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ABSTRACT. — In this paper we prove the existence of average densities for the support of
a super-Brownian motion at a fixed time. Our result establishes a dimension-dependent fract:
parameter for super-Brownian motion, which enables us to compare the local mass density of tt
super-Brownian motion at a fixed time with the local mass density of the occupation measure o
a standard Brownian motion. 2001 Editions scientifiques et médicales Elsevier SAS
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RESUME. — Dans cet article est démontré 'existence des densités moyennes pour le suppo
d’un super-mouvement brownien. Notre résultat établit un parametre fractal dépendant de |
dimension qui permet de comparer la densité locale de masse d’un super mouvement brownier
un instant fixe avec celle de la mesure d’occupation d’'un mouvement brownien classRpGs.
Editions scientifiques et médicales Elsevier SAS

1. Introduction

The Hausdorff dimension and the exact Hausdorff dimension gauge are importan
fractal parameters, which describe the size of a fractal set. Of course, two fractal set
of the same Hausdorff dimension may have completely different topology or shape
Therefore it is important to study parameters which go beyond the measurement of siz
and characterize finer features of the set, like its local density or its geometric regularity
Not many such parameters are established in fractal geometry, the notaeraige
densityintroduced by Bedford and Fisher in [1] is one of the most popular concepts and
it has given rise to a good deal of recent publications, see for example [6] and reference
therein.

*During the preparation of this paper the author was supported by a postdoctoral fellowship of the DFG
Graduiertenkolleg “Stochastische Prozesse und probabilistische Analysis” in Berlin.
E-mail addresspeter@mathematik.uni-kl.de (P. Mérters).
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A striking example of two important random sets with the same exact Hausdorff
dimension gauge are the path of a Brownian motion on the one hand and the support
a super-Brownian motion at a fixed positive time on the other hand. These two randon
sets look entirely different, the former is a curve and hence connected, the latter is totall
disconnected (at least in higher dimensions), their Hausdorff dimension gauge, howeve
is the same,

¥ (r) =r?loglog(1/r) indimensiond >3
and
¥ (r) =r?log(1/r)logloglog(l/r) in dimensiond = 2.

It is therefore natural to try and compare them using a parameter describing their loca
density of mass like the average density of Bedford and Fisher. Whilst the average
density of the Brownian path has been investigated in recent papers of Falconer an
Xiao [7] and Morters [17], it is the aim of this paper to do this for the support of a super-
Brownian motion. We show that, for super-Brownian motiégh} in dimensiond > 3

at a fixed timer > 0, the average density of order two existsZatalmost every point

x and is equal to a constant (Theorem 1.1). This constant depends on the branchin
rate y of the super-Brownian motion and coincides with the average density of the
Brownian occupation measure of the same dimension exacity=f4. The constant

can be interpreted in terms of the equilibrium measure of the super-Brownian motior
(Theorem 5.1). In the planar case the situation is more subtle and a stronger averagir
procedure is needed to get convergence of the average densities. We show that, for sup
Brownian motion{Z,} in dimensiond = 2 at a fixed positive time > 0, the average
density of order three exists and is constanZ aalmost every point. If the branching

rate isy = 4, this constant agrees with the constant average density of the Browniar
occupation measure in the plane (Theorem 1.2).

Beyond our motivation from fractal geometry our results constitute small scale ergodic
theorems for super-Brownian motion, which are of independent interest. Our proofs are
based on an interesting statement about the decay of correlation between the mass
concentric balls as the radii move apart (Lemma 3.2).

It should not remain unmentioned that other authors have used different fractal
parameters to compare the support of super-Brownian motion at a fixed time anc
the Brownian path. Very interesting results were obtained by Le Gall, Perkins and
Taylor [12] on the exact packing dimension gauge and by Perkins and Taylor [21] on
the multifractal spectrum of super-Brownian motion.

In the remainder of this section we first introduce the notion of average densities anc
recall some basic facts about it and then describe our results about the average densit
of super-Brownian motion and compare them with the known results about the Browniar
path. In Section 2 we collect some facts and results about super-Brownian motion befor
embarking upon the finer details of the proofs of our results, which shall be given in
Sections 3 and 4. Section 5 is devoted to the description of the average densities in tern
of the equilibrium measure and we conclude the paper with some additional remarks an
open guestions.
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1.1. Average densities

The heuristic idea of a density of a locally finite measuris based on the picture that
the mass in a small closed bdl(x, ) of radiusr, which is centred in a point of the
support, behaves like(B(x, r)) ~ D(x)r%, in which casex describes the dimension of
w and the mass prefactdp(x) the local density ak. In the case of a measurethat
is absolutely continuous with respect to Lebesgue measure this picture is correct. Fc
singular measures, however, several difficulties occur.

The first problem consists in the fact th@t(x) cannot be defined as limq u(B(x,
r))/r%, as this limit fails to exist for all irregular measures and the function oscillates as
r | 0 (see [22] or [15] for a precise statement of this fact). To handle this oscillation,
Bedford and Fisher [1] suggested to use an averaging method based on classic
summation techniques of Hardy and Riesz. kgr 2 they define theverage density
of ordern of u atx as

k
1 u(B(x. 1/ exp" V()
k'L”;oz/ G exp D@y "

where exf” is thenth iterate of the exponential function. The average densities of order
two and three may also be written as

im /,u(B(x , 7)) dr and  lim /M(B(x r)) dr .
sw Iog(l/s) r sw log Iog(l/e) o rlog(1/r)

For a large class of fractal measurgspossessing some self-similarity the average
densities of order two were shown to exist and be equal to a constardlatost every .
Examples include the natural measures on random and deterministic self-similar set:
see, e.g., [19,20,8], mixing repellers, see [5], the zero set and path of Brownian motion
see [1,7], and intersections of Brownian paths in 3-space, see [18]. It was also show
that average densities can distinguish between differepiart Cantor sets of equal
dimension, see [13] or [6].

In many cases, particularly in the context of stochastic processes, a further phenorn
enon occurs: the upper hull behaviour and the lower hull behaviowur(81x, r)) are
governed by different functiong andé with the property

0 <timinf “CET) oo and o< limsup BT
AR o V()

’

sometimes even such functions fail to exist and the lower or upper hull have to be
determined by means of an integral test. Typically, in these cases a third gauge functio
¢ enters, which governs the typical behaviour between these hulls and which allow:
the definition of the average density faKB(x, r))/¢(r). Examples of fractal sets, for
which an average density of order three can be defined using a density gauge functic
different from the exponential typge(r) = r* are the path of a Brownian motion in the
plane, [17], and intersections of independent planar Brownian paths, [18].
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The family of average densities of ordeiis consistenin the sense that existence of
average densities of orderimplies existence of average densities of all higher orders
with the same value. The minimal numbewith the property that the average density
of ordern exists atu-almost every point is sometimes called thieler of regularity
of u. It is intuitively plausible that this parameter describes regularity properties of
although this point of view seems to have so far very little rigorous justification. There
are however interesting recent results relating the geometric regularity of measures t
the relation of the average densities and the lower and upper densities, see [6,14,16].

