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ABSTRACT. — A model of interacting identical quantum particles performing one-dimensional
anharmonic oscillations around their unstable equilibrium positions, which forni-thmen-
sional simple cubic lattic&¢, is considered. For this model it is proved that for every fixed value
of the temperaturgg—! there exists a positiver.(8) such that for the values of the physical
mass of the particle: € (0, m.(B)), the set of tempered Gibbs measures consists of exactly one
element 2001 Editions scientifiques et médicales Elsevier SAS

AMS classification60B05, 82B10

RESUME. — On considére sur le rése@é un modeéle de particules quantiques en interaction
soumises a oscillations unidimensionnelles anharmoniques autour de leur position d’équilibr
instable. Pour ce modéle on montre que pour chaque valeur fixée de la températilexiste
un réelm,(B8) > 0 tel que pour les valeurs de la masse [0, m,(8)], 'ensemble des état de
Gibbs tempérés a un seul élémer2001 Editions scientifiques et médicales Elsevier SAS

1. Introduction

Let us first explain the problem studied in this paper from a purely probabilistic point
of view. Subsequently, we shall describe the physics behind it.

We consider a lattice spin system ov&ft with single spin spaces equal to the space
of continuous loops ok indexed by[O, 8]. The single spin space is equipped with
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the Brownian bridge measure multiplied by a density describing a polynomial self-
interaction. The interaction between the sites is attractive and of nearest neighbou
type. Using the Dobrushin—Lanford—Ruelle formalism we define corresponding Gibbs
measures through the associated local Gibbs specifications (see, e.g., [22]). In gener:
there may be infinitely many such Gibbs measures. However, one could expect that |
the diffusion intensity is large enough, no phase transitions occur, i.e. there is a uniqu
Gibbs measure. In the paper we give a complete proof of this fact based on Dobrushin’
uniqueness criterion. The corresponding contraction condition is shown to be satisfie
by using spectral properties of the diffusion generator and FKG (resp. GKS) inequalities
More details on this and the precise relation to previous papers [7-9] will be explained
at the end of this section.

In the language of quantum statistical mechanics, the system we consider may b
described as follows. To each point of the lattice= Z¢ there is attached a quantum
particle with the physical mass which has an unstable equilibrium position at this
point. Such particles perform one-dimensional oscillations around their equilibrium
positions and interact via an attractive potential. Similar systems have been studied fc
many years as quite realistic models of a crystalline substance undergoing structure
phase transitions [17,35].

A full mathematical description of the equilibrium statistical mechanical properties
of a quantum lattice system may be given by constructing its temperature Gibbs state:
These are positive normalized functionals on von Neumann algebras whose elemen
(observables) represent physical quantities characterizing the system (see [16,25]).
the case of systems, for which the algebra of observables of every sub-system in a finif
A C L. may be realized as th&*-algebra of bounded operators on a Hilbert space, the
theory of temperature Gibbs states is well elaborated [16]. But if one needs to include
into consideration also unbounded operators, as in the case considered in this paper, t
situation becomes much more complicated and the construction of temperature Gibk
states even for the systems of non-interacting particles turns into a very hard task.

In 1975 a probabilistic approach to the construction of temperature Gibbs states ha
been initiated in [1]. It uses the integration theory on path spaces (see also [2,11,12,1-
23,25,34]). In this approach the state, as a functional, of a sub-system in affiaite
a temperaturd’ = g1, is constructed by means of a probability measuge, defined
on the space of continuous paths (loops). This measure is ¢atlabEuclidean Gibbs
measureand the infinite volume limitsi 7 L of the sequencelu 4}, are exactly the
Gibbs measures mentioned at the beginning of this introduction. Due to this fact, variou:
probabilistic techniques became available for the description of equilibrium properties
of quantum infinite-particle systems.

An alternative approach to the construction of temperature Gibbs states lies in the us
of cluster expansions. We refer here to [6,29] where models with “light” particles were
studied by means of different versions of this technique. In particular, in [6] the existence
of temperature Gibbs states was shown by proving the convergence of cluster expansiol
at a fixed temperature and for small masses. In [29], for small masses, the convergenc
of the corresponding cluster expansions was proved for all values of the temperature
However, for systems with unbounded oscillations, as in the case considered in thi:
work, the convergence of the cluster expansions, in itself, does not imply uniqueness.
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The most spectacular physical phenomenon in infinite-particle systems is a phas
transition. It occurs when for the same values of the parameters describing a systen
one has several temperature Gibbs states. In our case the phase transition is connec
with the appearance of macroscopic displacements of particles from their equilibrium
positions (a long-range order) if the dimensidrthe massn, the temperaturg—1, and
the parameters of the potential energy satisfy certain conditions. A mathematical study c
these phenomena was performed in various papers, see, e.g., [13,20,26,30]. The essen
problem in this context is to understand the role of quantum effects in phase transition:
in such models. By physical arguments (see [32] and Ch. 2.5.4.3 of [17]), the quantun
effects may suppress the long-range ordering. For a model similar to the one considere
in this work, this was proved in [36]. Later on it was shown in [3,4,27] that not only
the long-range order but also any critical anomaly of the displacements of particles ar
suppressed if the model is “strongly quantum”, which may occur in particular if the mass
of the patrticle is small. Therefore, one may expect that the “strong quantumness” of the
model implies the uniqueness of its temperature Gibbs states.

