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ABSTRACT. - We present a version of O. Catoni’s "progressive mixture
estimator" ( 1999) suited for a general regression framework. Following
basically Catoni’s steps, we derive strong non-asymptotic upper bounds
for the Kullback-Leibler risk in this framework. We give a more explicit
form for this bound when the models considered are regression trees,
present a modified version of the estimator in an extended framework
and propose an approximate computation using a Metropolis algorithm.
@ Elsevier, Paris

RESUME. - Nous donnons une version, adaptee a un cadre de regres-
_ sion, de l’estimateur dit de "rnelange progressif" introduit par O. Catoni

(1999). De fagon analogue a Catoni, nous donnons une borne a horizon
fini pour la perte de Kullback-Leibler de l’ estimateur dans ce cadre. Nous

explicitons la forme de cette borne dans le cas d’ arbres de regression, pre-
sentons une variante dans un cadre etendu, et proposons une methode de
calcul approche par algorithme de Metropolis. © Elsevier, Paris
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794 G.BLANCHARD

1. INTRODUCTION

The so-called "progressive estimator" was introduced by Catoni [6]
(1997) using ideas inspired by the recent work of Willems et al. [ 11,
12] on universal coding. The principle of a progressive estimator has
also been proposed independently by B arron and Yang [4,3]. One of
the main attracting features of this estimator is that we can easily derive
strong non-asymptotic bounds on its mean Kullback-Leibler risk in an
extremely general framework.
Our goal in this paper is to present a version of this estimator first

in a general regression estimation framework, then more precisely for
classification and regression trees (CARTs). As the computation of this
estimator involves performing sums of a Bayesian type on a very large
(and possibly non-finite) set of models, we are naturally led in practice
to compute these sums approximately using a Monte Carlo algorithm.
A very similar method (a Bayesian search among CARTs using a

stochastic procedure) has been proposed by Chipman et al. [7] (1997).
It is interesting to note that if we start from a different theoretical point of
view, which allows us to derive non asymptotic bounds on the Kullback-
Leibler risk, we are led to a very similar algorithm (see discussion at
the end of the paper). On the other hand, the work of Chipman et al.
suggested to us the idea of a data-dependent Bayesian prior on the set of
models which we develop in Section 5.

Finally we also want to point out the relation of this algorithm of
random walk in the model tree space with the method of tree selection by
local entropy minimization developed by Amit, Geman and Wilder [ 1, 2] .
This work has been a large source of inspiration and in some regards,
the local entropy minimization can be seen as the deterministic (or "zero-
temperature") analogous of the Monte Carlo method presented here. This
will also be discussed in some more detail in Section 7.

The structure of the paper is as follows. In Section 2, we present a
version of the progressive mixture estimator for regression estimation
in a very general framework. Section 3 focuses on classification and
regression trees and gives a precise and explicit form of the estimator
in this case. Section 4 briefly deals with the case of a "fixed-design" tree
where an exact computation of the estimator can be performed thanks to
the tree weighting recursive algorithm developed by Tjalkens, Willems
and Shtarkov in [ 11 ] (other authors have also used this technique for
classification trees in a different framework, see [10]). Section 5 presents
an extension of the framework to a possibly uncountable family of model
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THE "PROGRESSIVE MIXTURE" ESTIMATOR FOR REGRESSION TREES 795

trees, using a data-dependent prior, and we show for a precise and non
trivial example that the estimator thus obtained still achieves the minimax
rate of convergence. In Section 6, we explain how to construct a Monte
Carlo chain to obtain an approximate computation of the estimator for
general tree models. Section 7 concludes the paper with a discussion of
the results.

2. CATONI’S PROGRESSIVE ESTIMATOR IN A REGRESSION
FRAMEWORK

In this section we present a version of Catoni’s estimator adapted for
regression estimation purposes.

Let us specify the framework and notations. Let

be a sequence of random variables, taking their values in some measur-
able space Z x y with probability distribution PN. The only hy-
pothesis we will make on PN is that it is exchangeable, i.e., that this
distribution is invariant under any permutation of the variables Zi . Our
goal in a regression framework is, given a sample .z2, ..., zN, to get an
estimation of the conditional probability of a new observation Y1 given
Xi I (the fact that this "new" observation is actually given the index 1 is

purely for later notational convenience and should not be misleading). We
thus want to estimate PN(YI Zf) . This can include any case where
the order of the observations (including the test example Zi) is not of
importance, because we can then re-draw them in a random order. This

, 

case is of course of but minor practical relevance since in such a predic-
tive framework, the test example is usually given separately and cannot
be drawn at random (in which case the hypothesis of exchangeability has
to hold fully). However, it covers for example the customary procedure
used for classifier testing, when one has a fixed database of examples,
that is split at random between a set used to train the classifier and a set
used to validate its accuracy.
We will assume that there exists a regular version of this conditional

probability, and, more generally throughout this paper, we will assume
that all of the conditional probabilities that we are dealing with have
a regular version, allowing us to make use of all standard integration
properties. For that purpose we will assume that Z is a Borel space.
Vol. 35, n° 6-1999.