Let us now recall the known results about the average densities of the Browniar
path{B(¢): 0 <t < 1}. The path is equipped with a natural measurehe occupation
measure defined by

1
w(A) = / 14(s)ds for A c RY Borel.
0

By classical results of Ciesielski, Taylor and Ray the occupation measure is almost surel
a constant multiple of the generalized Hausdorff measure on the Brownian path witt
respect to the gauge functiogismentioned at the beginning of this introduction. Here

is what we know about the average densitieg of

e In dimensiond > 3 Falconer and Xiao [7] found that, almost surely, average
densities of ordetwo exist atu-almost every point for the occupation measure
w using the density gauge(r) = r2. The actual value of the average density is
deterministic and independent of the point and equal to the expectation of the tota
occupation time of the Brownian path in the unit ball, which is easily seen to be
equal toD(d) = 2/(d — 2).

e In dimensiond = 2 Médrters [17] found that, almost surely, average densities
of order three exist at u-almost every point. The appropriate density gauge is
¢(r) =r?log(1/r) and the actual value of the average density is 2. The average
density of order two fails to exist, so that the order of regularityise

1.2. Statement of the main theorems

Super-Brownian motion is a continuous Markov process with values in the space
Mp(R?) of finite measures ofR?. It was originally defined as a high density limit
of a system of critically branching particle systems, but the enormous interest super
Brownian motion has found in the last fifteen years is also due to its many connections
to the theory of certain semi-linear partial differential equations and to its rich and
interesting geometric phenomenology, see for example [2] for some of these aspects.
Throughout this paper we suppose that the measure valued pfotéss a super-
Brownian motion with arbitrary finite starting magsand constant branching rate> 0.
Its precise definition and some basic properties are recalled in Section 2. We now givi
the statement of our principal results.

THEOREM 1.1. — Suppose that > 3 and {Z,} is a super-Brownian motion iR¢
with branching ratey > 0. Then, for every > 0 with probability one, atZ,-almost
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everyx,

1
. 1 " Z,(B(x,r)) dr B
Is”Jg) log(1/¢) / r2 o ba.y),

where the constant average density is giverDiy, y) = y/(2d — 4).

Remark— A description of the average densib{d, y) in terms of the equilibrium
random measur&,, of the super-Brownian motion will be given in Section 5. This
description connects the value &f(d, y) to the long term behaviour of the super-
Brownian motion.

In the critical dimensiond = 2 we encounter a completely different situation. It
can be shown that the average density of otder fails to exist for the support of a
super-Brownian motion in dimension 2. However, similarly as in the case of the planar
Brownian path, averaging of higher order helps.

THEOREM 1.2. —Suppose that/ = 2 and {Z,} is a super-Brownian motion iiR?.
Then, for every > 0, with probability one, atZ,-almost every,

| 1 zBe)
lim / =
10 loglog(1/¢) J r2log(1/r) rlog(1/r)

y/2.

Remark — Both our theorems are based on an ergodic phenomenon: the scale averag
over Z,(B(x,r))/e(r) converges to the average over all random paths, because of
the decay in the correlation &, (B(x,r)) and Z,(B(x, s)) asr moves away frons.

The different ways of averaging reflect qualitatively different types of decay: a decay
proportional to a power of/s in the casel > 3 and a decay proportional to a power of
log(s)/log(r) in the casel = 2. All this will be made precise in Section 3.

Let us now compare the average densities of the Brownian path and the supel
Brownian motion in different dimensions. In dimensigrn> 3 the order of regularity
of super-Brownian motion iswo, whereas in dimensiod = 2, it is threg which
heuristically means that the measure is less regular in the plane. We have encounter:
the same behaviour already in the case of the occupation measure of the Brownia
path. For both measures the density gauge @ = r? in dimensionsd > 3 and
¢(r) = r?log(1/r) in dimension 2 and so it makes sense to compare the actual values
of the average density. These values coincide in each dimension exactly for the supe
Brownian motion with branching ratg = 4. This is also the natural choice in view
of Le Gall's path valued process, see [10] and the next section. Hence, for the critica
branching rate off = 4, the concept of average density is unable to distinguish between
a Brownian path and the support of a super-Brownian motion equipped with their natura
measures.

Heuristically, the smallness of the average densities of super-Brownian motion in
higher dimension can be explained by the fact that in every scale there are large massle
areas between separate clumps of mass, so that typical balls centred in the support coy
a large portion of massless area. Such an observation was made rigorous by Tribe [2
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to prove a disconnectedness property of super-Brownian motion, but his statement is
weak to have a direct influence on our result. The phenomenon of separation of mass |
a fractal measure by large holes has been termed “fractal lacunarity” by Mandelbrot.

2. Preliminaries on super-Brownian motion

Denote by M (R?) the space of locally finite measures on the Boradlgebra oriR?
equipped with the vague topology and b - (R?) its subspace consisting of the finite
measures. Let2y, Ag) be the canonical space of continuols; (R¢)-valued paths on
[0, o) with the Borelo -algebra and denote the coordinate procesgzhl. With respect
to a probability measur@’, on (£2o, Ao), the Markov proces$Z,} is asuper-Brownian
motion inRR? with starting masst € M (R?) and branching rate > 0 if, for every
¢ :R? — [0, c0) bounded, measurable,

Q! <exp<— /(/bdZ[)) :exp(— / Ut”qbdu), (1)

whereU, = U/ ¢ :R? — R is the unique solution of the (integrated form of)

U, A
S0 = SU0) - gvt @2 Uox) = (). 2)

The scaling properties of this equation show that

QUZeM)=Q,,, (yZeM) forM e A (3)
Hence, in our proofs, it suffices to study the average density gffor a single branching
rate y, which we choose to bg = 4 in the sequel. We leQ, = Qﬁ and even write
Q. =Q if u =4, is the Dirac measure ix.

We point out two important properties of super-Brownian motion. Singerprocess
propertystates that the intensity measui&g, evolve like a heat flow, i.e. denoting the
Brownian transition kernel by we have

E{/qbdZ,} = /p(x -2, 0)p(2)du(x).

The second important feature, which can be seen from (1), is the so-batledhing
property of super-Brownian motion: If we start with a finite mags= u; + u, the
contributions ofu; and u, evolve independently of each other. Consequently, for any
fixed timer > 0, the random measutg, is infinitely divisible and we can characterize
it via its canonical measureVery useful (and beautiful) descriptions & and its
canonical measure were given by Le Gall in [9] and [10], we briefly sketch the formulae
relevant for our purpose.

Consider the space of stopped, continuous patii idefined as

W ={(W,¢)eC([0, 00), RY) x [0, 00): W(s) =W(¢) fors > ¢},
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equipped with the metric

d((W1, 21), (W2, £2)) = [IW1 — Walloo + 81 — 2.