The same question may be considered in the above mentioned approach based
probabilistic methods. Namely, is it possible to prove uniqueness for the Euclidean Gibb:
measures if the diffusion is intensive? So far, such unigqueness, for the model considere
in this work, was proved to occur under conditions which are irrelevant to the diffusion
intensity. We refer to [7—9] where this was done by means of logarithmic Sobolev
inequalities. In this paper we present a proof for uniqueness of the Euclidean Gibb:
measures for small values of the physical massf the particle, which in probabilistic
interpretation corresponds to large diffusion. We describe the diffusion intensity (see
(3.34)) by a parameter, which is defined by the spectral properties of the diffusion
generatorH (i.e. the one-particle Hamiltonian) 43 = m A2, where A is the minimal
distance between the eigenvaluesHf We show (Lemma 3.4) thab tends to-+oco
whenm N\ 0. This enables us to obtain the contractivity which implies uniqueness.
The research is performed by means of a version of the lattice approximation techniqu
known in the Euclidean quantum field theory [33,34]. A similar approach has already
been used in [3,4,27]. It makes possible to involve the physical mass into consideratior
so that it appears explicitly in the uniqueness conditions.

The paper is organized as follows. In Section 2 we introduce temperature loop space
and define Euclidean Gibbs measures. Section 3 contains the uniqueness theorem and
proof. It is based on Dobrushin’s criterion, formulated in that section, and on a number
of lemmas. Section 4 contains the proofs of these lemmas, which in turn are based ©
two correlation inequalities formulated here as Theorems 4.1 and 4.2. The proof of thes
theorems follows in Section 5.

2. Temperature loop formalism for Gibbs measures

We study Euclidean Gibbs measures on a temperature loop space describin
equilibrium states at a temperatuge! of a system of identical quantum particles
performing anharmonic one-dimensional oscillations around their unstable equilibrium
positions, which form a lattick = Z¢, d € N, (see [1,23,25] for this approach). Consider
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the space of continuous periodic functions

def

Clp) ={weClp— R)w@ =w@)}, Is=10,p1],

and letHg dETLZ(I ) be the real Hilbert space of functions dp which are square

integrable with respect to the Lebesgue measure, equipped with inner pxedugt
and norm|| - ||g. The temperature loop space is

25 € CUp" = {w = (@)eLlor € CUp)}. (2.1)

For A C L, we set

2p.0 ' {wa = (@)ea| 0 € CIp)}. (2.2)

The spaces2s 4, 25 are equipped with the product topology and with thalgebra
B(£24,4) generated by the cylinder sets

By L {wlw e B, Cy).le A, AcL),

where, is the set of all finite subsets @f and B; are Borel subsets. Define G the
following strictly positive trace class operator

Sp=(—mAg+1D7H, (2.3)

where Az stands for the Laplace—Beltrami operator bn(considered as a circle of
length B). Let 4 be the Gaussian measure &g, uniquely determined by its Fourier
transform

/ exp(i(p, w)p) yp(dw) = exp<—§(g0, Sﬁfp)ﬂ), ® € Hp. (2.4)
Hp
For this measure, one may show that
/ ||w||c(]ﬁ)y,g(da)) <00, VMEeN, (2.5)
Hp

and y3(C(Ig)) = 1. This measure is canonically generated by the oscillator bridge
process of lengtiB [34]. For a finiteA C L, we set
vp.a(dws) E ® yp(dwy). (2.6)
leA
For every; € £25 and each finited, we define the Gibbs measure i subject to a
chosery, as the following probability measure @2y 4

1p A dwal2) L Wy A (04l0)yp.a(dwy), 2.7)
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Wy p(wslt) & exp{ Dy p(wal0) — / V<wl(r>dr} (2.8)
[EA

Zg A(L)

L(.x)— E be— fl (X) p>2 (29)
' s 2 ’ = &y .

wherea > 1, b, > 0, andb; > 0 for all s < p, describes the self-interaction of the
particles, whereas

Ppaald) = / { S e (@1(2) — or (1)) (2.10)

Ll'eA

+2 Z 811/(w1(f)—§1/(f))2}df

leA,l'e A€

is the interaction of the particles in between themselves and with the particles outside
A fixed by the external boundary condition

L€ CURYN,  A°ELN A.

Hereg,» = 1 for the pairs of nearest neighbors, i.ellif- I’| = 1, and is zero otherwise.
Zg, 4(¢) is the normalizing factor known also as the local partition function.

For B € B(§2p) andw € £2g, let 13(w) take values 1, resp. 0,d belongs, resp. does
not belong, taB. For a subsett and a paiw, { € 25, letw, x {4 Stand forg € £25 such
thatg, = w, if 1 € A, and§, = ¢; for I € A°. Now we introduce a family of probability
kernels{rg 4| A € L} between($25, B(£25)) and($24, B($2p)) by

def

5A(BIE) & / Ly (wa X Eaitpa(dwnl0). (2.12)

28,4

These kernels satisfy the consistency condition [22]
[ o401 75 0 (Bl0) = 75,0 (BIC), (2.12)
28

which holds for arbitrary pairg\’ C A, eachB € B(£2g), and¢ € £2;.

DEFINITION 2.1.— The probability measurgs on (25, B(£25)) is said to be a
Euclidean Gibbs measure of the model considered at the tempeggittiri it satisfies
the Dobrushin—Lanford—Ruell@LR) equilibrium equation

[ nptdors aBlo) = s (B). (2.13)
2

forall A € £ and B € B(£2p).
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Among all measures solving the DLR equation we distinguish a class of the so callec
tempered measures (see [7,24]). To this end we introduce

S'(L) ¥'ind Iim{u e RV
peN

S (@4 1) " uf < oo}. (2.14)

lell

DEFINITION 2.2.— The class of tempered Gibbs measuf@s consists of the
Euclidean Gibbs measures the moment sequences of which obey the condition

(Neorllp)yu) e € S'M). (2.15)

Here and further on we write
(Fhu= [ fau (2.16)

if the integral makes sense.

As it has been proved in [10] (see also [7] and the references therein), th&jglass
is actually nonempty. Moreover, the model has a critical point and long-range order
behaviour if its parameters satisfy certain conditions (see, e.g., [13,26,30]). This mean
that for one and the same value of the parameters describing the rggdebntains
more than one element.

