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ABSTRACT. - We give a sufficient condition for a stationary sequence
of square-integrable and real-valued random variables to satisfy a

Donsker-type invariance principle. This condition is similar to the 
criterion of Gordin for the usual central limit theorem and provides
invariance principles for a-mixing or ,8-mixing sequences as well as
stationary Markov chains. In the latter case, we present an example of
a non irreducible and non a-mixing chain to which our result applies.
© 2000 Editions scientifiques et médicales Elsevier SAS
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RESUME. - Nous donnons une condition suffisante pour qu’une suite
stationnaire de variables aleatoires reelles de carre integrable satisfasse
le principe d’invariance de Donsker. Cette condition est comparable au
critere IL 1 de Gordin pour le theoreme limite central usuel. Nous en
deduisons des principes d’invariance pour les suites a-melangeantes ou
03B2-mélangeantes, ainsi que pour les chaines de Markov stationnaires.
Dans ce dernier cas, nous exhibons une chatne de Markov ni irreductible
ni a-melangeante a laquelle notre resultat s’applique. © 2000 Editions
scientifiques et médicales Elsevier SAS
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1. INTRODUCTION

Let ( S2 , A, P) be a probability space, and T : f2 t-~ Q be a bijective
bimeasurable transformation preserving the probability P. In this paper,
we shall study the invariance principle for the strictly stationary process
(Xo o Ti), where Xo is some real-valued, square-integrable and centered
random variable. To be precise, write Xi = Xo o 7B

We say that the sequence (Xo o Ti) satisfies the invariance principle if
the process E [0,1]} converges in distribution to a mixture
of Wiener processes in the space C([0,1]) equipped with the metric of
uniform convergence.
One of the possible approaches to study the asymptotic behaviour of

the normalized partial sum process is to approximate Sn by a related
martingale with stationary differences. Then, under some additional

conditions, the central limit theorem can be deduced from the martingale
case. This approach was first explored by Gordin [ 11 ], who obtained
a sufficient condition for the asymptotic normality of the normalized
partial sums. One of the most interesting cases arises when the sequence
(Xo o T i ) admits a coboundary decomposition. This means that (Xo o Ti)
differs from the approximating martingale differences sequence (Mo o Ti)
in a coboundary, i.e.,

where Z is some real-valued random variable. In this case, the invariance

principle and the functional law of the iterated logarithm hold as soon as
Mo and Z are square integrable variables. As shown by Heyde [ 14], this
condition is equivalent to the convergence in IL2 of some sequences of
random variables derived from the stationary process (X o o Ti). To say
more on this subject, we need the following definition.

DEFINITION 1. - Let A4o be a a-algebra of A satisfying Mo 5;
T -1 (./lilo ), and define the nondecreasing filtration by i =

T-i For any integrable random variable Y, we denote by Ei (Y)
the conditional expectation of Y with respect to the a -algebra 

From Heyde [ 14] and Volný [26], we know that the stationary sequence
( X i ) = ( X o o Ti) admits the coboundary decomposition ( 1.1 ) with Mo in
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IL2(Mo) and Z in IL2(A) if

Consequently, the invariance principle holds as soon as ( 1.2) is satisfied.
However, criterion (1.2) may be suboptimal when applied to Markov
chains or to strongly mixing sequences (cf. Section 2, Remark 2).
To improve on condition (1.2) it seems quite natural to weaken the

convergence assumption. For instance, if we replace the convergence in
IL2 by the convergence in L~ in ( 1.2), then ( 1.1 ) holds with both Mo and Z
in ILl. Under this assumption, it follows from Gordin [12] that a sufficient
condition for Mo to belong to IL2 is: lim infn~~ n-1/2E|Sn I  +00. In

that case, n - ~ ~2 S’n converges in distribution to a normal law. Nevertheless,
this is not sufficient to ensure that Z belongs to IL2, and therefore the
invariance principle may fail to hold (see Volný [26], Remark 3).
The proofs of these criteria are mainly based on the martingale

convergence theorem. Another way to obtain central limit theorems is

to adapt Lindeberg’s method, as done by Ibragimov [ 15] in the case of
stationary and ergodic martingale differences sequences. This approach
has been used by Dedecker [6] who gives a projective criterion for
strictly stationary random fields. In the case of bounded random variables,
this criterion is an extension of the ILl-criterion of Gordin [12]. In the

present work, we aim at proving the invariance principle for the stationary
sequence under this new condition.