Most of the time we writeW for (W, ¢), as¢ is clear from the context. Denote by
£21 = C([0, 00), W) the space of continuous mappings frdfi) co) to W equipped
with the Borel o-algebra.4; coming from the compact-open topology. Denote by
W = {W;};>0 the coordinate process &py, by ¢, the lifetime of W, and byWs =W(y)
the endpoint ofW,. By P, we denote the law 02, A;) of the path-valued process
associated witld-dimensional Brownian motion starting &t This law was introduced
in [10]. Under P,, the procesgW;},>o is @aW-valued continuous Markov process and
{¢s}s>0 Is a one-dimensional reflecting Brownian motion. The intuitive picture is that
{W,} grows like a Brownian motion ifR? when{¢,} increases and is erased, wher
decreases (though, of course,} has strictly speaking neither points of increase, nor of
decrease). LetL!: s > 0} be the continuous local time ¢£,} atr normalized to be a
density of the occupation measure{of}.

We identify a pointy € R? with the constant patl of zero lifetime and writeP, for
the law of the path-valued process started in the constantypdivery y is a regular
point for {W,}, so that we may introduce th& excursion measur#, of excursions of
{W,} from y. Itis convenient to define an excursion on the whole time interval by letting
it remain iny, once the excursion from is finished. Thenv, is a o-finite measure
on (£21, A1), which we normalize so that it is the intensity measure of the Poisson
processiT” of excursions ofW from y, completed up to time[W] = inf{s: L° = 1}.
The distribution of{¢,} underN, is the Itd excursion measure for reflecting Brownian
motion normalized so that

1
N, (stjpgs > h) =5 forh > 0.
Define a continuousM (R%)-valued procesgX,;} on the o-finite measure space
(£21, A1, N,) by

olW]
X, [W](A) = / 1,(W,) L' (ds) for A C RY Borel ands > 0,
0

whereos [W] = inf{s > 0: ¢, = 0}, and anM (R?)-valued process on the probability
space($21, A1, Py) by

T[W]
Z,[W1(A) = / 1,(W,)L(ds) for A CRY Borel.
0

Then, by [10, 2.1]{Z,} is a super-Brownian motion with branching rate= 4 started
with a unit mass irny. Furthermore{Z,} has a Poisson representation in term$Xof},
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i.e.foralls >0,

Z,[W]= / X,WlIT>(dw), Py-almost surely 4)
21

and we infer from the formula for Laplace transforms of general Poisson processes, the

Q, (exp(— / ¢dz,)> =exp<— / (1—exp<— / ¢dX,[W]>>Ny(dW)>. 5)

This means that the distributiaR, of X, undern, is the canonical measure associated
with Z, underQ,.

Let us now fix a time, say = 1, and a starting mass, s&y = §,. Later in this paper
we work mainly with the Campbell measure associated with the canonical measure
of Z,, that is the measure an (RY) x R? defined byP (du, dx) = u(dx)Ri(dp).

A Poisson representation @ can be found in [11, (5.4)]: Denote 1, the law of
a Brownian motion inR? started iny. For eachw € C([0, 1], RY) let M(dt,dW) be
a Poisson random measure [ 1] x £2; with intensity 4/t N,,,(dW) and assume
that M, is defined on a canonical probability space,, A, P™) with w — P™(A)
measurable for each € A,. Then, for every measurable functign R? x My (R9) —
[0, 00),

/' / & (xr, Xa[W1) X2 [W1(dx)N, (dW)

= /p<w> <¢<w(1),/ Xlt[W]Mz(dl,dW)>)Py(dw)~ (6)

Finally, we recall the following useful formula for the second moments of the super-
Brownian motion, which may be inferred directly from (1). Denote the transition density
of Brownian motion by

oy 1) = 1 e—uxz—[yuz
p Y, 1) = 7@(1 )
and writedx for integration with respect to Lebesgue meadifreThen

oo fvaz) - foam)a(fvaz)
= 4O/ds/a’z/,u(dv){p(v—z,t—s)

< [[owvoine-x9pe=y9d dy}. @)

3. Main lemma: The decay of correlation

We consider the starting mags= o and the corresponding super-Brownian motion
{Z,} at timer = 1. The canonical measui®, associated with the random measute
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has been described in the previous section. We work on the spaeeM . (R?) x R?
equipped with the Boret-algebrad. We define the associated Campbell meagumn
2 by

P(M x B) = /X(B) R1(dX)
and observe thaP is a probability measure of2. On the spacés2, A, P) we define
the stochastic proce$X (r): r > 0} by
X(NI[X, x]=X(B(x,r)).

This process describes the mass in a ball around a random point in the support of ot
super-Brownian motion at time 1. We first study the expectatiorns(of.

LEMMA 3.1. —For the random variableX () on the probability spacés?, A, P) we
have

EX(r)=4/ldt/ / px,t)p(v,t)dvdx

lv—x||<r
2
/ / p(y,0)dy.
0 Iyli<r

Furthermore, in dimensiod > 3 we have

IimIE{X(r)}=i and E{X(nr)

ri0 r? d—2 r2

—X(r) 2 2
b S 0r-,

forall n > 1andr > 0. In dimensiond = 2 we have

10 | r2log(1/r) r2log(1/r)

for all sufficiently smalk > O0and all1l < n < 2.

Proof. —Recall the notation from the previous section. We use the Poisson represen
tation (6) of the Campbell measure to obtain

Ex(r)://Xl[W](B(XJ’))Xl[W](dx) No(dW)
1
:/[//Xlt[W](B(U)(l),I"))Nw(t)(dW)4dt‘| Po(dw).
0

For the innermost integral we note that, by (5) and the superprocess property,

/ X1 IWI(BG. 1)) N, dW) = Q. Z1, (B(y. 1)) = / px—z.1—ndx. (8)

B(y,r)
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Hence we obtain

1
/ [ / / X1 [WI(B(w(D). r)) Nuw (dW)4dt | Po(dw)
0

- 1
=/O/ / p(x — w(t), 1 — 1) dx 4dt | Po(dw)

B(w(1),r) -
1
0 L

/// p(x —z,1—=0pz, )p(v—z,1—t)dvdzdx| 4dt
1

lv—xli<r

:4/dt p(x,t)p(v,t)dvdx]
0 - v=xlI<r
1 _
=afal[ | p(x,z)p(y—x,r)dxdy]
o ik
1 - 2
=4/dt / p(y,2t)dy]=2/dt[ / p(y,t)dy],
o i 0 Iyli<r

where we have denoted= w(1) andz = w(¢) and used the Chapman—Kolmogorov
equation in the penultimate step. This proves the general formula. We now substitute th
space variables and change the order of integration, so that

2 2/r?
_ 9.2
Z/dt[ / p(y,t) dy] =2r / l/ p(y,t)dt] dy.
0 Iyli<r IyI<1 =0

Hence, in dimensiod > 3, we obtain

xmY_, [[T _rd/2-1 12
'ngE{ 2 }_2 / [/p(y’t)dt] dy = N / D
Iyll<1 =0 Iyl<i

and similarly, for allp > 1,r > 0,

E{M} < (772—1)2 /

72

2

; L,
O/p(y,t)dtl dy=(n°-1) T

IyI<l

In dimensiond = 2 we obtain for the inner integral an explicit solution in terms of the
integral exponential function Ei,

