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ABSTRACT. - We prove a new exponential inequality for the Kaplan-
Meier estimator of a distribution function in a right censored data model.
This inequality is of the same type as the Dvoretzky-Kiefer-Wolfowitz
inequality for the empirical distribution function in the non-censored
case. Our approach is based on Duhamel equation which allows to use
empirical process theory. @ Elsevier, Paris
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RESUME. - Nous prouvons une nouvelle inegalite exponentielle pour
l’estimateur de Kaplan-Meier d’une fonction de repartition dans un
modele de donnees censurees a droite. Cette inegalite est du meme
type que 1’ inegalite de Dvoretzky-Kiefer-Wolfowitz pour la fonction
de repartition empirique dans le cas non censure. Notre approche est
basee sur l’équation de Duhamel qui nous permet d’utiliser la theorie
des processus empiriques. © Elsevier, Paris
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736 D. BITOUZE ET AL.

1. INTRODUCTION

Let Zi, Z2 , ... , Zn,... be a sequence of independent random variables
with common distribution function F on the real line. The properties of
the empirical distribution function Fn based on the sample Z 1, ..., Zn
as an estimator of F have been investigated for a long time. In

particular, Donsker’s theorem, see Donsker [7], which ensures the weak
convergence of F) towards B° o F where B° is a Brownian
bridge, is an essential tool for studying the asymptotic behaviour of
several statistics (the Kolmogorov-Smimov or Von Mises statistics, for
example). As a matter of fact, this limit theorem may be completed by
a sharp nonasymptotic bound which is due to Dvoretzky, Kiefer, and
Wolfowitz (DKW) [ 10] :

Moreover, Massart [ 19] proved that C may be taken as 2 which makes
the use of this bound relevant for small samples.
The estimator Fn may be viewed as a NonParametric Maximum

Likelihood Estimator (NPMLE) of F. In the random censorship model,
the NPMLE of F can be also explicitly computed, it is the celebrated

Kaplan-Meier estimator introduced by Kaplan and Meier [18]. Our aim
in this paper is to prove an exponential bound for the Kaplan-Meier
estimator which is of the same type as the DKW inequality.

Let us first describe the right censored data model. Let X 1, ... , X n , ...
and Yi , ... , Yn,... be independent sequences of independent and iden-
tically distributed nonnegative random variables with distribution func-
tions F and G respectively. One observes Z1, ... , Zn such that for
1~’~Z,=(W~) where

In survival analysis, the Xi ’s represent lifetimes, and the Yi’s censoring
times. The Kaplan-Meier estimator Fn of the distribution function F is
defined by

where ri is the rank of ( Wi , 1 - 6i ) in the set { ( W~ , 1 - 3 j ), j E { 1, ... ,
n } } . The ordering is lexicographical, this means that in the case of ties
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737A DKW INEQUALITY

among the set { Wi , 1 ~ ~ n }, death observations (8i = 1 ) come before
censored observations (8i = 0). Note that in the complete data model Fn
reduces to the empirical distribution function.
Many efforts have been made to extend known results on the empirical

distribution function to the Kaplan-Meier estimator and there is a huge
literature on the topic. Donsker’s theorem (see Donsker [7]) has been
extended in various directions. The weak convergence of the process

F) to a Gaussian process was established by Breslow and
Crowley [5] on a fixed interval ] - oo, ~] with w  r, where r is defined

by

(with the convention that inf0 = -I-oo). Gill [12] proved the weak
convergence of a conveniently weighted version of the Kaplan-Meier
process on the whole interval ] - oo, r].

Concerning exponential bounds, Dinwoodie [6] has established a

large deviation principle for censored data which allows to study the
asymptotic behaviour of 

’

when n is large and 8 is fixed. Unfortunately, this limit theorem does not
provide any information about the moderate deviations F ~ ( ~
and therefore, a DKW type inequality cannot be deduced from such a
result.

Up to our knowledge, the first nonasymptotic exponential bound for
the Kaplan-Meier estimator is due to Foldes and Rejto [11]. They proved
that if 03C9  03C4:

where C and 17 are absolute constants.
The main result of this paper improves on the preceding bound of

Földes and Rejtö and may be stated as follows:

THEOREM 1. - Let Fn be the Kaplan-Meier estimator of the distrib-
ution function F. There exists an absolute constant C such that, for any
positive h,

Vol. 35, n° 6-1999.