To establish the functional central limit theorem, the usual way is first
to prove the weak convergence of the finite dimensional distributions of

the normalized partial sums process, and second to prove tightness of this
process (see Billingsley [3], Theorem 8.1). Let

In the stationary case the tightness follows from the uniform integrability
of the sequence via Theorem 8.4 in Billingsley [3].

In the adapted case (i.e., Xi is Mi-measurable) we proceed as follows:
first we prove the uniform integrability of the sequence (n -1 under

the condition
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In order to achieve this, we adapt Garsia’s method [ 10], as done in

Rio [21 ] for strongly mixing sequences. Second, we use both the uniform

integrability of and Lindeberg’s decomposition to obtain the
weak convergence of the finite dimensional distributions. The invariance

principle follows then straightforwardly. In the adapted case, criterion
( 1.3) is weaker than ( 1.2) and its application to strongly mixing sequences
leads to the invariance principle of Doukhan et al. [8]. Furthermore,
condition ( 1.3) provides new criteria for stationary Markov chains, which
cannot be deduced from ( 1.2) or from mixing assumptions either.

In the general case we apply (1.3) to the adapted sequences
for arbitrary large values of k. In order to obtain the uni-

form integrability of the initial sequence we need to impose
additional conditions on some series of residual random variables. As a

consequence, this method yields the invariance principle under the ILq -
criterion

where q belongs to [ 1, 2] and p is the conjugate exponent of q. When
Xo is a bounded random variable, criterion (1.4) with q = 1 yields the
invariance principle for stationary sequences under the IL -criterion of
Gordin [12].
The paper is organized as follows. Section 2 is devoted to background

material and to the statement of results. In Section 3, we study the

uniform integrability of the sequence The central limit

theorems are proved in Section 4. Next, in Section 5, we apply our
invariance principle to a class of functional autoregressive models which
may fail to be irreducible. Finally Section 6 collects the applications of
criterion ( 1.3) to mixing sequences.

2. STATEMENT OF RESULTS

For any sequence of real-valued random variables, we consider
the sequences Sn = Xi 1 ~- ~ ~ ~ + X n ,
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In this paper we give nonergodic versions of central limit theorems and
invariance principles, as done in Volný [26]. With the same notations as
in the introduction, an element A of A is said to be invariant if T (A) = A.
We denote by I the a -algebra of all invariant sets. The probability P is
ergodic if each element of I has measure 0 or 1.

2.1. The adapted case

Our first result is an extension of Doob’s inequality for martingales.
This maximal inequality is stated in the nonstationary case.

PROPOSITION 1. - Let (Xi)i~Z be a sequence of square-integrable
and centered random variables, adapted to a nondecreasing filtration

Let h be any nonnegative real number and hk = (Sk > h).
(a) We have

(b) If furthemore the two-dimensional array

is uniformly integrable then the sequence is uniformly
integrable.

In the stationary and adapted case, Proposition 1 (b) yields the uniform

integrability of the sequence under condition (1.3). This
fact will be used in Section 4 to prove both the finite dimensional

convergence of the normalized Donsker partial sum process and the
following nonergodic version of the invariance principle.

THEOREM 1. - Let be the nondecreasing filtration intro-

duced in Definition 1. Let Xo be a A4o-measurable, square-integrable
and centered random variable, and Xi = Xo o Ti. Assume that condition
( 1.3) is satisfied. Then:

(a) The sequence Z) + 2E(X0Sn I converges in IL 
l to

some nonnegative and I-measurable random variable 1}.