2/r2 2/r2

[o/e]
1 [ yo2m.dt 1 _.dt  Ei(=|ylI*r?/4)
Ddi— g hirzdt _ 1 / e b e
/P(y ) ZJT/ t 2n t 27
0 0 Iyl2r2/4
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This yields, as Ei-r) = log(1/r) 4+ O(r) for r | O,

. X(r) 1. Ei(—ylI2r2/4) .
'r'?c}E{rzlog(l/r)} - Ir'?c}” / log(1/r) dy=2,

<

and, similarly,

B w122
E{M}@?z—l) / BT/ 4y < 302 = 1) log(a/ ),

. b
Iyl<1
for all sufficiently small- >0and 1<n <2. O

It is natural to conjecture a decay of the correlatiorX@f) and X (¢) whenr moves
away fromp. The crucial tool in the proofs of our main theorems makes this conjecture
precise, recall that the covariances refer to the Campbell measure.

LEMMA 3.2 (Main Lemma). —Define the proces§X (r)} on the probability space
(£2, A, P) as above. Then in dimensieh> 3, for every0 < o < (d — 2)/(2d — 3),
there is arp > 0 and a constanC > 0 such that, for all0 < r < ¢ < 1o,

co X0 X ¢ ('
o o

In dimensiond = 2there isryg > 0 and a constan€ > 0 such that, forall < r < ¢ < rq,

OV{ 2X(r) __X© }<C' log(1/0)
r2log(1/r)’ 0?log(1/0) log(1/r)

Remark— | have not tried to optimize the powers appearing in the theorem, as they
are unimportant for our purpose.

The remainder of this section will be devoted to the proof of this lemma. We
start by deriving an explicit formula for the covariance {&f (r)} using the Poisson
representation provided in the previous section.

LEMMA 3.3.—Foralld >2and0 < r < o we have

Cov{X (r), X(Q)}_16/dt/ds/// / p(w,)p(z, t—s)

[lw—x|I<r
lw—yl<eo

xp(z—x )p(z—y,s)dwdxdydz 9)

+16/dt/ds/// / pv,t —s)p(w —v,s)

[[w—x|<r
lw=—yli<e

X px,)pv—y,s)dvdwdxdy (10)
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+16/dt/ds/// / pv,t —s)p(w —v,s)

[[w—x|<r
lw=yl<e

xp(v —x,s)p(y,t)ydvdwdx dy (1))
—16/a’t/a’s/// / p,t)p(x,t)
lv—xl<r
ho—yli<e
x p(w, s)p(y,s)dvdwdxdy. (12)

Proof. —Denote ¢ (x, u) = w(B(x, r))u(B(x, 0)). We use the Poisson representa-
tion (6) and the formula for the variance of the Poisson process to get

E{X1(B(x,r))X1(B(x,0))}
_ / ¢ (x, X1[W1) X1[W](dx) No(dW)

-/ p<w>{¢<w(1), I/ xlt[W]Mz(dt,dWO}]P’o(dw)
_ /P(w){/ X1 (B(w(1),r)) Ma(dt,dW)

x / X1-(B(w(1), 0)) Ma(dt, dW)} Po(dw)

1
= /Po(a’w){4//xlt(B(w(l),r))Xlt(B(w(l),Q)) Nw(t)(dW)dl
0

+16< / / X1t (B(w(L), 7)) Nug @W) dt)
X ( / / X1 (B(w(1), 0)) Nug (dW) dt) }

We have already seen in (8) that

//Xl, B(w(1),r)) Ny (dW)dt = /1 / p(w() —x,1—1)dxdr.

0 w)—x|<r
From (5) and the moment formula (7) we infer that
[ X1 IWIB (0@ 1) Xar W (B (0D, 0)) Noiy (@W)

— Qw(t)(zl,,(B(w(l), r))Zi-(B(w(1),0)))
= Quiy(Z1+(B(w (@), 7)) Qu (Z1-(B(w(D), 0)))
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1-1
=4 [ ds dz{p(w(t)—z,l—t—S)
]

X// p(z—x,S)p(z—y,S)dxdy}-

lw(D)—x[I<r
lw@®-yli<e

We can plug these expressions in our formula, simplify, and get

E{X1(B(x,r))X1(B(x,0))}
1 1—
_ 16/IP’0(dw) {O/dro/

X// p(z—x,S)p(z—y,S)dxdy}}

lw(@)—xll<r
lw@D-yl<e

t

a’s/ dz{p(w(t) —z,1—t—y)

1

+16/Po(dw){{/

pw@)—x,1—1)dx dt}
0 [w@—x|<r

1

x{/ / p(w(s)—y,l—s)dyds}}
0 lw()—yli<e

1 1—¢
= 16/dt/ds/ dvdwp,t)p(w—v,1—1)
0 0

x{/// dxdydzp(v—z,1—t—S)P(Z—x,S)P(Z—)’,S)}

llw—x|l<r
lw—yll<e

1 1
+16/dt/ds// dudvdwpu,t)p(v—u,s —t)p(w—v,1—ys)
0 i

x// dxdypu—x,1—-t)pv—y,1—ys)

llw—x|l<r
lw=—yl<e

1 t
+16/dt/ds// dudvdw p,s)pv—u,t —s)p(w—v,1—1)
0 0

x// dxdypv—x,1—t)pu—y,1—ys)

llw—x|l<r
lw=—yl<e

83
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= lG/dt/ds/// / p(w,)p(z,t —s)

w—x||<r
lw—yl<eo

xp(z —x,8)p(z—y,s)dwdxdydz

+16/dt/ds/// / p,t—s)p(w—v,s)

[lw—x|I<r
lw—yl<e

X p(x Hpw—y,s)dvdwdxdy

+16/dt/ds/// / pw,t—s)p(w—v,s)

[lw—x|I<r
lw—yli<e

xplw—x,5)p(y,t)dvdwdxdy,

where, in the penultimate step, we have split the second summand in two parts accordir
ass <t ors > t. We then get the final form of our formula by subtracting the expression
for EX(r)[EX (o), which was established in Lemma 3.1

The expression in Lemma 3.3 could be simplified a little more, but instead of doing
this, we express all integrals as integrals over the same integrand, by means of a chan
of variable.