738 D. BITOUZE ET AL.

It is worth noticing that, for censored data, the Kaplan-Meier estimator
may fail to be uniformly consistent on the whole line, this happens
whenever = 1 and F’(r)  1 (see Gill [13]). The weighting
factor 1 - G that we use allows to control the uniform deviation on
the whole line almost as well as in the complete data model. One can
wonder whether our bound is sharp or not. The asymptotic behaviour of
the left hand side of inequality ( 1 ) is well known in the non censored case.
Provided that F is continuous, it converges as n goes to infinity towards

where B° is a Brownian bridge. Since 6(~) 2014 2e ~, as À goes to
infinity, it means that Massart’s upper bound 2e-2À2 is optimal and that,
in the censored case, we miss this bound by a factor 1.25 e~~ . Therefore,
our bound has the right exponential decay with respect to À 2. Of course,
it would be desirable to compute C, but unfortunately, our techniques are
not sharp enough to do that efficiently.
We shall in fact prove the following slightly better inequality than ( 1 ):

from which one can straightforwardly derive a bounded Law of Iterated
Logarithm (LIL):

Again this almost sure upper. bound is known to be optimal in the non
censored case. This result seems to be new. Gu and Lai [16] actually
proved a functional LIL which is apparently stronger, but since this result
does not hold on the whole line it does not imply (2).
To prove Theorem 1, we follow the idea that Van der Laan has

developed in his Thesis [25]. He noticed that, for some indirectly
observed models, the NPMLE Fn of a distribution function F satisfies
an identity of the type:

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



739A DKW INEQUALITY

where vn is a centered and normalized empirical measure and 7~
denotes some influence function for the (sub-probability) distribution
function I~ . He showed that ~ asymptotics for Fn can be derived from
this implicit equation provided that the class of influence functions 
has the Donsker property when K and t vary.

Such an identity .indeed holds for the Kaplan-Meier estimator and
follows from Duhamel equation. Entropy with bracketing computations
allows as Duhamel equation to derive Theorem 1 from a nonasymptotic
exponential bound for empirical processes which is of independent
interest.
The paper is organized as follows: in Section 2, we state nonasymptotic

and asymptotic bounds for the Kaplan-Meier estimator, Section 3 is

devoted to a general exponential inequality for the empirical process. The
main proofs are postponed to Section 4.

2. EXPONENTIAL INEQUALITY AND ASYMPTOTIC BOUNDS
FOR THE KAPLAN-MEIER ESTIMATOR

2.1. An exponential inequality

In this section, we consider the right censored data model as defined in
Section 1. The Kaplan-Meier estimator of the distribution of interest F
is denoted by Fn and G denotes the distribution function of the censoring
times... ,

We normalize the Kaplan-Meier process where

G- is the left-continuous version of G. This allows us to formulate an

exponential inequality for the deviation of the supremum of the process
( 1 - G - ) ( Fn - F) on the .whole line. ’We shall in fact prove a slightly
stronger result than Theorem 1 which. has the advantage to readily imply
a bounded LIL.

THEOREM 2. - The following inequality holds for the Kaplan-Meier
estimator Fn. For any ~, &#x3E; 0,

where C is an absolute constant.

Remark 1. - Since 1- G fi 1- G-, the same result holds if we replace
G- by G.

Vol. 35, n° 6-1999.



740 D. BITOUZE ET AL.

One gets as a corollary of Theorem 2:

COROLLARY 1. - The sequence of Kaplan-Meier estimators
satisfies the bounded law of the iterated logarithm:

Remark 2. - In the complete data model, inequality (4) is sharp since
it is known that

This result is due to Smimov (see Shorack and Wellner [21]).

Remark 3. - Strong consistency results for the Kaplan-Meier estima-
tor can be immediately derived from the bounded LIL. As a matter of
fact, provided that G"(r)  1, we easily get that

If G (r) = 1 and F - ( i ) = 1, the strong consistency can be derived
easily from the strong consistency in the case G’"(r)  1 via some

monotonicity argument as pointed out by Gill [ 13 ] . We recover here that
the uniform consistency of the Kaplan-Meier estimator holds on [0, r]
provided that condition (5) is fulfilled: 

’

This result is due to Stute and Wang [23] who proved it by using
martingale technics. Note that Stute and Wang [23] have furthermore
investigated the case where condition (5) does not hold. They proved
that in this case Fn is not consistent since it converges to a limit which is
different from F. In this situation, one needs to modify the Kaplan-Meier
estimator to get a consistent estimator (see Gill [ 13]).