(b) The sequence t E [0, 1]) converges in distribution in
C([o, 1]) to the random process where W is a standard

brownian motion independent ofl.
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Remark 1. - If P is ergodic then

and the usual invariance principle holds.

2.2. Application to weakly dependent sequences

In this section, we apply Theorem 1 to strongly mixing or absolutely
regular sequences. In order to develop our results, we need further
definitions.

DEFINITION 2. - Let U and V be two a-algebras of A. The strong
mixing coefficient of Rosenblatt [22] is defined by .

U E l,f, (2.1)

Let be the probability measure defined on (Q x Q , U QÇ) V) by
x V) = n V). We denote by Pu and Pv the restriction of the

probability measure I~ to U and V respectively. The ~-mixing coefficient
,B(Lf, V) of Rozanov and Volkonskii [23] is defined by

Both Theorem 1 and the covariance inequality of Rio [20] yield the
nonergodic version of the invariance principle of Doukhan et al. [8] for
strongly mixing sequences.
COROLLARY (Xi)i~Z be defined as in Theorem 1, and

suppos,e that

where Q denotes the càdlàg inverse of the function t -+ > t).
Then the series converges and Theorem 1 applies.
Remark 2. - The IL2 criterion ( 1.2) leads to the suboptimal strong

mixing condition
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This can be shown using Rio’s covariance inequality. For more about
these mixing conditions, cf. Bradley [4].

Now, from the covariance inequality of Delyon [7] we get the

following invariance principle for absolutely regular sequences.

COROLLARY 2. - Let ~o be an A4o-measurable variable with values
in a measurable space ~, and ~l = ~o o Ti. There exists a sequence
of random variables (bn)n>o from (Q, A, to [0, 1 ] with E(bn) =

a($n)) such that the following statement holds true: set B =

bn and let g be a measurable function from ~ to R. Assume that
Xi = g($I) is a square integrable and centered random variable. If X o
belongs to then the series I! 1 converges and
Theorem 1 applies.

2.3. Application to Markov chains

In this section, we give an application of Theorem 1 to stationary
Markov chains. Let ~ be a general state space and K be a transition
probability kernel on S. Let

We write Kg and respectively, for the functions f g(y)K(x, dy)
and f g(y)Kn(x, dy).
COROLLARY 3. - Let ~o be a random variable with values in a

measurable space ~, and ~l = ~o o Ti. Suppose that is a strictly
stationary Markov chain, denote by K its transition kernel and by p the
law of ~o. Let g be a measurable function from ~ to R. Assume that
Xi = g($I) is a square integrable and centered random variable. If the
series converges in IL 1 (~,c), then

(a) the random process t E [0, 1 ] } converges in distri-
bution in C([0, 1]) to ~ W, where Wand 1] are defined as in
Theorem 1.

(b) If furthermore the underlying probability I~ is ergodic, then (a)
holds with
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Remark 3. - Corollary 3 can be extended to nonstationary positive
Harris chains (cf. Meyn and Tweedie [17], Proposition 17.1.6), with the
same expression for a i. If furthermore the chain is aperiodic then the
usual central limit theorem holds as soon as the series of covariances

converges, as shown by Chen [5]. However, in order to prove that the
variance of the limiting distribution is equal to ai, he has to assume
that the series converges in IL 1 (~c) . Note that the form of
03C32g coincides with the one given in Nummelin [ 18], Corollary 7.3 (ii) (cf.
De Acosta [ 1 ], Proposition 2.2).

Remark 4. - Many central limit theorems (Maigret [ 16], Gordin and
Lifsic [ 13]) are based upon the identity g = f - K f with f in 
known as the Poisson equation. In fact, if = 0, the 1L2-
criterion ( 1.2) and the coboundary decomposition ( 1.1 ) with both Mo and
Z in IL2 are equivalent to the existence of a solution f in IL2 to the
Poisson equation.