LEMMA 3.4. —For 0 < r < o denoteg =r/p. For w, x, y, z € RY we denote

1
e (2 )5 (2 222 2 (2 )
O/ VAW AW AWy

Then we can write

COV{X::),X(Q)} /d{16/// / +1e/// /

lw—v/sx—vI=szll<q lw—5x—v/I=szl<q
lw—+/sy—vI=sz[<1 IVsx—/sylI<1
wofff [ fff ]
lw—/sx—+/I=sz] <1 llw—zll<q
IVsx—/syl<q IVsx—/syll<1
Dylw, x, y,
—16/// / }dedxdydz. (13)
llw—z]|<1 @
Ivsx—/syl<q
Furthermore,we have, for alb, x, y, z € R¢,
. Dylw, x,y,z]  I'(2d—2) > 2 2 212-2d
lim —2 =
i o8 22 Hwl® =+ x4+ Iy ll© + l1zl17]
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and this limit is monotonically increasing. &f= 2 we have, for alw, x, y, z € R?,
Polw, x, y,z1 _ 1 {Q_Z expl—o?(lwll® + llxlI2 + llylI* + Iz1%)/2]
o* 4t | 2 w2+ 1xl12 4+ lylI2 + [1z]I2
expl—o?(lwll® + |lx[I* + lyI* + IIZIIZ)/Z]}
w2+ llx )% + Iy 112 + 1211712

Proof. —We carry out the change of variables for (9). Substitut®r w/p, z for z /o,
x for (x — z) /o andy for (y — z) /0 and obtain

16Q4d/dt/ds /// / p(wo, t)p(zo, t — s)p(xo,s)p(yo,s)dwdxdydz.

lw—x—zl<q
lw—y—z<1

Recall thatp(x, s) = s~4/?p(x/+/s, 1) and change the order of integration to obtain

16/// / dwdxdydz{g“jdt/ds(ﬁ)wz
0 o

lw—x—zl<q
lw—y—zl<1

(1) (7= (G 1) ()
\/Z’ l‘_s, ﬁ’ \/E’ .
Now substitutes for s /7, x for x/4/s, y for y//s andz for z/+/1 — s. This finally yields

16/ds/// | dwaxaya

lw—+/sx—+/1=52]<q
lw—+/sy—+/1-s5z|<1

o ()0 ()

This corresponds to the form given in the lemma and analogous substitutions may b
performed for the other terms. Additionally, we have split the last term in two parts
according as <t ors > t. This proves (13). To obtain the asymptoticsigfiw, x, y, z]

we abbreviater = |w||? + [|x]|2 + |lv]I? + llz]|> and get

1

- Plw,x,y,z] oM
Y / T expl—ae 2 di
_ r2d -2
_ 2-24 ;243
1 Gy @12 / ¢l = e

ap?/2
In the cased = 2 the limit above is also valid, but we have to evaluate the integral
explicitly,

0]

¢Q[w’xay’z] 1 / _t 1 <Q2 —a02/2 1 2
— teldt = — [ Z_gae / —gae /2>. 0O
o? 4r4a? 474\ 2a + a?

ap?/2
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It is now necessary to distinguish the cages 2 andd > 3. We start the estimates
necessary for thproof of the main lemma in the cage= 2. In our estimate§’ denotes
the value of a constant that may change from line to linis,assumed to be sufficiently
small.

We proceed in two steps. We first prove that

it /ds /// / dedxdydz <C - (log(1/0))>. (14)

Q
lw—+/sx—+/1=52]<q
IVsx—/5y1<2

Sinceg < 1 this gives favourable estimates for the first two summands in (13). Observe
first that®,[w, x, y, z]1 < &,[0, x, y, z]. Hence we can integrate, first with respecito
and then With respect toand obtain

@ ’ b L
—/ds /// / dedxdydz
. (o

lw—/sx—/T=s2lI<q
/5 — /5yl <2

<C- /ds{// / dedydz}

/sx— f}l|<2

. ¢ Oa Vo
< C-///mln(l, 2) ol x4y d dx dydz
lx — ¥l o
ol0, x,y, 7]
cc // / iy
(||x—y||2)g

lx=yll>

D,[0,x, y, 2]

+C- .

dxdydz. (15)
lx=yl<2

We now use the expression fér, from Lemma 3.4. Using the symmetry inandy we
can restrict integration tfix|| > ||y||. The second summand can be bounded easily by

/// cD[OxyZ]d dydz

lx—ylI<2
Il =1yl

2 2 2
{ //exp[ 0 (||;c|| +121%/21
(112 + 12112

expl—o2(|Ix 12 + 112 + 11212)/2]
dxdyd
+// / [ 12+ 112 + 21212 rayac

Ix 2y 12+ 11zl12<2

expl—o(Ix | + 121 /2]
“ff ] e+ e dz}

Ix12+1zI12>1
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oo

i T expi—o02s2/2]
< C-{QZ/SeXp[—stz/Z] a’s—i—/sa’s—l—/#ds}
s

0 0 1

< C-log(1/0).

For the first summand we can find an upper bound of

/// <||x(i);||§>;]d dvdz

llx—yl>2
\IXH?H,VH

<C. {Qz expl—o*(llx 11> + Iy lI* + 1z11%) /2]
b (lx = yIA X2 + 112 + l1z112]

dxdydz

2lxlIZllx—yl>2

[ expl—o®(llxII” + lylI* + l1z1I*) /2]
+// / dxdydz}
(lx = YIDUxNZ + ylI2 + 1211212
2xZlx=yl>2

dxdz

. { e [ expl—0?(lx|1” + 1217 /2] dy

1112 + llz]|? Ilx — yl2
20> x—y[1>2

dxdydz
[l 11 + [y l1Z + Nlzl1712

o/
12+ Y12+ 1212 <2
exp—o*(llx 11+ 11z1%)/2] dy
o [ )

[llx ]I + N1zl1212 lx — yl12
I l2+l22>1 20> lix—yl>2

o]

<C- {Qz/exp(—gzsz/Z)slog(s) ds

0
V2 i 2.2
+/sds+/w-log(s)ds}
S
0 1

< C - (log(1/0))’.

This establishes an upper bound@flog(1/e))? for (14) and we are done.
In the second step we show that

Lelllf Ll ) )t

lw—y/sx—+/1—57| <1 lw—zl|<1
IVsx—/syll<q IVsx—syli<q

< C-109(1/0)*?log(1/r)*2. (16)

This gives a favourable estimate of the last three summands of (13). In this term the
cancellation occurs. Fix = a(r, o) < 1. We can bound (16) from above by
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C l n n n n
slaIf
q . .
0 lw—+/5x—/I=52||<1 lw—+/sx—/T=s2[ <1
IVsx—/sylI<q, IIvsx] =a IVsx—/sylI<g. (1—v1=s)l|z] =a

a A ¢
4—///m / }—ﬁﬁ&é}zfjdwdxdyda 17)
" 1gw-zI<1+2a @

IVsx—+/5yl1<q
Observe that in the last integral we have decoupled the variable$rom the variables

x,y. Hence this term is the product of two integrals as they were considered in
Lemma 3.1 and we have

1

C ¢ ) b ’
_2/ds/// / Ma’wdxdydz
q 0

4

1< lw—z||<1H4-2a Q

IVsx—/syll<q
<cC. EX1B(x,r) EX1(B(x,0(1+ 2a)) \ B(x,0))
~ r2 Q2

< C-log(1/r)log(1/0)((1+2a)* — 1).