3. Uniqueness theorem

THEOREM 3.1. — Let Gy be given by Definitior2.2 Then for everys, there exists a
positivem..(B) such that for all values of the masse (0, m..(8)), the clasgjs consists
of exactly one element, that|iSz| = 1.

The rest of the paper is devoted to the proof of this theorem.
Let (X, p) be a complete separable metric spate,be the set of all probability
measures oY, B(X)), and

def

My = {Me/\/l‘/p(y,yo)u(dy) <00}, (3.1)
X

for someyp € X. Let also LigX) stand for the set of Lipschitz functions: X — R,
for which we write

Flp Esup{ LD =T @1y y;éz}, (3.2)
p(y,2)
Lip,(X) £'{ f € Lip(X) | [f1up < 1}. (3.3)

Givenpuy, up € M1, we set

R(ua. 112) d=efsup{] [ romaan - | f(y)m(dy)]: fe Liplm}. (3.4)
X X
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A key role in the proof will be played by Dobrushin’s matrix. It is defined by the
measuregis 4 (2.7)—(2.10) withA = {I}. To simplify notations we set

Euye =&/, wpyC18) = i (-18). (3.5)
Then the elements of Dobrushin’s matrix are

Cir = sup{ RUaClE) il o e, g6 = o 1.1 € L}. (3.6)
& —nrllp

They will be used to check Dobrushin’s criterion [18,19,22,28].
PropPosITION 3.1 (Dobrushin’s uniqueness criterion).L-et

sup{ > e leL} <1, (3.7)

1el\{I"}
then there exists exactly one tempered Gibbs measure.
Directly from the definitions (2.7)—(2.10), (3.5) one obtains

exp{—a’]llw,ll%—i—J Z (wr, &1)p

(don|§) =
AT PIiT -

- / V(wl(r))dr}m(dw». (3.8)
Ip

This implies thafw; (dw;|§) = i (dew|n) if &5 =nj and|l — 1’| # 1. Hence

R(pi(-18), mi(-Im) =0, Cp=0 for|l—1I'l#1.
If I —1'| =1, all C;; are equal to each other, thus the condition (3.7) is satisfied if:

1 )
cn e < o7 forli=rl=1 (3.9)

By the translation invariance of the model, eaeh(-|¢) is a copy of the following
measure

1
W (dw) = Z—exp{—fdnwn,% +J (@, y)p — / V(w(f))df}yﬂ(dw), (3.10)
Ig

Y

where
Hgay= Y. &, (3.11)
1:l-l'l=1
andZ, is the normalizing constant. Thereafter, the Dobrushin coefficients (3.9) may be
written as

R, i
c=sup{ RULED) e, y;éz}. (3.12)
lx — ylig
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Having in mind (3.4) let us estimate the variance of the function
Hesyr=> (flp= / foyp (dw) eR, (3.13)
Hg

with a fixed f € Lip,(Hp). This function is Fréchet differentiable [7] and its derivative
in the directiony € Hy is

(Vi) g =T - Co@dp)r — () (G @)pdpwr
= JCOVM,V (f, G, 90)/3) (314)

By the Schwarz inequality one has

(Vo f e @) gl < T/ Van £+ Vars . @), (3.15)
where
-
Var, f =35 [ [ (7@) = £ done @), (3.16)
Hy Hg

Lo
Var (o= [ [ (@0 @3 o @e). (317)

Hy Hp

The idea of proving Theorem 3.1 may be outlined as follows. Suppose that we have
estimated, uniformly for alh € Hg, the first variance by a continuous functionffof
the parameters, b, (2.9), and of the mass. Let also the second variance be bounded
by a function ofgB, a, b,, andm, multiplied by ||<p||§. Then the mean-value theorem
together with (3.12) imply that the condition (3.9) is satisfied provided the product of
the mentioned bounds is sufficiently small. Below we shall implement this idea.

One observes that (3.17) defines a quadratic forrfiign

Var, (. ) = (0, K,0)p. (3.18)

with the operatoik, given as follows

(Kyp)(T) =/Ky(f, e(thdt', telg. (3.19)
1p
The kernelK (7, t') is

1
K,(t, 7)) = > / /[a)(r) — o' (D] o) — o' (@) (do) W’ (do'). (3.20)

Hg Hg
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One may show that it is a continuous functionwof’ € I5. Clearly, for everyy € Hy,
the operatoiX, is symmetric and positive, and (cf. (2.5))

1
trace(K ) = 5 / / lo — o |31 (dew)® (de') < oo (3.21)
Hp Hy

For a bounded linear operatot:Hz — Hg, let S,,(A) denote the pure point
spectrum and lef A| stand for its operator norm. For a positive compact operator
one has

Al = maxS,, (A). (3.22)
On the other hand, ifA is symmetric and positive, then (see [31, p. 216])
(p, Ap)
IA] = sup ——2F- goeHﬂ\{O}}. (3.23)
lellg
Introduce
‘7( )_izl—sb 2s 1 Z_ﬁ( ) 1 2 (324)
X _SZZ o X Zax =P,(x 2ax s .
wherep, a, b, are as in (2.9), and
. 14> 1 ~
H=—""——+-QJd+1q*+ V(q). 3.25
om a2 T 24+ Da"+V(g) (3.25)

The latter operator is defined (R, dx), the operatoy acts as follows

(q¥)(x) =x¥ (x). (3.26)

Further, along with the measures defined by (2.7) and (3.10), we introduce

_ 1 , N
i (dw) = 7exp{—1d||w||ﬂ +J (@, y)p— / V(w(f))df}yﬂ(dw), (3.27)
| /

Y

whereZ, is the normalizing constant.
It appears (see, e.g., [1,23]) that for a functi®nH g — R, F(w) = Fi(e(1)), T € I,
which is integrable with respect to the measjite one has

/ F(o)i’ (dw) = Zitrace{Fl(q)exp[—ﬂﬁ]}. (3.28)
Hg Y

By means ofi” we define by (3.19) the operat&ry with the kernel

_ 1
K,(t, 7)) = > / /[a)(r) — o' (D] [wE) — '@ (dw) ¥ (do). (3.29)
Hy Hp
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Its trace can be calculated as in (3.21) with the meaguriastead ofu”.