Application: Autoregressive Lipschitz model. For 8 in [0,1[ and C
in ]0, 1 ] , let £(C, 8) be the class of 1-Lipschitz functions f which satisfy

Let be a sequence of i.i.d. real-valued random variables. For S ~ 1
let ARL(C, 8, S) be the class of Markov chains on 1~ defined by

PROPOSITION 2. - Assume that belongs to ARL(C, 8, S). There
exists a unique invariant probability /1, and furthermore

Let be a stationary Markov chain belonging to ARL(C, 8, S)
with transition kernel K and invariant probability Consider the

configuration space (IRz, P~) where P~ is the law of and
the shift operator r from to defined by = Since

J-l is the unique probability invariant by K, P~ is invariant by r and
ergodic. Denote by Jri = Jro o r~ the projection from to R defined

by = Since has the same distribution P~ as 
Corollary 3(b) applied to the Markov chain provides a sufficient
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condition on g for the sequence to satisfy the invariance
principle. The following proposition gives a condition on the moment
of the errors under which Corollary 3 applies to Lipschitz functions.

PROPOSITION 3. - Assume that is a stationary Markov chain
belonging to ARL(C, 8, S) for some S ~ 2 + 28. Denote by Kits
transition kernel and by /vL its invariant probability. Let g be any Lipschitz
function such that ic,c (g) = 0. Then g Kn g converges in IL1 (~,c) and
the sequence satisfies the invariance principle. Moreover the
variance term ~g is the same as in Corollary 3 (b).
Remark 5. - Arguing as in Section 5.2, it can be shown that the IL2

criterion ( 1.2) requires the stronger moment condition S ~ 2 + 38.

An element of ARL(C, 8, S) may fail to be irreducible in the general
case. However, if the common distribution of the ei has an absolutely
continuous component which is bounded away from 0 in a neighborhood
of the origin, then the chain is irreducible and fits in the example
of Tuominen and Tweedie [24], Section 5.2. In this case, the rate

of ergodicity can be derived from Theorem 2.1 in Tuominen and

Tweedie [24] (cf. Ango-Nzé [2] for exact rates of ergodicity).

2.4. The general case

In this section, we extend the results of Section 2.1 to nonadapted
sequences. In order to obtain central limit theorems, we impose some
asymptotic conditions on the random variables 

DEFINITION 3. - Let be the nondecreasing filtration intro-
duced in Definition 1. We set ~i~Z Mi and 
We denote by (respectively the conditional expectation
of Y with respect to the a -algebra (respectively 

Let us start with the central limit theorem.

THEOREM 2. - Let (Mi)i~Z be the nondecreasing filtration intro-

duced in Definition l. Let Xo be a square-integrable and centered random
variable, and Xi = Xo o Ti. Let

Suppose that 7C is a nonempty set. If
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then, for any l > 0 and any (tl , ..., tl ) in [0, 

converges in distribution to ~ (Sl, ..., cl ), where 17 is some nonnegative,
integrable and I-measurable random variable and (~ 1, ... , is a
Gaussian random vector independent of l with covariance function
Cov (Ei , = ti n tj.
Remark 6. - If = 0 then -00 belongs to IC. Conversely, ar-

guing as in Dedecker [6], Proposition 3, it can be shown that 
0 as soon as J’C ~ 0.

In order to obtain the uniform integrability of the sequence 
we need absolute values in the summands in (2.5).

PROPOSITION 4. - Let be defined as in Theorem 2, and
suppose that

is a nonempty set. If

then the sequence is uniformly integrable.

Proposition 4 and Theorem 2 together yield the following invariance
principle.
THEOREM 3. - Let and K be defined as in Theorem 2, and

suppose that JC is a nonempty set. If
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then t E [0, 1 ] } converges in distribution in C ( [o, 1 ] ) to

~ W, where 1] is some nonnegative, integrable and I-measurable
random variable and W is a standard brownian motion independent ofl.

Now, Hölder’s inequality applied to Theorems 2 and 3 gives the
following ILq -criteria.

COROLLARY 4. - Let be defined as in Theorem 2. Suppose
furthermore that Xo belongs to LP for some p in [2, +00]. Let q =
p/(p - 1).