796 G.BLANCHARD

To begin with, we will split the sample data set z2 into two subsamples
E = called "estimation set" and T = z 1 called "test set" for some
fixed integer L &#x3E; 0 (note that we consider the new observation zi 1 to

be part of the test set). The reason for this will become clearer in the
sequel and the issue of the choice of L will be discussed later on. Note
that the ordering of the variables is purely arbitrary since the probability
distribution P according to which they have been drawn is exchangeable.
We then assume that we have at our disposal a countable family

of estimators that is, a family of conditional probabilities
depending on the observations of the estimation set Qm (Y E ~ ~ X, E),
also denoted by Qm (Y E ~ ~ X ) for a more compact writing (in a more .

general way in this paper we will often use a superscript E for probability
distributions depending on the estimation set, thus writing equally
PE(. ( .) for P(. ! ., E ) ) . We will speak of m~M as a "model".
Our purpose is to find an estimator in this family which will minimize

(approximately) the Kullback-Leibler (K-L) risk with regard to PN (Y1 I
Xi, Zf), i.e., find a m E M achieving

where H is the Kullback-Leibler divergence: for p, v two probability
distributions on the space y:

To get a solution to our estimation problem we will actually not
perform a model selection as first announced, but rather build a composite
estimator for which we will be able to explicitly upper bound the
Kullback-Leibler risk.

Suppose that we have chosen some probability distribution yr on the
model set M . If we keep the estimation set E "frozen", we can consider
the estimator probabilities 3~(T ~ X ) as simple product (conditional)
probabilities on the test set T. We then define the mixture conditional
probability on the test set obtained by summing these product
probabilities Q; weighted by the prior n :

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



797THE "PROGRESSIVE MIXTURE" ESTIMATOR FOR REGRESSION TREES

We eventually build Catoni’s progressive mixture estimator Qn (Yi E
. I XI, zf) also denoted by E . ~ jci, in the following way:

In order to make the last formula somewhat clearer, let us consider for a
moment the simple case where the space y is discrete (this is actually the
case that will be considered in the following sections, for classification
problems). In that case the definition ( 1 ) yields the following expansion
(everywhere the denominator does not vanish):

Let us point out that each individual term of the sum over M is
nothing but a (predictive) Bayesian estimator based on the probabilities
Q(dYl ( X1 ) (when the estimation sample E is kept frozen), using the
prior Thus Q: is a Cesaro mean of Bayesian estimators with a sample
of growing size .zM. The subsample E is used for estimation within each
model m E A4 ("estimation set") whereas the other subsample z2 is then
used to "choose" between the models in a Bayesian way ("test set").
We now state a theorem upper-bounding the risk for this estimator.

THEOREM 1. - With the previous assumptions we get the inequality:

Proof - There is actually little to be changed in comparison to [6] so
we will follow quite closely Catoni’s steps..
Assume that the estimators e ’ have densities q; (YI JCi)

with respect to some dominating conditional measure We similarly
will denote by lower-case letters the densities with respect to p of the
other probability distributions. In case there is no "obvious" choice for
p we can build the following dominating measure depending on the

Vol. 35, n° 6-1999.



798 G.BLANCHARD

estimation set E :

where a is some injective mapping of Minto Z+.
Take an m if

the inequality is true for this m ; else we consider the difference (whose
second term is now finite)

Because - log is a convex function we have

Now using the hypothesis that PN is an exchangeable probability
distribution, we can swap the role played by Xi 1 and 1 in the Mth

term of the sum (formally replacing XL+i, YL+i by Xi, Yi whenever
necessary).
We thus get to:

where by definition

Let us point out that we have no more conditioning with respect to xM+ i
in the last denominator because of the relation coming straightforward
from the definition of 

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Thus the sum in (4) reduces to the first component of its last term since
the other terms cancel each other successively, leading to:

It has been pointed out that an "aesthetic" flaw of the progressive
mixture estimator is that it is not a symmetric function of the data
(different orderings give different estimators), because of the arbitrary
division of the sample in two sets and because of the "progressive" sum
in the definition of the estimator, which is a Cesaro average of Bayesian
estimators with a growing sample. The reason for this apparently
surprising progressive sum is to be able to bound the Kullback-Leibler
distance between probability distributions on the only variable Zi by the
K-L distance between full multivariate distributions on the whole test set

(for which the idea of a mixture distibution comes from the compression
and information theory litterature), as appears in the proof of the theorem.
However, it is possible to define theoretically a fully symmetric estimator
by averaging I XI, zf) over all the (N - I ) ! possible orderings
of the sample zf, that will satisfy the same majorations as Qn (as can
be seen using once more the convexity of the K-L distance with

respect to JL).

3. APPLICATION TO A CART MODEL

In this section we deal with a classification problem, that is, the

variable Y will take its values in y = {0,1,..., c } (thus there are (c + 1 )
distinct classes and c is the number of free parameters for a distribution
on y), and we want to "recognize" the observation X taking its values
in a certain space x, deciding to which class it belongs, having already
observed a "learning set" zf. In order to do that we want to make use of
a classification tree using the "20-questions game" principle: suppose we
have at our disposal a countable set of "questions" Q we can ask on the
observation X, to which we can only answer by 0 or 1 (for example, we
can think of X as a finite or infinite binary sequence, the questions being
Vol. 35, n° 6-1999.