The last inequality used the estimates for the expected values of small annuli obtained i
Lemma 3.1. Choosing = log(1/0)/log(1/r) gives an upper bound @f(log(1/0))?. It
remains to estimate the first two integrals in (17) for this choice. dfet us begin with

the first integral. Integrating with respectyandw and using Lemma 3.4 yields

1
1 ' @ 9 9 9
—z/ds/// / dedxdydz
q 5 Q

l[w—+/sx—v/T=sz]| <1
IVsx—/5y1<q. IVsx[>a

1

d ?,[0,x,0,z
gc./_s/ / wdxdz
5 4

0 Vsxl>a
, [ds [ expl—o2llx 121+ [1z11%)/2]
<ciet [T axf D7y 18
{Q s g 1+ JI? ’ o)
0 IVsxl=a
. /ld_s [ /exp[—g2||x||2<1+||z||2>/2] . 19)
s HE 1+ 222 |
0 IVsxl=a

For (18) we obtain, writing log for the positive part of the logarithm,

y 2 2 2
02 / ds / dx{egz”xuz/z /eXIO[—Q xIPlzI?/2 dz}
s 1+ Jlz]
0 Ivsxlza

1

d

<cogt [T [ ax{e R (logt (1/1xle) + 1))
0 |xlza/5
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< C-0? / dx {e @ 1°2(log* (1/|xlle) + 1) log* (Ix]l/a)}

<C- / {e77"2(log"(1/p) +1) log* (p/ag)} pdp
0

< C-log(1/ag).

With our choice ofa the last expression is easily seen to be boundedCby
log(1/0)¥?log(1/r)*2. This gives the necessary bound for (18). For (19) we can split
our domain in two parts depending whethet| < ¢ or ||x| > ¢ and obtain an estimate

1
ds 1 expl—o?llx[1*(1 + |1zI1?) /2]
t/F_ / ‘”{wa/‘ [1+ [1z]212 dz}

0 " IvAKIZa
l n
<C. /@ dx egznxnz/Z/;dz
J s [lx]12 J [+ 1z)21?
0 " IyExIza
1 : L
gc.{ ds / ax_orxi?z / IR / @}
T T P° A
/o2 o>lrlzaly Ixi>e a2/l

1

<c-{ / —log(f/a>+/ ew/zlog@/a)dp}
a?/g?

C - {log(1/a)log(1/0) +log(1/0)*}.

Both expressions are bounded by a constant multiple ofljey®?log(1/r)Y? and
hence we have established the necessary bound for the first integral in (17). Upo
observing that 1 /1 — s < ./s for all 0 < s < 1, the second integral may be bounded
in the same manner. Thus we have established the necessary bounds for all expressic
in (17) and (16) is proved. Altogether, (14) and (16) yield the main lemma in the case
d=2.

Let us now work out thg@roof of the main lemma in the cage> 3. Given O< o <
(d—2)/(2d —3) we choosex < n < (d —2)/(2d —3) such tha = (1—2n)(d —2) > «.

To make our proof as compact as possible we start with a general estimate. Le
0<a,b,c, 6 <1,thenthere is a consta@t> 0 independent of them, such that

1
/d /// / dwdxdydz
s
/ Uwli2+ l1x112 + Iy l12 + [1z[12124-2

llhw—/sx—/I-szll<a
Ix=yI<b/V/5. Iyl >c/s?

<cC. /d // / dxdydz
a N
LlxlZ 4+ Ny lI2 + llz)|2124-2

llx—y \I<b/f
IyI=>e/s?
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1

<c-a"/ds / dy ||y||4*2"/ /
L+ 2 + 2 )22

0 yiZe/s? I I<B/ (S5 Iy D
1 b/\s + b N1+ H
ad/ds{</ p3—ddp> +s—d/2bd{max<$,s—9>} } (20)
0 o)

Having provided this general estimate, we now start with the estimates leading to the
statement of the main lemma. Again we proceed in two steps. In the first step we shov

that
dwdxdydz
Lafl] | <co
/ Hwll? + X112 + Iy 112 + llz]121% -2

llw—5x—vI-52l1<q
IVsx—/syl<2

(21)

thus providing a favourable estimate for the first two summands in (13).
If d =3 we can use (20) straight away with= g, b = 2 andc = 0 and obtain an
upper bound for (21) of

2 1
Cq/a’s{/dp—i—s 3/2< ) }gc-q/d—s<c
s ) s

In dimensionsd > 4 we first look at a restriction of our domain of integration by
assuming||y|| > ¢g. From (20) witha = ¢ = ¢, b = 2 andé = 0 we obtain an upper

bound of
2 4-—-2d
Cq“/ds / p3_ddp+s_d/2<—>
0 : Vs

< Cq*? max(¢*, log(1/¢)) < C
It remains to integrate over the part of the domain satisfyjinfy< g.

/d /// / dwdxdydz
— [ ds
w2+ x24Iy )12 + llz]121%~2

lw—+/sx—v1-s2]I<q
IVsx—syl<2lyl<q
c 1 Y dwdxd
<_2/ds/dp pg// / 2U)X2Z 2N2d—2 (°
q° . : : A+ ffwlle+ lx)1=+ 11z[19)
0 0 Ix11<2/(v/5p)
ol <1/p
Recall that
[o/e]

da C
d-1
/a (b + a2)2d-2 S p3dj2—2 forb>1

This allows us to estimate
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1 q -
%J J &7//Qm+wﬁﬁﬁﬁkﬁm%

I11<2/(/5 )
el <1/p
1 q
C " 3
< — [ds [dpqp dwdx
q
0 o0 I I<2/(V5p)
Il <1/p

/O? d-1 da
X a
L+ llwll>+ llx]|? +a®)*—2

1
c/ /qd 3/ / dwdx
\20 ol)p (L4 lwlf? + [lx[|2)34/2-2

Ix11<2/(V/sp)
lwl<1/p

< & Jor [an{ (oo 1)) <o

This finishes the proof of (21) in all dimensiods> 3.
In the second step we have to establish that,

sl T

lw—/sx—+v1=sz||<1 lw—zlI<1
I/sx—/5v]1<q IVsx—/syll<q
¢Q [wa -x’ ya Z] o
dewdxdydz <C-qg~. (22)

We proceed as in the cased 2. One can bound the left hand side from above by

sleliff

lw—+/sx—+/1-57||<1 lw—y/sx—+/1-57||<1
IVsx—/syll<q, IV/sx[>q" IVsx—/syl<q, 1—v1=s)|zl =q"

+ /// / }LQ[U);;,)’,Z] dwdxdydz. (23)

1< lw—z[ <14+-29"
IVsx—/5ylI<q

As before we have decoupled the variahles from the variables, y in the last term.
Hence this term is the product of two integrals as in Lemma 3.1 and we may estimate

1
' @ ’ b L
%/ds/// / Ma’wdxdydz
q
0

4
T 1wzl <12g7 e
IVsx—/syl<q
<cC. EX1B(x,r) EX1(B(x,0(1+29")) \ B(x, 0))
X 2 02

<C-((1+2")° -1 <C-q",
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where we have used the estimate of Lemma 3.1 for the small annulj.;Ae this is
sufficient. The first error term may be estimated by means of (20), avithl, b = ¢,
c=q"andd =1/2,

¢ ’ b L
—/ds/// / dedxdydz
Q

lw—v/sx—+/1=57||<1
IVsx—=/sylI<q. IV/sx11>¢"

1 /l /// / dwdxdydz
s 20 : wll? + llxl12 + [y [12 + llz]121242

lw—/sx—+/1=sz]| <1
IVsx—/sylII<q, Iv/sx )1 =4

1 4-24
_ —/2d B
< 2/ { ( ) }<c-q,
0

and this estimate is good, @s> «. The second term may be estimated completely
analogously. Hence (22) is established and this finishes the proof of our main lermma.