(a) Suppose that

converge in ILq. Then (2.5) holds true and Theorem 2 applies.
(b) Suppose that

converges in ILq and

Then (2.7) holds true and Theorem 3 applies.

Remark 7. - To prove Corollary 4, note that assumption (a) as well as
(b) implies that Xo is Moo-measurable.

3. MAXIMAL INEQUALITIES, UNIFORM INTEGRABILITY

In this section, we prove Propositions 1 and 4.

ProofofProposition l(a). - We proceed as in Garsia [ 10] :

Since the sequence is nondecreasing, the summands in (3.1) are

nonnegative. Now 
.
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if and only if Sk > ~ and Sk > Sk_ 1. In that case Sk = whence

Consequently

Noting that

we infer that

In order to bound (Sn - ~)~_, we adapt the decomposition (3.1 ) and next
we apply Taylor’s formula:

Since follows that

Hence, by (3.4) and (3.6)
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Let Do = 0 and Dk = 2(Sk - À)+ - (~ - ~)+ for k > 0. Clearly

Hence

Since the randnm variables D; - D: _, are Fi-measurable, we have:

It remains to bound !D, - Di _ 1 I . If ( S* - À)+ = (~-1 - ~)+~ then

because Di - Di-l = 0 whenever Si # A and Si-j 1  À. Otherwise Si =

5’* > ~ and 1  Si, which implies that

Hence Di - Di-l belongs to [0,2((~; - h)+ - (Si-l - A)+)]. In any case

which together with (3.9) and (3.10) implies Proposition l(a). 0

Proof of Proposition 1 (b). - Let = (Sk > ~. } . From Proposition
l(a) applied to the sequences and we get that

Now, under the assumptions of Proposition l(b), both the sequence
and the array are uniformly inte-

grable. It follows that the ILl-norms of the above random variables are
each bounded by some positive constant M. Hence, from (3.12) with
À = 0 we get that
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It follows that

Hence, from (3.13) and the uniform integrability of both the sequence
(Xk)k>o and the array (XkE(Sn - Sk I we get that

for some nonincreasing function 8 satisfying 0. This

completes the proof of Proposition l(b). 0

Proof of Proposition 4. - Since the sequence (-Xi still satisfies
criterion (2.6), it is enough to prove that (~5~)~o is an uniformly
integrable sequence.

Let 8 be any positive real number and I be some element of £ such that

Notations 1. - Let F1 = .J1 i1 i +t and Zi = Write

and

Then (Zi is a stationary sequence adapted to the filtration 
Clearly, for each event A,

Now

Since 1 belongs to £, it follows that the sequence is

uniformly integrable. This fact and the stationarity of together
ensure the uniform integrability of the array Tk-l 
Now Proposition l(b) implies the uniform integrability of the sequence
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Hence there exists some positive 8 such that, for any event
A with I~(A)  ~ and any positive integer n,

It remains to bound IE(W;2). From (3.4) applied with h = 0 we get that

By definition of the random variables Yk,

Now, for any negative n,

whence

By (3.14) it follows that

Now let us recall that Cov(B, Yk) = 0 for any square-integrable
and Mk+l-measurable random variable B. Hence it will be convenient
to replace the random variables 1 by A4k+1-measurable random
variables in (3.17).

Notations 2. - For k E [ 1, n] and i E [ 1, k[, define the r. v.’s Yi,k =
We set Wi,k = Yl,k + ... + Yi,k and 

..., Wk-l,kl -
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Since is Mk+l-measurable, we have:

Now recall that

is a 1-Lipschitz mapping with respect to the .~ 1-norm. Hence

which, together with (3.19) implies that

Collecting (3.17), (3.18) and (3.20), we obtain that

Together with (3 .15 ) and (3.16), it implies that 18n8 for any
event A with 8. This completes the proof of Proposition 4. D

4. CENTRAL LIMIT THEOREMS

4.1. The adapted case

In this section, we prove Theorem 1.

