(Buln) =

n—oo

{0 if § <1,

oo ifs>1.

A deeper question is to find the exact dimension of large valugs, 08,,): that is, find
a functiong such that forP-almost allw € 2 andu,,-almost allu € 9T,

limsupm” w(By,)/¢(n) =c for some constant & ¢ < co.

In [9], Hawkes solved this question in the case wh&rbas a geometric distribution on
N*[9, Theorem 4], and conjectured that there would be a similar result in a general cas
under some conditions [9, p. 382]. The following result shows that this is indeed the cas
whenever the number, defined by (6.2) is strictly positive and finite.

THEOREM 8.1. —Let B, € (0, 1] andr,. € [0, o] be defined by6.1)and(6.2). Then
for P-almost allw € © and for u,,-almost allu € 8T, we have

) "u(B, 1
lim sup #Bu) _

_1 1
n—00 (|Ogn)ﬂ+ rJ/ZJr (8 )

Proof. —The upper bound is easy, and is a consequence of (3.4a) of [13]. We therefore
need only to prove that with probability 1,

. mnM(Buln) 1
limsup———— > — for u,-a.e. 0T (w). 8.2
P logmypr ~ g [T HerB e OT(@) ®.2)

If r, = oo, there is nothing to prove. Suppose that< co. It was proved in [13,
Theorem 1] that a.s.

b — HOT) =rP*W =l 11, (0T), (8.3)
where ¢, (t) = t*(log Iog%)ﬂ+, and ¢, — H(.) denotes thep,-Hausdorff measure.
Similarly, we can prove that a.s. for alle T (w),

¢+ - H(Bu) = rerMw(Bu)- (84)
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Therefore for almost abb,
¢, — H(A)=rP* 1, (A) for all Borel setA C 9T (w). (8.5)

Fix o for which (8.5) holds. By an argument similar to that used in the proof of
Theorem 5.3 of Dai and Taylor [4], we can easily prove that for all Bdrel 9T (w),

¢+(|Bu|n|)

e (A) Inf liminf < ¢pL—H(A). 8.6
ueA n—oo Mw(Buln) - ( )
Using (8.4), this implies that
. . ¢+(|Bu|n|) B :
inf liminf ————= <r{* if u,(A4) > 0. 8.7
ueA n—>oo Mw(Buln) * # ( )
Let us deduce from (8.7) that
BLll’l
fiminf £+{Bus)) <P for py-aeu € 0T (w). (8.8)
n—00 Mw(Buln)
Of course, it suffices to prove that for eack- 0,
Bu n
liminf w < rﬁ* +¢ for u,-a.eu € 0T (w). (8.9)
=00 Uy uln

In fact, if this were not true, there would exist a numbgr 0 and a Borel sefA with
Ue(A) > 0, such that for allt € A,

liminf ¢+(|Bu|n |)

B+
>r+ +80s
n—00 Mw(Buln) -

which is a contradiction with (8.7). Therefore (8.9), so that (8.8) holds. Notice that (8.8)
is just (8.2), so the proof is finished.O

The exact lower local dimension qf is of course closely related to the exact
Hausdorff dimension of its support. It is well-known that we can deduce the exact
dimension of the support by the exact local dimension of the measure. Our argumer
in the proof above shows that we can also do the contrary.

Similarly, the exact upper local dimension is also closely related to the exact packing
dimension. Liu [15] proved that if; = 0, then the correct function for packing measure
is

1\ #-
qL(t):t“(IogIog;) .

One might expect to prove the following: jf; = 0, then for P-almost atb € 2 and for
e almost allu € 9T,
mnﬂw(Buln) _ 1

liminf —— = —.
% (ogmp- P
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The lower bound is easy: in the same way as in the proof of (3.4(a)) of Liu [13], we can
prove that ifp; = 0, then for P-almost alb € 2 and foru,, almost allu € 9T,

- - " w Bun 1
iiming ™ teBu) 1
n—oc (logn)P- P
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