4. Proof of the main theorems

By a result of Evans and Perkins [4], for all nonzero measurgse Mz (R?) and
0 < s <t the laws ofZ; underQ! and z, under@t are mutually equivalent, so that it
suffices to consider the cage= 5y andr = 1.

By the Poisson representation (4) we can wi#t¢W] as a sum of cluster&,[W'],
whereW' are those excursions @f from the constant path 0 of lifetime 0, which are
completed at time[W] and whose lifetime’ reaches level 1,

HereM is a Poisson random variable with meat2 1by our choice of the normalization
of No) and, givenM = m, the X,[W'] are independent with lawy(X; € - | X1 #0). As

the supports’ of X,[W']is almost surely a Lebesgue nullset, we hBve [W/](S') =0
fori # j. Hence,X,[W'] and X1[W/] are mutually singular measures and, e.g., by [15,
2.13], almost surely, aX,[W']-almost everyx the densityd X[W/]/dX[W'], i # j,
vanishes. It therefore suffices to prove our theorems for the random meéasuieose
law is No(X; € -| X1 # 0). We look again at the Campbell measuteassociated with
the canonical measure @f. From our main lemma we infer the following.

LEMMA 4.1. —For the procesg X (r)} on the probability spacés?, A, P) we have,
for some constanf > 0 and all sufficiently smalt > 0, in the casel > 3,

X(r) dr < C
Iog(l/s) / log(1/e)’
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and, in the cas@ = 2,

X(r) dr C
Var / < .
{Iog log(1/¢) J r2log(1/r) rlog(l/r)} loglog(1/¢)

Proof. —Recall thatC denotes a constant whose value may be different in each
occurence. In the cagk> 3 we can bound the variance by

1
dr dQ C "1 0% do C
— [ ==K :
(|09(1/8))2//( ) 0 (|09(1/8))2€/ o « o log(l/e)

In the cased = 2 we substitutes = (log(1/r))~, t+ = (log(1/0))~! and lets =
(log(1/¢))~t. Then we can bound the variance by

/ / log(1/0) do
(log log(l/e))2 log(1/r) r Iog(l/ r) olog(1/o0)

e &

(Iog(l/(S))z//\/?ds =

which again is bounded b /log(1/8), as in the first part. O

By a straightforward Borel-Cantelli argument we infer from the previous lemma that,
if 4 > 3 and choosing, = exp(—n?),

Xl(B(X r)dr . (r)
n|—>oo |Og(1/8n) / , 1@0}}3{ } D(d,4) P-almost surely

Using the monotonicity of the integrals and the fact thatlgg,)/log(1/¢,+1) — 1 we
infer that the sequencg, } is sufficiently rich to ensure the convergence along every
sequence. In the cage= 2 we defines,, = exp(— exp(n?)) to obtain

| FXuBGr)  dr
lim /
n—c loglog(1/e,) J r2log(1/r) rlog(l/r)

. X(r)

= lim E{i} =2 P-almost surely
r—0 | r?log(1/r)

and again the sequencg is rich enough to ensure full convergence. This proves

Theorems 1.1 and 1.2 in the cgse= 4 and the general case follows by recalling (3).

Let us briefly sketch an argument leading to nonexistence of the average densities ¢
order two of{Z,} in dimension 2. Suppose they exist on a set of positive measure with
positive probability. Then, arguing with a zero-one law as Le Gall and Perkins in [11,
Section 7], they exisZ,-almost everywhere, almost surely. By the consistency of the
averaging procedure, the average densities of order two must be equal to the avera
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densities of order three, and in particular they must be constant. One can check that tt

family
1 [ X¢) d ?
r r
{(Iog(l/e) 8/ r2log(1/r) o _2> }

is uniformly integrable and hence the expectation of this family has to tend to zero. It
may be shown, using calculations analogous to those in Section 3 above, that this is n
the case, and one arrives at a contradiction.

5. Average densities and long time behaviour

In this section we restrict attention to the case 3. We recall some well-known facts
about the long-term behaviour of super-Brownian motion (see Dawson and Perkins [3]
and point out the connection to the average densities. In our current setting, if the supe
Brownian motion is started with a finite mass, almost surely, the procgsssuffers
extinction in finite time, i.e. there is a finite random tiriflesuch that, almost surely,
Z,=0forallr > T.Itis however possible to obtain a nontrivial longtime behaviour if
we extend our process to a process on the space

M, (RY) = {,ue/\/l(Rd): /(ppd,u - oo},

for ¢,(x) = (1L + ||x|?>)~”, equipped with thep-vague topology, generated by the
functionalsi. — [ du for all ¢ : R — [0, 0o) satisfying supe(x)/¢,(x)| < co. Such
an extension is possible and allows the definition of the progggsstarted inZg = ¢¢,
the Lebesgue measure jife (d/2,d/2+ 1). Then it is easy to see that

im Z, = Z, weakly inM,(R?),

t—0o0

for some random variabl&Z,, on the spaceM,(R?Y), see [3, 6.1].Z,, is called
the equilibrium random measuref the super-Brownian motion. By the superprocess
property we hav@&Z., = ¢9.

It is not hard to see (using the branching property) thatis an infinitely divisible
random measure and hence we can associate a canonical mgaswih Z.,. Ry
is ao-finite and translation invariant measure #m(R¢). The Palm distributionsR*,
associated witlR ., are given by the formula

/exp|:—/¢dlu:| R (dp) =Px{e*1’ .[00" nyw(w.v)ds}’ (24)

whereP, is the distribution of Brownian motio# started inx, see [3, 6.1] for a proof.
Note that, due to the translation invariance R, the Palm distributionR}_ at x are
given as translates of the Palm distributigf at 0.
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THEOREM 5.1. —Suppose thak? is distributed according to the Palm distribution
Rgo at 0, which is associated with the canonical measure of the equilibrium random
measureZ ...

(i) The finite dimensional distributions of the procéXsrs)/(rs)?}s-o converge, as
r | 0, to the finite-dimensional distributions of the procé¥8(B(0, 5))/s%}s-0.

(i) The Palm distributionRgo is invariant under the scaling flows, };cr, which
is defined bys, i (A) = u(e*A)/e ?*. This implies that there exists a random
variable D° such that

XO(B(O r) dr

lim / = D° RY-almost surely
le Iog(l/e) r

(i) The random variableD® is almost surely constant and we can describe the
average density of Theoremlas D(d, y) = D° =E{X°(B(0, 1))}.