. Proof of Theorem 1 (a). - From assumption ( 1.3), the sequence of

random variables I M-oo) + 2E(Xosn I converges
in ILl. Theorem l(a) is then a consequence of part (b) of Claim 1 below:

CLAIM 1. - We have:
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(a) Both E(XoXk I I) and E(E(X0XkI I I) are 

measurable.

(b) 1) = I 

Claim l(b) is derived from Claim 1 (a) via the following elementary
fact.

CLAIM 2. - Let Y be a random variable in IL1 1 (IP) and U, V two a -
algebras of (Q , A, P). Suppose that E(Y pl) and ?..!) are
V -measurable. Then = E(E(Y Ll ) .

It remains to prove Claim 1 (a) . The fact that I I I)
is M-~-measurable follows from the L1-ergodic theorem. Indeed the
random variables I are M-~-measurable and

Next, from the stationarity of the sequence we have

Both this equality and the IL}-ergodic theorem imply that E(X0XkT)
is the limit in ILl of a sequence of M-N-measurable random variables.
Since this is true for any integer N, we infer that T) is 
measurable. This concludes the proof of Claim l(a). 0

Proof of Theorem 1 (b). - The first step of the proof is a central limit
theorem for the normalized sums.

Notations 3. - Let (~i)i~Z be a sequence of M(0, 1)-distributed and
independent random variables, independent of the sequence For

any 8 in ]0,1], let q = ~(5) = [n~] and p = p(8) = [n/q] for n large
enough. For any integer i in [ 1, p ] we set
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and

Notations 4. - Let g be any function from R to R. For k and l in

[ 1, p + 1 ] , we set = g ( Vk + r/), with the conventions = g ( Vk )
and go, = Afterwards, we will apply this notation to the successive
derivatives of the function h.

Let Bi (JR) denote the class of three-times continuously differentiable
functions h from I1~ to R such that 1.

The convergence in distribution of is an immediate conse-

quence of the proposition below.

PROPOSITION 5. - Under the assumptions of Theorem 1,

for any h in B1 (II8), where r~ is defined as in Theorem 1 and s is a standard
normal random variable independent of I.

Proof - First, we make the elementary decomposition:

Suppose that n. Noting that h is 1-Lipschitz, we have

Since the sequence is bounded in we infer that

In the same way

and consequently
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In view of (4.2) and (4.3), it remains to control the second term in (4.1 ).
Here we will use Lindeberg’s decomposition:

Now, applying the Taylor integral formula we get that:

where

Since = 0, it follows that

where

Control of D3. By (4.5) and the stationarity of the sequence, we get
that

Bearing in mind the definition of !7i, we obtain

From the uniform integrability of the sequence (q -1 the right hand
term of the above inequalities tends to zero as 8 tends to 0 (i.e., p tends
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to infinity). Obviously the same holds for which entails that

C ontrol of Di.

By definition, we have

Note that (1.3) implies that n-1Sn converges to 0 in IL2 . Consequently
E(Xo I I) = 0 by the IL2-ergodic theorem. Taking the conditional

expectation wrt. I in the above equation, it follows that =

0.

Now, in order to bound the summands in the above decomposition, we
proceed as follows: let Ij be the random variable obtained by integrating
h’(n-l/2Sj + + with respect to the sequence

Since rJ is M-~-measurable (see Claim l(a)), we infer that the
random variable Tj is Mj-measurable. Moreover h’ is 1-Lipschitz (cf.
Notations 4), which implies that

and therefore Hence

Bearing in mind the definition of Uk and using the stationarity of the
sequence, we obtain the upper bound:
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Now, by assumption ( 1.3)

and consequently

Finally, for each integer k in [ 1, p],

which entails that Dj converges to 0 as n tends to +00.

Control of D2. First, note that the random vector (~-~+1,..., 
is independent of the a-field generated and the initial

sequence. Now integrating with respect to ..., we get that

Here we need some additional notation.