The construction of the bounds mentioned above is based upon the following lemmas
which are proved in Section 4.

LEMMA 3.1. - For everyy € Hg and all¢ € Hg, one has

(9. Ky)p < || Kol 5. (3:30)
LEMMA 3.2. — For everyy € Hg, one has

trace K ) < trace(Ko). (3.31)

It is known (see [15, p. 57]) that (the closure @f)is a self-adjoint operator with a
discrete spectrum, all its eigenvalugs, s € N, are simple. Set

Avd:ﬁinfﬂgs —Ey|: 5,5 €N, s# s'}. (3.32)

LEMMA 3.3. — The following estimate holds

~ 1
maxs,, (Ko) < —. (3.33)
mA?
In what follows, as a parameter describing the diffusion intensity or, in quantum
interpretation, the “quantumness” of the particle, one may choose

DL A2, (3.34)

LEMMA 3.4.— There exists an independent af quantity go > 0, such that for
sufficiently small values of the mass the following estimate holds

1
(p=1/(p+1)

wherep is the same as i(2.9).

To estimate the variance (3.16) one may use the logarithmic Sobolev inequality, as i
was done in [7].

LEMMA 3.5.—Letin(2.9) p =2, then for ally € Hg and everyf e Lip,(Hg), one
has
gfdo P 25 a?
2Jd+1+a/4 ° 288b,
Another estimate of the variance ¢fis linear ing. We will use it forp > 2.

Var, f < (3.36)

LEMMA 3.6. — There exists an independentefand 8 quantityo > 0 such that for
all y e Hg, arbitrary f € Lip,(Hp), the following estimate holds

Var,, f < Bhom Y@, (3.37)
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Proof of Theorem 3.1. First we estimate Vag (-, )4 given by (3.17), (3.18). By
means of Lemma 3.1 and (3.22) one obtains

Var, (-, 9)s = (9. Kyp)p < ||Kol el =maxsS,, (Ko)ll¢l3.
and further by Lemmas 3.3, 3.4

Var, (-, )p < gom "~/ PtV |g] |2, (3.38)

that holds for sufficiently smalh. For p > 2, one may use (3.37) and choeseo small
that both latter estimates hold. This yields for the distance (3.4)

R y ) < — J 2(pw—121)
(', 1) < lly = zllpJ v/ BboxomZriD.

Thus in view of (3.12), the condition of Dobrushin’s criterion (3.9) is satisfied provided

1
(p—2)/(p+1) - 3.39
pm (27d)2goho (3:39)
Therefore, in the casg > 2 the upper bound for is
/3—(17+l)/(p—2)
m.(B) = [(2d J)2goho] P+D/(P=2" (3.40)
For p = 2, we use (3.36) and obtain
R, u?) < ||y — zl| 4 J €%0/2m /6 L,
(s 1) < lly =2l "\ 2Jd+1+aj/h
which implies in turn that Dobrushin’s criterion is satisfied provided
3
def 385, 2Jd + l+a/4>
X =€ —_— O 3.41
= mef) ( 2Jd)yg (3.41)

4. Proof of Lemmas

The proof of Lemmas 3.1, 3.2 is based upon certain correlation inequalities, which we
state just below and prove in the next section.

THEOREM 4.1 (FKG inequality). —For every finiteA, arbitrary ¢ € 25, all [,1' € A
andr, ' € Iz, one has

(@ @ar @), 02 (@), L 00(@rT@), (4.1)
where the measureg 4 (:[¢) is given by(2.7). In particular,
Ky(r,7') >0, (4.2)

forall y e Hg andz, 7’ € Ig.
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For afinite A, let us define the following probability measure @ 4
o(ds,) = —exp{—— S ewlla — ol - /ZW (©)dt byads). (43)
Ll'eA leA

where Y is the normalizing constant, the measur@A is defined by (2.6), and the
function W : R — R has the following form

W(x) = wix? + wax® + -+ + w,x?7, (4.4)
wieR, w;>0,5s=2,...,p—1 w,>0.

THEOREM 4.2 (GKS Inequality). —For a measure given by4.3), the following
inequality holds for alls € N, arbitrary 1, 1,1’ € A, andt, 7, v’ € I,

([ c@ar @) = ([6.0]) (a(Der (). (4.5)
o o o

Now we apply these inequalities to proving certain statements which then will be usec
to prove Lemmas 3.1, 3.2.

LEMMA 4.1. - Foreveryy e Hg and allz, v’ € I, one has
K,(t,7) < Ko(t, 7). (4.6)

Proof. —The representation (3.20) may be rewritten as

" ' a)(r)—w’(r)'a)(r’)—a)/(r’) y y ,
Ky(r,r)_/ / 7 7 (W uHdw,do').  (4.7)

HpxHg
Here we apply the following orthogonal transformation of the sgdge< H:
s =(0() - [@®)/V2, o) =(s)+v(D)/V2, (4.8)
v(D) =(0(1) +0' (1) /V2, (@)= (—5()+v(0))/V2,
which yields (see (3.10), (2.9))
K@=z [[ soew) exp{—g(zfd —a)(IsIZ+1vIE) 49
YA y 2 B B )