800 G.BLANCHARD

of the form "what is the n th bit of X ?"). Having asked a first question, we
are then allowed to choose a second one depending on the first answer,
and so on. At each step we can decide whether to ask a new question or to
stop and guess X’s class (or, alternatively, to estimate the probability of X
belonging to a certain class, if we prefer a regression framework). If the
rule is that we can only ask at most d questions, all the possible sequences
of questions and answers can be represented as a complete binary tree of
depth at most d, whose internal nodes are labeled with questions (CART
tree model).
Our set of models M will therefore be a set of couples (T, FT), where

T is a tree and FT = the set of questions indexed by the
internal nodes of T. A question f E Q is nothing but the indicator of
a certain measurable set A f C x. We will think of a binary tree T as a
subset of r = {0} U {0,1}* (the set of all finite, possibly empty strings
formed of zeroes and ones) such that every ancestor (that is,
every prefix string) t of s also belongs to T. By definition, 0 is the root
of the tree, and if s is a node, its two sons are s0 and s 1. In our case
we will only consider complete binary trees (such that every s ~ T either
is a terminal node or has two sons). If m is such a model and x is an
observation, we denote by m (x) the terminal node associated to x by
m (obtained by asking questions on x and letting him follow the tree
branches until we reach a terminal node of m ). Also, we will denote by
am the set of terminal nodes (or leaves) of the model tree m.
Given m = (T, FT ) we now have to define our set of estimators

E). For the remainder of the paper, when dealing with tree
models we will take for Qm a conditional Laplace estimator at every
terminal node: given a terminal node s E T we define the following
counters on the estimation set E = 

where lA denotes the indicator function of the set A. Then, = s,

we take for a multivariate distribution defined by

Let us then denote by (Y [ X) the general conditional multivari-
ate distribution based on the labeled tree m, where 8m = is a set

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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of real vectors of parameters all belonging to the c-dimensional simplex
Se = {0 E [0,1]~~ ! = 1}, and indexed by the terminal nodes of
m, defined by .

(where (es ) denotes the i th coordinate of the vector parameter 8S ).
Once again following very closely [6], we give the following upper

bound for the risk of the Laplace estimator:

THEOREM 2. - For any exchangeable distribution PN on the vari-
ables ZN1 E ({0, ..., c} x X)N, for a given model m, the conditional
Laplace estimator Qm satisfies

where I ~m I is the number of terminal nodes of the tree model m.

Proof. - To shorten the equations below we will write in the sequel
equally YN+i for Xi, Yi .

For a given terminal node s ~ ~m, let us first introduce the modified
counters as, i = 0,..., c:

and denote by Es the total number of examples at node s .
With these new counters we get

thus

Vol. 35, n° 6-1999.
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where the first inequality follows from the exchangeability of the
distribution PN. In the second equality we put 0 log 0 = 0 if necessary.
Now for a fixed s E am, if at least one example reached this node, that is,
if hs &#x3E; 0, we have

Now this last inequality obviously remains true if ais = 0 for all i and thus

Now suppose we have chosen some a priori measure 7r on the tree
models fl4 (fl4 is countable since Q is countable); we thus get as a
straightforward consequence of Theorems 1 and 2: .

COROLLARY 1. - With the previous choice of the estimators Qm for
labeled tree models, and a prior n on .M we get for the estimator Qn
defined in Section 2 the inequality

For example, let us take for prior 7r the distribution of the genealogy
tree of a branching process of parameter p  1 /2 (an individual gets two
sons with probability p, or dies without descendance with probability
1 - p) this prior will be used several times in the next sections. This
prior is explictly given by

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



803THE "PROGRESSIVE MIXTURE" ESTIMATOR FOR REGRESSION TREES

so that the first penalization term in Eq. (6) is

thus the natural choice for L (the size of the test sample) in this case is
of the form k N, with k E [0,1] such that the two penalization terms of
Eq. (6) are balanced.

Remark. - Although the K-L risk is interesting in itself and has been
customarily used for classification tree construction (through "local en-

tropy minimization", see, e.g., [1,2]), one may be legitimately interested
by the true classification error of the estimator. A thorough discussion on
a precise control of this error is beyond the scope of this paper; we simply
recall some basic inequalities allowing to control the classification error
through the K-L risk.

Let us forget for a moment the conditioning with respect to X and
let P be a probability distribution on y = {0,...,c}. If P is the

"true" distribution, the best classification rule is to predict the class
of highest probability. Let P1l = maxi P (i ), then the lowest attainable

average classification error is L* = 1 - P*. Now suppose we have some

. 

estimate Q of P and predict the class a = arg maxi 6(0; the average
classification error for this rule is L ( Q) = 1 - P (a) . Then the following
elementary inequalities hold:

The first inequality can be found in [9] and the second one, for

example, in [8], p. 300.
Now if me make this reasoning conditional to some X, taking the

expectation over X of the above quantities we get (somewhat informally)

Using the bounds derived for the K-L distance, we can thus obtain a
coarse upper bound for the difference between the lassification. error

obtained with the estimator Q(Y I X) and the optimal average error
EL*(X).