Notations 5. - For any positive integer N, we introduce

and

With these notations, by (4.7) we have:
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1] N converges in IL to 7~ and therefore

We control now the second term of decomposition (4.8). According
to Claim l(a), the random variable ~ is M-~-measurable. Hence,
integrating 1 with respect to the sequence we obtain a

Mkq-q-measurable random variable with values in [-1,1]. It follows
that

Now, by assumption ( 1.3)

and consequently

To control the first term of decomposition (4.8), we write

Here, note that
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The IL I-ergodic theorem applied to the last sum gives

From (4.11 ), (4.12) and (4.13), we obtain

Collecting (4.9), (4.10) and (4.14) we get that

which entails that D2 converges to 0 as n tends to +00.

End of the proof of Proposition 5. Collecting the above controls,
we get that

Now Proposition 5 follows from both (4.1), (4.2), (4.3) and (4.15). 0

Proof of Theorem 1. - From the uniform integrability of 
we know that the sequence of processes E [0,1]} is tight
in C([0,1]). It remains to prove the weak convergence of the finite

dimensional marginals.

Notations 6. - For m and n in N with m  n, let 
’

In fact, it suffices to prove that if the differences i converge
to +00 then the array of random vectors Sn, ,n2 ~ ~ ~ ~ ~ con-

verges in distribution to ~(y1, ... , where y1, ... , yp are indepen-
dent standard normals. For any p-tuple (~i,... a p ) and any h in 
write
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where

Note that the random functions gk belong to B 1 for any c~ in Q . To

prove the finite dimensional convergence, it is then sufficient to prove that

which can be done as in the proof of Proposition 5. This completes the
proof of Theorem 1. D

4.2. The general case

In this section, we prove Theorem 2. Let 1/1 be a map from N into JC
such that

Notations 7. - Let Xo = (Xo) and = Xo - We set

and we denote by { Snk~ (t) : t E [0,1]} the partial sum process associated
to the sums 

By Theorem 1 applied to the sequence = o the finite

dimensional marginals of the process E [0, 1 ] } converge
in distribution to the corresponding marginals of the process /W,
where W is a standard Brownian motion on [0,1] independent of I and
r~ ~k~ is the nonnegative, integrable and I-measurable random variable
defined by

Hence Theorem 2 follows from Proposition 6 below via the triangle
inequality.
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PROPOSITION 6. - Under the assumptions of Theorem 2,
(a) we have:

(b) The sequence ( /)k converges in IL2 to some nonnegative and
I-measurable random variable ~.

Proof. - We start by proving (a). Let = Y(k)0 o Ti. Since Y(k)0 is

orthogonal to we have for any positive i ,

Hence

Now Proposition 6(a) follows from (2.5) and the above inequality via the
Cesaro mean convergence theorem.

In order to prove (b), we will use the following elementary lemma.

LEMMA 1. - Let (B, 11.11) be a Banach space. Assume that the se-
quences (un,k), (un) and (vk) of elements of B satisfy

Then the sequence (Vk) converges in B.

Let B =1L2 (Z) . We now apply Lemma 1 with

and

From the triangle inequality applied conditionally to I, we get that
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Hence, by Proposition 6(a),

Now Theorem i (a) and the Cesaro mean convergence theorem together
imply that converges to vi in IL i (~) . Since the random variables un,k
and un are nonnegative, it follows that un,k converges to vk in IL2(I),
which completes the proof of Proposition 6(b). D

5. MARKOV CHAINS

5.1. Proof of Proposition 2

Existence of JL. Since f is continuous, the chain is weak Feller
(cf. Meyn and Tweedie [ 17], Chapter 6). Therefore, to prove the existence
of an invariant probability it suffices to show (cf. Meyn and Tweedie,
Theorem 12.3.4) that V - 1 + b IF for some positive function V,
some compact set F and some positive constant b.

Let Vex) = By definition, KV(x) = = x ) . Hence

Let R be a positive real such that

Then and the existence of  follows.