HpxHg

+v/2(v, y),g—/l'[ g(r)lv(r))dr—/ ,(s(1))dr

Ig

- [ Ao dr}(yﬂ ® ys)(de. dv),
Ig
where we have put

p—1 2 d2v def -1 '
I (x|u) = Zzw( )( )_Zns(u)xz‘, x,u €R. (4.10)
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For such/T and the polynomials,,, 15,, given by (2.9), (3.24), one has

pp<ﬂ> + pp(ﬂ) = P,(x) + P, (u) + IT(x|u).
V2 V2

Since all b, in (2.9), (3.24) are nonnegative, all the coefficientsu) are also
nonnegative for allk € R. For?® € [0, 1], we set

(. ™) E (s (05 (0)),, - (4.12)

where expectation is taken with respect to the following probability measuté;on

1 1 -
01(ds) = 7 exp{—§<21d — sl = [ By(s)ar

Ig

—19/H(g(r)|u(r))dr}y,g(dg), (4.12)
1

1 _
Y(ﬁ):/exp{—é(zm—a)ugu;—/P,,(g(r))dz
Hp

Ig

—ﬂ/ﬂ(g(t)w(t))dt}yﬂ(dg). (4.13)
Ig

One observes that both, (z, t’), Y (¥) are continuous functions &f € [0, 1]. They are
differentiable on(0, 1), and

0
=5 (. r)—%Z/nw(r)) (s s(@s(T)),,
—([s®]™),,(s@s(T))os)dr. (4.14)

For every fixedv € Hg, 7 € Ig, andv € [0, 1], the coefficientst, (v(r)), s=1,...,p —

1, are nonnegative, hence this measure has the form (4.3) with a one-point gubset
Therefore, its moments possess the properties described by Theorem 4.2. The estim:
(4.5) yields

0
—Ey(1, 7)) <0, Vr,t’elg,
20 9 (T, 7)) B

which yields in turn
0< Ei(r, 7)) < Bo(r, 7)), Vr,v"elg, Vv eHg. (4.15)
The lower bound fo=; follows from (4.1). Applying these results in (4.9) we obtain

Ky(t.1)=Z /Y(l)ul(r r)exp{—%(ZJd—a)HUll/zg (4.16)

Hpg
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+2(v, y),s—/ﬁp(v(t))dt}yﬂ(dv)
Ip
: 1
<5or. 12,2 [ YW exp| S @sd - vl + V2. )
Hpg
— /ﬁp(u(z))dt}yﬁ(du) =5o(r, 7)) =Ko(r, 7). O
I
Proof of Lemma 3.1. Applying the inequalities (4.2), (4.6), and the representation of
the norm ofKj (3.23), one gets
(o, Ky9)p = (9. Ky9)g] é//Ky(r, ]e@||e)]drdr’
Ig Ip
< [ [ Rotw. el lp()|dr dr
1p 1p
<||Kollllell3 = Kolllel3.  ©

Proof of Lemma 3.2. ©ne has

trace(Ky)=/Ky(t, 7)dr, trace(l?o)z/l?o(r, 7)dr,
Ip Ip

which gives (3.31) by means of (4.6)0

Statements similar to Lemmas 3.3, 3.4 were proved in [4]. Here we give the proof of
these lemmas to make the paper self-content.

Proof of Lemma 3.3. Fory =0, one has in (3.29)
Ro(r. ) = [ o(®o()i®do). (4.17)
Hp
The periodicity of the loops () implies
Ko(t,7)=Ko(t + 6,7 4+6), VOe[0,A], (4.18)
where addition is modul@. The latter yields in turn (see (3.28))

~ ~ 1 ~ ~

maxS,, (Ko) =/K0(0, )dt == /trace{qe‘que‘(ﬂ‘”H}dr, (4.19)
Ig “ Ig

where the operator#, ¢ are defined by (3.25) and (3.26). Recall that the eigenvalues

of H, E; are simple. Lety, stand for the corresponding eigenfunction apg =
(Y5, q¥y) . FOr symmetry reasong; = 0, then
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~ 1
maXSI,p(Ko) = = Z (qSS/)
Z s,s'eN,s#s’
The case of zero denominator is excluded, thus it may be estimated by means of (3.32
which yields

o (Es — Eg)(e B — e B
(Es - Es’)z .

maxs,, (Ko) < Z (@5 )2(Ey — Ey) (e7PF — e PFs)
Z s,s’eN
1 1 1
=—" —trac H.qlle pH =
23 & [q.[H, ql]e "} —

where[-, -] stands for commutator. O

Proof of Lemma 3.4. Fora > 0, consider the following unitary operator &ty

(U ¥) (x) = a2y (ax).

Thus

Uy (%) Ua1=al(%), UyqU;t=aq. (4.20)
Leta = m~Y/@r+2 Then the operator

H(m) =m0t 7€ 4 Yoy (4.21)

is unitary equivalent td given by (3.25). Here

1 42

2dx? +25 "bya

To=—

1
T1=§(2Jd+l—a)m(” 2)/(p+1) 2+221 [ (p—I— l)/(p+1)b q21
=2

Let A and Ag be defined by (3.32) but with the eigenvalues of the operatoasd 7;
respectively. Then

A=m P/ (4.22)

It can be observed that the operaforis a perturbation ofly, which is analytic (with
respect to the variablg = m/(?*D) at the pointA = 0. Thus there exists a constant
co > 0 such that

AZ> CQAQ. (423)
These arguments yield (3.35) with = 1/(coAp)®>. O
Proof of Lemma 3.5. Fhe estimate of the type of (3.36) has been proved in [7] by

means of the logarithmic Sobolev inequality. Its realization (3.36) was obtained for the
choice ofV (3.24) with p = 2. For more details we refer to Section 6 of [7]o
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Proof of Lemma 3.6. For a Lipschitz functionf, by means of (3.2), (3.3), (3.21),
(3.28), (3.31), (4.17), (4.18) one obtains

Var, f < = / / o —w ||/3u> (do)p’ (do') = tracgK )
Hﬁ Hp
< tracgKo) = / Ko(t, 1) dt = %trace(qzeﬂﬁ) L'8(42).  (4.24)
1p

It turns out that ma£,,p(fo) may be expressed in terms of the Duhamel two-point
function [21] and hence may be estimated from below as

:B<q2>f<%qz>

where the functionf was introduced and estimated in [21]. It has the following bound

) <maxS,, (Ko), (4.25)

%(1 —e ) < fw). (4.26)
Applying in (4.25) this estimate together with (3.33), (4.22), (4.23), one gets
2m(g?)(1— e—ﬁ/4m(qz)) <A <mP!PD e A
Thus one may find a constaiag such that
<q2> < hom_l/("“).