Vol. 35, n° 6-1999. 
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4. EXACT COMPUTATION FOR A FIXED-DESIGN TREE

In this section we will assume that there is actually no choice in the
question to be asked at each internal node of the model tree. In this case
we will speak of a "fixed-design" tree model; the set of models is then
the set of all complete subtrees of the maximal complete binary tree of
depth d denoted by T. The most classical example for that is a "context
tree" model where X is a binary string of length d and all nodes at depth
r are labeled with the question "what is the rth bit of X?". Recall that
since we are dealing with a discrete space y, the developed formula for
the progressive mixture estimator is given by Eq. (2).
We will take for prior 1T the distribution of the genealogy tree of a

branching process of parameter p stopped at depth d, meaning that every
node of the tree will have two sons with probability p or will be a terminal
node with probability 1 - p, except for the nodes at depth d which are
always terminal. In this framework we can use an efficient algorithm
found by Willems, Shtarkov and Tj alkens [ 11 ] for universal coding using
weighted context trees to compute a sum of the form

Namely, let us define for every node (internal or terminal) s of T
the counters ns, bs for i = 0,..., c containing the number of examples
xk of class i whose "path" passes through node s (i.e., for which s is
an ancestor of or is equal to T(xk)), respectively, for the estimation set
E = and the truncated test set 

where ~ means "to be an ancestor of or to be equal to".
Let us now define the local (Laplace) estimator at node s (estimated

using E, and applied to the set if1):

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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(note that any other local estimator could actually be taken here instead
of the Laplace estimator; this is only for the sake of simplicity and
coherence with the previous section).
By backward induction on the depth of the nodes s E T we build the

quantities

(we recall that s 0 and s 1 are the two sons of the node s ) .
It has been proved in [11] ] that with this construction

To compute all the terms of the Cesaro sum defining the progressive
estimator, we have to perform 2L such sums, but having performed one
sum the next one is obtained only by adding an observation (Xi, Yi);
so it is sufficient to update the calculations for the counters and a (s)
along the branch it follows, giving rise to d computations. However, to
determine completely the distribution Qn we have to consider every 2d
possibilities for T(xl ) (that is, it can be any terminal node of T). In
conclusion the complexity of the algorithm is of order d2d N; this is to
be compared to the number of models considered which is greater than
22d_ ~ .

It has to be noted that the form of the prior 1f is crucial in order
this algorithm to be used (namely, the principle is that it allows a
nice factorization of Eq. (7)). However, we can make a straightforward
extension to a more general set of priors by allowing the branching
parameter p to depend on the node s considered in the tree, in which
case one has just to replace the constant p by the the local branching
parameter ps in Eq. (8). This set of priors is large enough to allow
a wide range of flexibility, for example, one can choose to give less
a priori weight to "shallow" trees which we expect not to be so

relevant, by taking Ps close to 1 for those nodes s that are close to the
root..

Vol. 35, n° 6-1999.
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5. DATA-DEPENDENT SCALING FOR CONTINUOUS-VALUED
OBSERVATIONS

In this section we will consider the case when X takes its values in

JRP, where each coordinate corresponds to a "feature" of the observation.
Denoting by xk the kth coordinate of x, we will restrict ourselves to
questions of the form "x k  a ?" depending on k and a. We can thus
represent all possible questions by couples (k, a) E { 1, ... , p } x R. In
principle it would be possible to discretize the values taken by a over
R, for instance by restricting a E Q, in order to get a countable set Q
of questions. If we know nothing about the range of values taken by x
however, it seems clear that choosing some a priori distribution on Q
would give quite bad results in pratice unless we have a huge number of
examples.
Hence we propose to modify slightly the construction of Catoni’s

estimator by letting the prior depend on the data. A model is now a triplet
m = (T, KT , AT) where T is a tree structure, and KT, AT are families
of integers and real numbers, respectively, both indexed by the internal
nodes of T. A quite natural way to define a distribution on the set of
models M is to choose a distribution on the tree structure T, then on

KT given T, then on AT given ( T , KT ) . In the sequel we will denote by
r = (T, KT) the tree with its internal nodes labeled with the "type" of
question to ask (i.e., on which coordinate of X the question should be
asked). ..

In our case we will choose the two first distributions in a deterministic

(data-independent) way which we will denote by 7r(T). Now for the last
one we notice that in fact the value of the estimator I Xl, zf) .

depends only on the statistic ~(~i),..., m (xn ) , that is, on the way the
sample xf is "split" across the tree. In other words, we can group
the possible values of A T into statistically (with regard to the sample)
equivalent sets of questions, corresponding to the different possible
splittings of the sample xf (a "splitting" is here a mapping from the set

= 1,..., N } to the set 9r of the leaves of the tree r). Let 0 t (x 1 )
be the set of all such possible splittings when A T varies in What

we propose is simply to give equal weight to each one of these splittings.
We thus define the data-dependent mixture probability

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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where denotes the common value of the estimators Qm for the tree
r and the splitting a .