Proof. —Pluggingy U/ (¢) = Ul(y ¢) into (24) yields that all the involved quantities
have the same scaling behaviour with respect and hence we do not lose general-
ity by assumingy = 4. The distribution of X (r)/r?} on the spacés2, A, P) equipped
with the Campbell measurB associated with the canonical cluster is equal, for every
y € R4, to the distribution of X1[W1(B(x, r))/r?} underX[W](dx) Ny(dW). We pick
positive numbers.y, ..., A, andry, ..., r, and argue with the Laplace transform of the
k-dimensional marginals. We obtain, using (6) and the moment formula for Poisson
processes,

k
/exp[_z ki“(B(rﬁ’ i)

i=1 i

k
_/expl Z)‘ Xl(B(X ri))
_ /P(w){exp[ Z // Xl t w(l) rl))MZ(dtde)] }Py(dw)

tll

/l//(lZ
0

i=1"1

P(dpdx)

X1[W](dx) Ny(dW)

X X1-(W1(B(w(1), r,»))] — 1)]P},(dw).

Using (5) and (1) we can infer that

/Nw(,)(dW) (exp[ Zr X1, [W1(B(w(D), r,))] —1>

i=1"1

Ay
= log me{exp[ Z_Z B(w(1), rz))]}
k i—1 "
= —U11<Z—2 B(w(1), r,) (w(n).

>
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Altogether, we obtain

k
w(B(x,r;))
/exp[— ;/\i 7
: 1 k
= / eXp[—4/dl Ui, (Z 1B(w(1) ) > w(t))][?v(dw)
0 1
Chooseg : R? —

[0, 00) such that[ g(x) dx = 1. As the above expression is indepen-
dent of y, we may take an average overand then use the reversibility of Brownian
motion. This yields

B ’l
/exp[ Zk 11 ( (rz; )

i

—//g<y>exp[ 4/Ult<‘;k—

2 1Bw(®), ) w(t))dt] P, (dw)dy

= [/ sw) expl—4 /l Uy (i*—
= / exp[—4/lUl_t (i'\—lzlm ")

P(dx,duw)

P(dx,duw)

4.5.1])

5180 ) w(l— t))dt] P.(dw)dz
) (w(@—1)) dt] Po(dw).
We now writer; = rs; and use the scaling property of Eq. (2) in the form (see [2, Lemma
o 1
U, Z s )213(0 rs) | () ==U;)2 Z)» 1po.sy | (V/7)s (25)
Si i=1
and afterwards Brownian scaling to obtain

Ai
/exp[ 4/U,( —213(0,1 )(w(t))dt] Po(dw)

- 1 X
n )\"
= / exp| —4 U,/, (Z—ZlB(O,S,.)> (w(t)/r)dt] Po(dw)

: r 1/.’ koo
= / exp —4/ U, (Z _élB(O 5i)

0 i=1 sl

> (w(s)) ds} Po(dw)

, T (&
ALY /exp[—4/US (Z s—213<03)> (w(s))ds] Po(dw)
0 i=1"1
k 0 )
_ E{exp[_zkix (BO s»)] }

i=1

e

1
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where we have used (24) in the last step. This proves the first statement of Theorem 5.
From (24), the scaling property of Brownian motion and the scaling property (25) we
get, for everyp : R¢ — [0, o) andr > 0,

/' exp{— / wdu} RO, (du) =Po{eXp[—4 / Us«o)(ws)ds] }
' 0
=Po{ exp[—4 / Us(cm(w,zs/r)ds] }
0
71
=Po{ expl—4/ r—zUz/r2(§0)(wz/V) dl] }
0

-refo] o [ (242w
0

_ / exp{— ffp(xg)u(dX)

] RY,(dp).

In other words, the Palm distributiaR’, on the spaceM (R?) is invariant under the scal-
ing flow. This allows the use of Birkhoff's Ergodic Theorem, which yields the existence
of a random variable®® with ED°® = E{X°(B(0, 1))} such that

T
1 1 X%B(0,e™)
lim — _—
T—oo T e
0

dt =D° RO -almost surely and ii?,

and (ii) follows by a change of variable. Finally, to establish (iii), we first show that the
family {X (r)/r?: 0 < r < 1} of random variables is exponentially bounded. Recall from
Lemma 3.1 that, for all > O,
t
G(rt) ::/ / p(x,s)dxds <

0 lxll<r

2

d—2

Le Gall and Perkins [11, Lemma 3.1] given an easy argument that, foxa#l € I

2G(r,t)?
OX,[WI(B(y, 0 Ji.—yi<r P(2—x,0)dz
/Nx(dw)<exp< [ ]r(2 (y r>>>_1>< ['"ryzufze(;(r,g _

Hence we infer, forall 6< 0 < (d — 2)/2,
X(r) l
E{exp(e 5 )} =/exp 4/dt/Nw<,)(dW)
r
0

5 <ex p<0 Xlt[WMB(w(l),r)) B 1)>Py dw)

72

< ).
\eXp<d—2—29)
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This implies tha{ X (r)/r?: 0 < r < 1} and, by the first part, alsp¥°(B(0, r))/r?: 0 <
r < 1} are L7-bounded for all 1< ¢ < oo. The argument of (ii) with a discrete time
version of Birkhoff’s ergodic theorem yields that there exists a random variaBleith

1 L X%BO,ef) .
lim = - 2" 2 _DO% RO -almost surely and 1.
n—-oo n ; e—Zk e y

Part (i), uniform intergability and, in the penultimate step, the main lemma now give, for
a suitable constard@ > 0,

n 0 i
Var{D°} = lim Var{E Z W}

n—oo n =1 e_2k

o 1 X(re )
= lim lim Var{ — —_—
n—00 r 0 {I’l kgl r2e—2k

< Clim supi2 i ie’“l =0.

n—>oo M= 077 1=k
Hence,D ° is constantR?, -almost surely, and equals

D°=D°=E{X°(B(0,1)} = lim w =D(d, ),
r r

as required to finish the proof.0

Remarks— Note that the proof of the first two parts of Theorem 5.1 do not make use
the calculation of the variances in the main section. It looks as if Theorem 1.1 can be
obtained from these or similar arguments, but | have not been able to achieve this.

6. Further comments and open questions

e An interesting line of generalization one might want to follow is the replacement
of the Brownian motion as underlying particle movement by a general diffusion. In
the case of a scalar diffusion coefficientR? — (0, co) it would be interesting to
see whether the values of the average densities of the critically branching measure
valued diffusion{Z,} with underlying particle motio/ X, = o (X,) d B; at a fixed
time r allow a reconstruction of the scalar fieddat X,-almost every point. In a
similar vein one could make the branching rate space-dependent and ask whether
can be recovered by means of the average densities.

e It would also be interesting to give finer descriptions of the fluctuations of the
functionr — Z,(B(x, r)), for example the lacunarity distributions studied for the
case of planar Brownian motions in [17].
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