Applying this in (4.24) one obtains (3.37).0

5. Lattice approximation

To prove Theorems 4.1 and 4.2 we will use a version of the lattice approximation
technique known in the Euclidean quantum field theory [33,34]. Since our version has
certain peculiarities, we give its detailed description.

For az € 25, we define the measure

0(dwsl¢) =T (wal0)yp.aldwa) (5.1)
ef 1
E f—exp{ dJZIIwzll,g+ > ew(w, or)g
Y(é-) leA ll’eA

+J ) 811’(601,51’);3—/ZW w (7)) dT}Vﬂ aldwy),

leA, I'e A¢ leA

whereyg 4 was given by (2.6)Y (¢) is the normallzatlon constant, and is given by
(4.4). The measures (2.7), (4.3) may be written in this form. #or.., 7, € Iz and
li,...,l, € A, ¢ € §24, let us consider
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Dy, (7 ) = (@ (T, s 01, (T)) ) (5.2)
— / 01, (12) -0y, () T (@40 vp (de ).
.Qﬁ,A

Having (2.5) and employing the tightness of the meagyrg, as well as the continuity
of the loopsw 4, one may prove the following statement.

PROPOSITION 5.1. — Forevery: € 23 4 and ally, ..., [, € A, (5.2)is a continuous
function of(tq, ..., 7,) on Ig.

The measure (2.6) is defined by the operalp(2.3). The set of its eigenfunctions

£={e(n)lkeK}, K:{k:%x‘er}, (5.3)

e (1) = \/gcoskr(k >0), el(r)= —\/%Sinkr(k <0), eo(t)=1/VB,

may serve as a base Bfy. Let { P |k € K} be the family of orthogonal projectors onto
the corresponding elements&f Then

1
Sﬂ = Z — 1 Py. (54)
kelC mk=+1
Now we chooseV = 2L, L € N and set
def 2
ICN={k:FK‘K=—(L—1),...,L}, (5.5)
def
SV E N AV P (5.6)
keICN
(N) def 1

= W oraiy B -
m(F)Z[S”](W)k]Z + 1
It is a technical exercise to prove the following statement.
PROPOSITION 5.2. — The sequence of the finite-rank operat@sg"’} converges in
the trace norm, whew — oo, to the operatorS,.
Let y4") be the symmetric Gaussian measure 1p having S5’ as covariance

operator. This measure may be written in a “coordinate form”. To do this we introduce
Gaussian measures &9 x.", k € K, such that

/exp(ixu))(,fN) (du) = exp{—%k,ﬂmxz}, (5.8)

R
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wherex " are given by (5.7). Then

v dwy= @ 1M (dak) Q) s(ok)dak), (5.9)
keln kel\Kn
where
w(r) =) dke(r), ok)= /a)(r)ek(r)dr, (5.10)
kelkC },3

ands is the Diracs-function onR. Directly from the above statement one has

LEMMA 5.1. — The sequenciys™’, N € N} converges weakly, whew — oo, to the
measurey;.

By means of{y;"’, N € N} one may construct via (2.6), (2.7) corresponding
approximations of the measugg:|¢) (5.1). The reason to use them is that by (5.9) the
integrals with respect to the approximating measures may be written as integrals ove
finite-dimensional spaces. Then one could apply classical ferromagnetic interpretatior
which would lead to the correlation inequalities we are going to prove.

It appears that we can get the ferromagnetic approximations of the function (5.2)
only for the arguments belonging @} C /5, whereQg consists of such thatz/g is
rational. SinceQ; is dense inlg, it is enough for our purposes in view of Proposition
5.1. In the sequel, we use the following types of functiéhs, — R:

(i) war (1), leA, Te Qg (5.11)
(”) wAl—)(wl,W[/)ﬂ, wAH(wla;‘l)ﬂ’ lal/EAa é‘E‘QlB’

(iii ) wAH/.W(wl(r))dr.
Ip

Choosery, ..., 7, € Qp, n e Noc@NU{O}, l1,....1, € A, ¢ € 25, and keep them fixed.

Then forn > 1, there exist tending to infinity sequencgg®, k € N}, {1, k e N},
j=1,...,n,such that for alk € N,
)

vj

Below we drop the symbalk) assuming thatv andv; tend to infinity in such a way
that (5.12) holds. We also suppose thatMlare even. The set df satisfying (5.12) is
denoted byV (11, ..., 1,). FOrN € N (14, ..., 7,), we set

N N N) def
8= (") e oV E N Py, (5.13)
keICN

w

For fixedry, ..., 7, € Qp, l1,...,1l, € A, we write

Flw)) =y (m) o, @),  FVw) EF(ol).
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Similarly
T (410) E'r(0}"12).

For a finite subseit and N € N, we set

yiadws) =R vs" (day). (5.14)
leA

The basic element of our construction is the following convergence statement, the proc
of which will be given at the end of this section.

LEMMA 5.2. — For arbitrarily fixed t1,...,7, € Qp, l1,...,1, € A, £ € §24, the
following convergence

/ Flo)Y @410y dew,) = / F® (0,07 w410) 7 (da )
.Q/g’A .Qﬁ,A

N / Flo)Y @i0)ysadoy).  (5.15)

2p.4
whenN (4, ..., 1,) > N = 00, holds.