It is important to note here that with this definition, the value of the
mixture probability on a single point still depends on the
whole X -sample xf, since the data-dependent prior still depends on the
number of different ways we can split the entire X -sample, and that is
why the conditioning will always involve xf . (Recall that on the other
hand, the dependency of with respect to the "estimation" examples
ranging from L + 1 to N, is denoted by the superscript E.)
_ We can then define the data-dependent progressive mixture estimator
Qn by Eq. ( 1 ) just replacing with and introducing the suitable
modification as for the conditioning, that is:

We now give a result similar to Theorem 1:

THEOREM 3. - With the above definitions, the progressive mixture
estimator with data-dependent prior Qz satisfies, for any exchangeable
probability distribution PN,

- 

_ _ ~ _ / 
- 

,

where |~m| denotes the number of terminal nodes of the tree model m.

If we choose for the estimators Qm the same conditional Laplace esti-
mators as in the previous section, then using Theorem 2 we immediately
deduce

COROLLARY 2. - Under the same hypotheses the estimator Qn satis-
fies

Vol. 35, n° 6-1999.



808 G.BLANCHARD

where Mm,em is the conditional multivariate distribution associated with
the tree model m and the set of parameters defined in Section 3.

Proof of Theorem 3. - We can apply the same first steps as in the proof
of Theorem 1 (however, in this case, since we are dealing with discrete
distributions, we can skip the considerations about relative densities).
Namely, let m be a given model, we want to upper-bound the quantity

where the first inequality follows from the concavity of the logarithm,
the following equality is obtained by swapping the role of (Xi, Fi) and

using the exchangeability of PN (replacing (X L+1, YL+.l )
by (Xi, Fi) if necessary), and the last one by the chain rule.

Finally the following inequality holds:

It can be derived in the following way: for our fixed model m = (r, AT)
there exists a splitting ffa which separates the data exactly in
the same way as does the tree model m . Thus

and keeping only the corresponding term in the sum defining as in

the proof of Theorem 1, we get the desired inequality.
Now the sample reaching an internal node s is at most of size N and

thus can be split at most in N + 1 ways at this node since we only make
use of order statistics for a certain coordinate. Thus

where 1 int(m) I, denotes the number of internal nodes of the model tree m ;
but since for a complete binary tree |~m| = |int(m) |+1;
thus we get to the desired conclusion. D

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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This result can be enlarged in several ways. First, one can notice that
we can easily extend this result in a more general framework. Namely,
assume we have a possibly uncountable family of models .M, but that
every model can be written in the from m = (r, hr) where r takes its
values in some countable set. In the same way as above, we can choose
a fixed prior distribution for T and a data-dependent distribution for

grouping the values of kr into statistically equivalent sets to which
we assign an equal weight. We can then apply the same reasoning and
the main remaining point is to get a bound for EPN log [ A~ (x~ ) I. For
instance, if instead of questions of the type "xk  a ?" we choose at each

node a set of questions of Vapnik-Cervonenkis dimension bounded by
D, then we easily come to

where C is a real constant.

Secondly, in practice it seems uneasy to compute Instead of

a uniform distribution on all the global possible splittings, we would like
to take the distribution given by the product of the uniform distributions
on all local possible splits at each node. To state it in a more formal
(and probably clearer) way, let us denote by a a given partitioning of the
sample over the tree T and by 1 ~ the number of examples reaching an
internal node s using the partitioning a . If we choose uniformly at each
internal node between the different possible splits, then the new
distribution cv on the possible partitionings is given by

The advantage of this distribution is that it can be computed easily in a
recursive way for every or. Furthermore, the bound of Theorem 3 still
holds true since

Finally, notice that the bound in Theorem 3 is not as’ good as in
Theorem 1, namely, there is a term of order log ( N ) / L in the new

bound whereas the penalty term was only of order 1 / L in Theorem 1.
If we take L = kN, 0  k  1, this means that if the real conditional
distribution 1 Xf) is in the model (that is, is of the form

Vol. 35, n° 6-1999.
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the modified estimator converges towards it at a rate of order

log N/N, to be compared with 1/ N in Theorem 1. This is because
we dropped the hypothesis of a countable family of models. However,
in the particular case considered in this section, namely, conditional
multivariate distributions Mm,em depending on the tree model m and
the set of parameters the following theorem states that this rate of
convergence is actually the minimax rate within the set of models, and
therefore cannot be significantly improved.
THEOREM 4. - Assume X is a real random variable drawn according

to the uniform distribution U in [0, 1 ], then with the set of tree models A4
defined in this section, there exists a real constant C such that for any
estimator Q(y ~ x, zf) depending of a sample of size N, the following
lower bound holds true for sufficiently big N :

where the expectation on ZN is taken with respect to the product
distribution I (in other words, when ZN is

drawn i.i.d. according to U(dX).Mm,em (dY X ) ).
To prove this theorem we will make use of the following version of

Fano’s lemma (see, e.g. [5], Corollary 2.9):