Uniqueness of JL. We denote by (~n )n>o the chain starting from
~o = x. To prove the uniqueness of the invariant probability JL, it suffices
to show (see Dufto [9], Proposition I .IV.22) that for any (x, y) in JR2:

Since !~ - ~~I = I.f (~n-1 > - /(~-t)!, we have
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Set = 1 - C(1 + t ) -s and hk = !6-i!+...+ Noting that, for
(x, y) in JR 2 ,

and iterating (5.2) n times, we get

So, it remains to control In := + Iyl + With this aim in

view, we write:

Clearly,

The first term on the right hand side tends to zero as n tends to infinity.
To control the second term, which we denote by In 1 ~ , we apply Markov’s
inequality:

Since 8  1, tends to zero as n tends to infinity. Consequently (5 .1 )
holds, and the invariant probability is unique.
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Moment of ~. Let us consider the function Vex) = Ixls. Since

we have

From this inequality, we infer that there exist two positive constants R
and c such that 1 - for any R. It follows

that

Iterating this inequality n times gives

Letting n -+ +00, we get that

5.2. Proof of Proposition 3

Let g be any L-Lipschitz function. We have:

Using he same notations as in the proof of the uniqueness of /~, we have:

Here again, we need to control the term In := + .

Set rn-l = (n - Starting from (5.3), we write:
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Set An (x, y) = C[2(1 + Ixl + Iyl + (n - I)JEI£01)]-8. We have

To control the second term on the right hand side, which we denote by
In2~, we use a Fuk-Nagaev type inequality (cf. Petrov [ 19], Lemma 2.3).
For any r ~ 1,

Integrating this inequality, we obtain

Proceeding as in (5.4), we write:

Taking r = 5’y~ 2014 1 provides = Consequently, there exists
a constant M such that:

Hence from (5.5) we obtain
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Set Bn (x ) = C[4(l + ~ + (n - and denote by Jn the second
term on the right hand side. We have

Since x - belongs to we have the finite upper bound

Proceeding as in (5.4) we find:

From the above inequality and (5.6), we infer that there exists a con-
stant R such that

Since g is L-Lipschitz Ig(x)1 ~ L(lxl +a) for some positive constant a.
Now p (g) = 0, which gives
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Since 5’ ~ 2 + 8, from Proposition 2 we obtain that x2 is p-integrable.
This implies that the first integral on the right hand side is finite.

Moreover is -integrable, which implies the convergence of the
third integral on the right hand side. Hence we deduce from (5.8) that a
sufficient condition for the convergence of the series is

By Fubini’s theorem and the fact that (1 - exp ( -n Bn (x ) ) it

suffices to prove that
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From (5.9), (5.10) and (5.11 ) we conclude that a sufficient condition for
the convergence of is

which is realized as soon as jc 2014~ belongs to IL 1 (,c,c) . Now, by
Proposition 2, the function Ixl2+o is -integrable if S  2 + 203B4, which
concludes the proof of Proposition 3. D

6. WEAKLY DEPENDENT SEQUENCES

In this section, we prove Corollaries 1 and 2. First, write

Now, by the covariance inequality of Rio [20],

Collecting (6.1 ) and (6.2) we obtain Corollary 1.
Before proving Corollary 2, let us recall the covariance inequality of

Delyon [7].
PROPOSITION 7. - Let (Q , A, IP) be a probability space, and U, V

two a -algebras of A. There exist two random variables du and dv from
(Q , A, IP) to [0, 1 ], respectively, U- and V-measurable, with E(du) =

V) and such that the following holds: For any conjugate
exponents p and q, and any random vector (X, Y) in x 

Proceeding as in Viennet [25], we apply Proposition 7 to the sequence
Xi = g(~), where the variable ~o is Mo-measurable. There exist
two random variables and respectively, Mo and 03C3(03BEk)-
measurable, with a ()k) ) and such that
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Since is a (~k)-measurable, it may be written as = 

Using (6.1 ) and the stationarity of the sequence we obtain

Put bk = -~- ~~o,k(~o)]/2 and B = The sequence (bk)k>o
satisfies E(bk) = ~B(.J~lo, ~ (~k)). Moreover, we deduce from (6.3) that if
Xo belongs to then the series IIXoEo(Xk) II is convergent.
This completes the proof of Corollary 2. D
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