Remark5.1. — The above convergence does not follow automatically from Lemma
5.1 since the function under the integral in the left-hand side of (5.15) is unbounded or
24 4.

Having the representation (5.9), one may change the variables in
[ PV @i @aleryg o). (5.16)
Q5.4
in such a way that in the new variables this integral would be finite-dimensional. To this

end we pass to the variablésby means of the Fourier transformations (cf. (5.10))

a@ =3 W@, a0 = [o@ea@dr (5.17)

kelC Iﬁ

Then forQg > v = (v/N)B, one has

N
o= Y e 38) =5

kelCy

Z cbl<%q) gq(V), (5.18)

qeQnN

where

QN":Ef{q:%x‘x:—(L—l),...,L}, (5.19)
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and forv=0,1,..., N — 1, (cf. (5.3))

2 2 . 1
ga(v) = \/;COqu (g>0); &)= —\/;Slnqv (g <0); g)= «/—N (5.20)

For the functions of the type (i) taken at;"’, one has

N N
(@0 o)y = 3 ddr = Y 6?)1<§61>6?)z'<§61), (5.21)
kelCy LIEQN
and
@ )= 3 e, &= [a@eamdr (5.22)
kEICN 1[5

As for the functions of the type (iii), instead of (5.17) it is more convenient to use the
following transformation ofy; ()

1 _ N 1 ,
w (1) = ﬁk%;@l(k) expikt), @ (k) = 7B 1[ w(1)e " dr. (5.23)
Then one has
p
/W(a)l(N)(t))dt :Zws/[w,w)(r)]zxdt. (5.24)
Ig s=1 I
Further
/ (™ ()% dx (5.25)
Ip
=5~ Y Gl dnlk) [explitkat o+ ka)e]de
k1,..ns ko €N Ig
=Bt N k) -y (kay)S(ka A+ -+ k).
k1,....kos €

Heres(0) =1, 8(k) =0 if k = 0. Having such representations, we introduce

S,(u)=\/§w,<%ﬂ), leA, v=01. . N—1 (5.26)

. (N - _ (N
Si(q) =wz(—q), Si(q) =, (—q), q € Qn;
B B
for which one has

N 1 ~ .
Swy= Y Si(@e,(v) = T > Si(q) expligu); (5.27)
qeQnN

qeQnN
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. N-1 N 1 N-1
S =>_Siwe, ), Silg) = I Z S1(v) exp(—igv).
v=0

Then (5.25) may be rewritten

/[a)l(N)(f)]Zv =gt Z S, <%k1) Y (%k2S>5(kl + -+ ko)

Ig k1,..., ko €N
1
“wp, Z S Si02) S (ki +kay)
'B V2= k1,....kos €lCn
XeXp{—£(k1V1+---+kzyv2S)}
. Z_ Si(v1) - -+ Si(vas)
== V Vog
NsIBS—l —ol 1 1\V2
V1,..., V24 =

L

o
X > exp{—%Kl(Vl - sz)} e

K1,...,k25_1=—L+1

exp{ 2mi ( )}
X ———kos_1(Vos_1 — Vo
v Kes-1lvas-1=va

NZAlNl

2s
= g D) = Z[\f&w] .

Returning to (5.24) one obtalns

/W M) d %Ivg:w(\/gsl(v)) (5.28)

Accordingly,
N-1
(w[(N) a)l(,N) = Z S'l(q)gy(q) = Z SI(V)SI’(V)’ (529)
lIGQN v=0
N-1
(@™ @)y = D aato =Y SOX), (5:30)
keky v=0

. ~ (N
IOEDY Q(EQ>8q(V)-

qeQn
At last, (5.18) takes the form

N
o, (1)) = o, (‘;ﬂ):\/;s,j(v,-), i=1....n (5.31)

63

The next step is to construct the measure on a finite-dimensional space which has tt
mentioned ferromagnetic properties and such that (5.16) would be equal to the integre
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with respect to this measure. To this end by means of (5.9) we construct a finite-
dimensional analog of". First we introduce the following Gaussian measurédn

o (d$) = @ %M (dS), (5.32)
qeQnN

here 3V ;fxlj%)/ﬂ’ where " is defined by (5.8). The measusg”’ may be written
in the coordinategS(v), v =0,..., N — 1}, connected to{S(q), ¢ € Oy} by the
transformation (5.27), as follows

2 N-1

(N) 1 N 2 1N !
(dS) = ——exp) —— Z Sw+1D = SW*== S [sw)? ®dS(v>
Cpn 2p s

with the conventionS(N) = S(0) and the normalizing constalg y . ThUScrgN) may

be considered as the Gibbs measure of a ferromagnetic chain of unbounded (Gaussic
spins (see, e.g., [33, p. 273] for more details). Now we set

of 1 N2 N
agNA)(dsA)‘Lfmexp{ 2 S S+ - s

le A v=0

——ZZ Si(v)] }@@d&(v) (5.33)

[EA v=0 leA v=0
HereS 4 stands for the followingV|A|-dimensional vector
{Siv), le A, v=0,...,N —1}.

In what follows, by construction

/ FN (@)Y M (@410)y53 (dewy) (539
2,4
_ CN({)( >”/2 / S (vy) -8 (v ),0 (dSAlX)
Y @) 1 B
C n/2

where the probability measu N)(-|X) is

of 1
PSS X) E NG p{ dJZZ SW]*+ > Zeu/ZSl(wSp(v)

leA v=0 ll’eA v=0
N-1
+J) . e Y SwXr(v)
leA, I'eAC v=0

— N Z Z W([Sz(v)) }a,éNA)(dSA). (5.35)
leA v=0
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HereCy(¢) is the normalization constant. Thus, Lemma 5.2 yields

Fll,...,l,, (Tl’ ey Tn) (536)

CN(§)<N

n/2
N (g ot)aN—00 Y (£) E) <S11(U1)'"Sln("n)>p/<3fv/{<.|X)’

_UN o
vi=—=N, j=1...,n.