LEMMA 1. - Let P be a finite set of probability distributions on a
measurable space x such that IPI = J &#x3E; 4, F a function
taking its values in some metric space (F, d). Assume there exist positive
constants K, y, t such that

then for any function 03A6:X ~ F and any p &#x3E; 0 the following lower
bound holds
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Proof of Theorem 4. - We can restrict ourselves to the case c = 1 since
the minimax rate of convergence can only increase with c. Thus the

distributions we are dealing with are conditional Bernoulli, which we
will denote by Bm, em (dY X ) .
We will apply Fano’s lemma in the following framework: as the metric

space F we will take the set of all distributions on [0,1] x f 0, 1} and for
d the Hellinger distance on E. Below we will construct the set P as a
finite subset of the the set of product probability distributions

on ([0,1] x (0, 1})N. A natural function 03C8:D ~ F is 03C8:P~N ~ P

and any estimator depending on a sample of size N is indeed a function
~ : ([0, 1] x {O, 1 ))" -+ F.

Let us choose a, ~6 E [0,1] which will remain fixed for the rest of the
proof. Let us then consider the conditional probability of Y given by a
Bernoulli distribution of parameter ~6 if X belongs to some subinterval
I C [0, 1 ] of length r~, and of parameter a if X does not belong to I. This
distribution clearly belongs to our model since it can be represented as a
tree with two questions corresponding to the endpoints of I . If p ®N
are Nth direct products of two such distributions on (X, Y) (drawing X
uniformly on [0,1]), obtained with two disjoint intervals Ii and Iz of the
same length ~, then we get easily

Now we can find as many as J = L 1 J such disjoint intervals in [0,1] ]
and take for P the set of distributions thus obtained. Taking

the hypotheses of Fano’s lemma are now satisfied for K = 2 log N,
y = 1 /4, t = C1logN/N for a constant 

’

and N big enough so that (iii) is satisfied.
This yields the desired result if we choose p = 2 in the inequality

obtained, and finally apply the well-known inequality H ( P, ()) ~
2d2(P, Q) as a final step. D
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Remark. - Note that the only probability distributions for Y used in
this proof are Bernoulli with parameter a or f3 which can be arbitrarily
fixed. Therefore the extra log N factor in the rate of convergence does not
come from the "pathologic" behavior of the Kullback-Leibler distance
for parameter values near 0 and 1, as one might have thought at first
glance.

6. APPROXIMATE COMPUTATION USING A MONTE-CARLO
METHOD

Let us have a new look on Eq. ( 1 ) and focus our attention on one
particular term (d Yl I x1, zf) in the Cesàro sum defining QN03C0. Since
we will still be working in this section in the framework of classification
trees, the space Y is discrete and we can identify probability distributions
with their densities. Let us write

. 

. 

where WE is, from a Bayesian point of view, the a posteriori distribution
of the models given the data subset zf of the test set, when the estimation
set is fixed. We have shown in Section 4 that in the case of a fixed-design
tree, and when the prior 1f is the distribution of the genealogy tree of a
branching process with constant parameter, this sum can be recursively
computed in an efficient way.

In the general case however, the tree design is not fixed because we
have to choose between several questions at each node, and we did not
find any similar factorization for the computations. We therefore propose
to simulate the a posteriori distribution of the models using a Monte-
Carlo algorithm.

In order to do this we will need to define a reversible transition kernel

h{m, m’) on the set of models Ji4, such that the associated stationary
distribution is precisely WE. r should therefore be irreducible and acyclic
and satisfy for any m, m’ e .M: either
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or

Our goal is that at each transition of the MCMC chain there should
be as few computations as possible to perform. For that purpose we
will allow m’) # 0 only if m’ is a "neighbor" of m. We will call
m = ( T , Fr) a neighbor of m’ = ( T’, F~) if the trees T and T’ only differ
by two added or removed terminal nodes (leafs), i.e., if T’ is obtained
from T by turning one of its leafs into an internal node and adjoining
to it two leafs, or vice-versa, and if Frnr = other words, if
the questions attached to the common internal nodes of T and T’ are the
same.

As in the previous section we will construct our prior 1f in the form

Once again we will choose for the first marginal 7r(r) the probability
distribution of the genealogy tree of a branching process with a constant
parameter p C 2 , restricted (and normalized) to the set of trees of depth
less than d (this a is slightly different prior than the one considered in
Section 4, which was the distribution of a stopped branching process,
though the difference is quite negligible in practice). The advantage of
this choice is that an MCMC chain simulating this distribution can easily
be built using the following algorithm for the transitions:

~ Start at the root node, then follow the branches choosing for each
internal node you reach one of its sons with a probability of 2 , until
you reach a terminal node f.

. If f ’s brother is also a leaf, then destroy them both with probability
~, or give two sons to f with probability p ( 1 - p)/2 (unless you
are at the maximum depth d, in which case you do nothing), or do
nothing with the remaining probability.

. If f ’s brother is an internal node, then give two sons to f
with probability p ( 1 - p) /2, or do nothing with the remaining
probability.