B
Proof of Theorems 4.1, 4.2.Faking in (5.36)z = 0 one gets that for alj € $2g,

Cy(i&)—>Y(), N — oo.

The measure (5.35) corresponds to a general ferromagnet (see [33, p. 273]), for whic
the FKG inequality

N , N N,
§<SI(U)SZ'(U )>p;N/{(|X) = §<SZ(U)>Q;N/)‘(|X) §<Sl’(v )>Q;{N/)‘(|X)

holds (see Theorem VIII1.16 of [33, p. 280]). Then it holds also for the limits, which
means

(@1 (Dor () 10) Z (@10 410y (@ (T)) o 1)

Since the measur@us 4(-|¢) given by (2.7)—(2.10) has the form (5.1), the above
inequality may be rewritten as (4.1).

Now we take in (5.1 = 0 and obtairnp(:|0) = g, where the latter measure is given
by (4.3). Thus to prove (4.5) we have to show that/fee - -- =1l = A, 11 =+ 1oy = 1,
the following inequality holds

Dot (T1, o T2, T, T) 2 10y (1, o T2) T (T, T).

Taking into account (5.36), to this end we ought to have
([S:0)] 10D Sr ) 0, > ([S100)™) 0,10/ (SIODSy 2) 0 100 (B:37)

for v = (t/B)N, vy = (t/B)N, v, = (t'/B)N. The measurey",(-|0) corresponds to
an even ferromagnet, for which the GKS inequalities, in particular (5.37), hold (see
Theorem VIII.14A in [33, p. 275]). O

Proof of Lemma 5.2. For arbitrary; € 24, the functionF™ 1™ (.|¢) is bounded
on 2 4. Thus, by Lemma 5.1 one has that for every fixéd N (14, ..., 7,),

/ F® (00T ™ (@Al0)y " (dws) — / F® (@) TN (@A]0)y5.4(dw),
Q[S,A .Qﬂ_A
N(tg,...,7,) > M — oo.
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Then the proof will be done if we show that fof — oo,
/ F® ()T ™ (@,410)yp.4(dwa) — / F@n)T @al0)ypaldoy).  (5.38)
2p.4 2,4
One has

/ ]F(N)(wA)T(N)(wAK) — F(wA)T(wAK)’Vﬁ,A(d“)A)

28,4
< [ 1Y@l [TV @al6) = T @alt) 5.1
£28.4
+ [ IFY @n) = F@|T @alo)y.adon
2,4
E LN + L(N). (5.39)

Let us show thaf,(N) — 0 whenN — oo. In view of (2.5),

|FN (@) yp.4(dws) £ ¢dwy),

is a finite positive measure of2s 4. Since it is tight, for everye > 0 andC > 0,
one may find a compac®; , C 25 4 such thate (25 4 \ 25 4) < (¢/2C). For all
N e N (11, ..., 1,) and¢ € $24, the function

TN (w4]2) = T(@4l0)| LUy (w4),

is continuous and bounded a2 , by an independent ofV constantC(¢). The
sequencgUy} converges point-wise to zero @Bg 4. Thus, there exists a converging
to zero sequence of positive numbgs }, such that/y (w4) < uy uniformly ong2; ,.
All these facts together imply

L(N) Sund (25 4) +CQP(2p.4\ 25 4) <é,
for sufficiently largeN . Further

2 = w (t1) o, (Ty) — o, (1) -y (T, wAl8)yp aldwy
I(N) |y, (t1) () — (1) - (1) | T (@4l vp.a(dw )

28,4

< Tmax(€) Z {lon (T)| - oy, (Ti—) ||y, (7)) — a)l(,-N)(Ti)’
i=1

X \wl(fﬁ(fiﬂ)! e ’wz(,fV)(fn)Dm,A
< T ) YAl (@) = V@), o @] oy (0|

i=1
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x o) @ o @), 1
2 12
<nCyYmax(?) lsEuAprseuI/E){< [w1(7) — 0 (1)] >V,3,A} /2 (5.40)

Here C, is an independent oi upper bound of the moments af and ™, which
exists in view of (2.5), and

Toax(@) ' sUp T(@410).

wAE.Qﬁ,A
In view of (5.13), (5.23) one may write

([n(x) — ™ (D)]?)

VB.A
1 ~ ~ ’ ; / c
=32 Y (oa(=k)),,  explitk—K)t]. Ky =K\Ky.
ko k' eKCS,
Applying again (5.23) one obtains

(Jon(m) — o™ @)]%), == Z / 1,90, 1) costkr) dr. (5.41)

keIC‘

)’ﬂA

wherel"© is defined by (5.2) but withys 4 instead ofo(-|¢). Define onL2(R4, dx »)
the following operator (cf. (3.25), (3.26))

def 1 4% 1
H(O):eZ( Zmd +_ql>

leA

Let also {E@,s € N}, {¢9,s € N} stand for its eigenvalues and eigenfunctions
respectively. Denotéy;)sy = (V. ©, ™) 2@ ax,)- FOrk # 0, similarly to (4.19) one
obtains

/F,(O)(O r)cogkt)dt = -0 /trace{q e 1 g e B~ ’)H(O)}cos(kt) dt
Ig

0 _ E(9> 2O
(E® —E)) e —e?t)

S0 HXG:N(C”)“ (EQ — EO)2 4 j2
1 _ap© )
Se k2 7O Z (a5 (EL - (0))(e PE, g PET)
s,s'eN
1 1 © 1
= (©] —BH _
=+ vl (4% alle ") = s

whereZ© = trace exp—pBH©?) and[., .] stands for commutator. This yields in (5.41)

([an() — ™ (D)%), < Zkz\o N—oo. O

keIC‘

VB.A
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