It can readily be seen that the transition kernel thus defined on the trees
is irreducible and aperiodic and that it is reversible with respect to its
stationary distribution, which is the desired one. Again, like in Section 4,
this can be extended easily to a more general prior where the parameter
p is not a constant but depends on the node s considered (for example
Vol. 35, n° 6-1999.
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one can actually simulate the exact same distribution as in Section 4 if
wanted).
The next step is to see how to define T) . Recall that we have

in mind to construct a Markov Chain Monte Carlo, and therefore we are
interested at the first place in transition probabilities from one tree to one
of his neighbors. We thus want to compute in a simple way the ratio

when (T, FT) and (T’, F,) are neighbor labeled trees. (To be sure that
this ratio is well-defined we will assume here and for the rest of this

section that all trees have strictly positive prior probability.)
To make things clearer, let us assume that we want to perform a

transition from T to T’, where T is a subtree of T’ and that the leaf s of
T has been turned into an internal node in T’, so a new question must be
attached to s in T’. We would like to define a local rule FT ) giving
us the probability distribution of this new question given the rest of the
tree (which we will use as transition probability for the MCMC chain).
Unfortunately, the ratio (13) is not necessarily a probability distribution
on the new question, because of the different dependencies on T’ and T,
respectively, for the numerator and the denominator.

This motivates the introduction of the following definitions and

hypotheses: let us write FT -~ FT’ if T c T’ and if Fr and FT coincide
on the internal nodes of T. Let us then define the marginal

In order the ratio ( 13) to be a probability distribution, we will make the
assumption that

As a natural consequence, if we define yr as a distribution on the questions
attached to the maximal complete tree T* of depth d by =

r*) and ir’s marginal
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then by assumption ( 14) we have

Therefore any non-vanishing distribution on the questions attached to
the maximal tree T* gives rise to an associated local rule defined by

(we recall that s is the leaf of T which becomes an internal node of T’,
and fs is the question attached to node s). R is now a true conditional
distribution on the question fs .
The natural reciprocal problem to be asked now is, what are the

minimal conditions to be satisfied by a set of local rules R (that is to say,
a set of conditional distributions on the question fs to be asked at node
s given the questions asked on the internal nodes of a tree T such that
s is a leaf of T), so that there exists a distribution (FT) such that (15)
is satisfied? Obviously, a "local coherence" condition must be satisfied,
namely, take a tree T, let si and s~ be two different leafs of T ; T2, 7~
be the trees obtained by adjoining two sons to sl, and both si and ~2.

respectively; FT, Ff1, Ff2 and be sets of questions attached to these
trees such that they match on the common internal nodes of two of them,
then R must satisfy

(this means that the probability distribution of the two new questions
given the initial tree T must not depend on the order they were
constructed).
The following theorem states that this necessary condition is also

sufficient:

THEOREM 5. - Let a set local rules R be given such such that
condition (*) is satisfied for any choice of (T, s1, s2), then there exists
a distribution (FT) on the set of questions attached to the maximal tree
T * satisfying ( 15).

Proof. - This is actually quite straightforward. Let (T, FT) be a model
tree. Choose some way of building T node by node, namely a sequence
{0}=7o~ ri ~ ... ~ Tk = T and a sequence =
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FT such that for every i  k, (7§ , FTi ) and (7}+i, are neighbors
(thus FTl is necessarily the set of questions FT restricted to the internal
nodes of We will call such a sequence an construction path for T.
Necessarily ~z (FT) should be defined the following way:

where si is of course the leaf of turned into an internal node of 7~,
and fsi the question attached to si . .. 

’

It is clear now that we should only make sure that this definition does
not depend on the path we chose. Obviously the construction paths are in
natural bij ection with the set of permutations 6 = (so = ~, s 1, ..., sn ) of
all the internal nodes of T, satisfying the property that for any i 
is not an ancestor of si (i.e., 6 is compatible with the order "be ancestor
of"). Such a permutation will be called admissible and gives us the order
of construction of T node by node. Now relation (*) tells us that if si
is not the father of swapping them in the permutation does not
change the value of jr(Fr) above defined (and the new permutation is
still admissible). We will say that the new permutation is equivalent to
the first one.

Now it is easy to see that actually all admissible permutations are
equivalent using a simple recursion on the number of internal nodes of
T. Namely, let 61 1 and 62 be two admissible permutations. Let s* be
an internal node of T such that his two sons are both leafs. Thus no

internal node is a descendant of s* and therefore we can swap s* in 61 1
and 62 successively with all the nodes built after him. We thus obtain
two admissible permutations 6~ and 6~, respectively, equivalent to 61 1
and 62 and such that s* is the last node to be built in both cases. We
can thus proceed recursively, since the case of a single internal node is
obvious. D

In particular, it is clear that we can choose any local rule R such that
the probability distribution of the question at a given node only depends
on his ancestors. In this case (*) is obviously satisfied.
We now study the last factor in the right side of (12). Let mi 1 =

(Tl, and m2 = (T2, be two neighbor models such that Tl ç T2,
u is the leaf of Tl being turned into an internal node of T2, and fu is the
new question attached to u. As in Section 4 we define for any internal or
terminal node s the counters = 0,..., c, as the number of examples
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of the subsample zf that cross or reach node s and are of class i . Since

the estimators (~(’ ! ’) are conditional multivariate distributions whose
vector parameters 03B8s at each leaf s are estimated using the estimation set

(here we do not make any hypothesis on the way these parameters
are estimated, it can be a Laplace estimator or any other estimator), we
get

Here u0 and u l denote of course the two sons of u, and is the i th

coordinate of Os. Thus this factor only depends on the counters at nodes
u , u0, u I and is therefore easy to compute.
To put it together, here is an algorithmic description of an iteration of

our MCMC algorithm for the step concerning the transition towards a
new model:

( 1 ) Choose a leaf of the current model m and choose whether you
adjoin to it two new sons, or destroy it and his brother, or do

nothing, according to the algorithm already described sooner.
(2) If you chose to delete two leafs, denote by u their father, then

accept the new truncated model m’ with probability K (m’, u, 
1.

(3) If you chose to add two leafs, denote by u the happy father of the
twins, choose a question fu to be attached to it according to the
local distribution R, then accept the new model m’ with probability

It is now clear that the transition kernel m’) thus defined satisfies
(12). Furthermore, the number of counters to be updated at each step is
of most c + 1 (in the case you create two new leafs).
What is left is now to perform the Cesaro sum of the Bayesian

estimators while the test set is growing. To do this, we suggest that the
examples could actually be introduced progressively while the Monte-
Carlo chain is running, so that there is the same number of steps
performed in the chain for each new example introduced. However, one
could think of other possible methods to achieve a tradeoff between
accuracy and computation complexity; we are planning to perform
several tests using various methods in the next future.
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7. DISCUSSION

The point of view we adopted in this paper is to give some basic
theoretical results about the progressive mixture estimator used in

regression estimation. Actually this estimator is a modification of the
classical Bayesian analysis, for which we divide the sample into two
subsets and perform a Cesaro sum over Bayesian mixtures of available
estimators as we let the size ,of the "test set" grow. Restricting our
attention on the case of regression trees, we then proposed that the
computation of the mixture could be approximated by a MCMC chain,
which is quite standard in Bayesian analysis.
We want to discuss here the relation of this work with that of Geman

and Amit [1,2] who put forward, in a written character recognition
problem, the construction of a classification tree using a local entropy
minimization rule. More precisely, the basic algorithm they propose is
to grow a tree by selecting at each node the question which reduces the
most the empirical entropy at this node (i.e., a local maximum likelihood
selection), stopping the construction when reaching a fixed maximum
depth or a minimum size of the sample at a given node. (In practice, the
optimization is in fact performed on a randomly selected small subset
of the available set of questions at each node.) We want to point out
the similarity of this procedure with ours: in an informal sense the local
entropy reduction procedure can be compared with a MCMC chain (or, to
fit the comparison better, a Gibbs sampler) at "zero temperature". In our
algorithm the number of examples in the test set plays the role of inverse
temperature (as the bigger the test set is, the less likely we are to select
questions which are locally "irrelevant"). In this regard, introducing the
test examples progressively can be seen as a kind of simulated annealing
algorithm.
We hope that allowing more liberty in the search in the tree space can

lead to visit trees achieving a better performance. Moreover, the a priori
distribution acts here as a penalty over the complexity of the models, and
thus as a "natural" stopping rule included in the algorithm. However as
what we want here is to compute a sum over the models by simulating
their a posteriori distribution, and not merely to select one of them, the
complexity of the computation will of course be much higher than for
the local optimization algorithm. We are currently trying to find some
answers to this problem; one could think for example of performing a
MCMC trajectory once and for all, and then just re-use it to estimate

every new example.
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We would also like to make some reference to Chipman et al.’s work
[7], of which we became aware only recently, which also extensively
presents the use of a MCMC algorithm to explore the space of tree
models with a Bayesian prior. There is a strong similarity between their
procedure and ours; we therefore want to highlight a few points on which
we hope our point of view might be relevant. First we started from a
theoretical point of view, deriving strong upper bounds for the risk of
the progressive mixture estimator in a general framework and for the
particular case of regression trees. This has two main consequences on
the design of our algorithm: first, our goal is really to compute a sum,
and not to select a single tree as that was the case in [7]. In this regard
we follow the Bayesian principle more strictly. It is relevant to note that
Catoni [6] proved on a simple example that model selection may behave
worse than model mixture. Besides, Geman and Amit also show that

performance turns out to be much better when they perform a weighted
sum over several different trees obtained with the "randomized" version

of the local entropy reduction algorithm.
Secondly, because of our construction we divide our sample into two

sets and suggest to introduce the test examples progressively. We believe
that this could give more liberty in the movements of the MCMC chain
at the beginning like in a simulated annealing algorithm (see above). On
the other hand, the MCMC implementation we exposed here is still rough
and quite sketchy; practical evidence in [7] strongly suggests that allow-
ing more liberty in the chain transitions (allowing to change the question
asked at an internal node; swapping the questions of two neighbor nodes)
significantly improves the performance of the algorithm. We plan to make
more practical experiments in this direction in the next future.
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