2.2. An asymptotic upper bound
’ 

We now state an asymptotic upper bound which allows to understand
how sharp is our DKW type inequality for the Kaplan-Meier estimator.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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THEOREM 3. - Let Fn be the Kaplan-Meier estimator of F, and let
B° be a Brownian bridge. For any positive h,

Remark 4. - Inequality (6) ensures that, asymptotically, the uniform
deviation of the conveniently weighted Kaplan-Meier process is stochas-
tically smaller than the standard Kolmogorov-Smimov limiting distribu-
tion. We do not know whether the inequality

holds or not for the Kaplan-Meier estimator. Indeed, this is a natural
question since on the one hand we know from (6) that it holds

asymptotically and on the other hand that it is valid for all n in the
non censored case (see Massart [19]). Inequality ( 1 ) does not of course
imply (7) but can be considered as a first step towards such a result.

Proof - The proof of Theorem 3 follows from well known arguments.
Let T = it, G- (t)  1 }, let C be the continuous, nondecreasing and
nonnegative function .

and let K(t) = + C(t)) if C(t)  +00 and K(t) = 1 if

C(~) == +00. Combining the weak convergence result towards a Gaussian
process given by Gill [ 14], p. 173, with the representation of that process
from a Brownian bridge given by Gill [12], we have that the process

converges towards ((1 - F)(1 - G)/(1 - 
in D (T ) . Therefore,

and inequality (6) follows from the fact that ( 1 - G) ( 1 - F) / ( 1 -
K)  1. D

Vol. 35, n° 6-1999.
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2.3. Connection with empirical processes: van der Laan’s identity

A connection between the Kaplan-Meier process Fn - F and the
empirical process Pn - P based on the variables Zi = ( Wi , 6i) is given
by van der Laan’s identity (van der Laan [26]). In our particular case,
this identity is equivalent to the well-known Duhamel equation for the
univariate product integral (van der Laan [26], p. 14, and Gill and

Johansen [ 15], Theorem 6). The version presented below is to be found in
Gill [ 14], p. 172. Let IK,x be the influence function defined, for any [0,1]
valued and nondecreasing function I~ , and for any x such that G - (x )  1,

by

where 1~A denotes the indicator function of any set A. Moreover, IK,x == 0
if G- (x) = 1..

THEOREM 4 (van der Laan). - For any x E JR .

Remark 5. - In the definition of the influence function, it may happen
that some division by 0 occurs. We just refer to Gill [ 14], p. 128, where
it is shown that the convention 0/0 equals 1 is adequate.

Denoting by lC the class of [0,1] valued and non decreasing functions
onR, and by I the set of functions I = {IK,x, K E J’C, x E we deduce

from identity (8) that

So that we are in a position to derive Theorem 2 from general exponential
bounds for empirical processes involving metric properties of Y. The

purpose of the next section is precisely to establish such bounds.

3. EXPONENTIAL BOUNDS FOR EMPIRICAL PROCESSES

Let Zl , ... , Zn be n independent identically distributed random vari-
ables with distribution P on some measurable space (Z, C). Let Pn de-

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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note the empirical probability measure based upon ( Z 1, ... , Zn ) . For
p E [ 1, oo [, we denote by the set of measurable real valued func-

tions f on Z such that is integrable with respect to P. We set
vn = P). This means that

whenever (P). Moreover, for f E we denote by Varp( f)
the quantity j f 2 dP - ( f f dP)2. We shall deal with L2-entropy with
bracketing as defined below.

DEFINITION 1. - Let p be some nonnegative measure. Given ~ &#x3E; 0, a
bracket with L2( )-diameter £ is defined from a pair of functions f, g in

with f  g and = £ as

Let F C Denoting by N(e) the minimum cardanalaty of a covering
of0 by a finite set of brackets with diameter not larger than £, the 
entropy with bracketing of0 is defined as the function E r+ ln(N(e) V e).

The notion of entropy with bracketing has been introduced by Dud-
ley [9] and the importance of L2-entropy with bracketing has been
pointed out by Ossiander [20]. It refines on L~-entropy and is especially
well suited for studying classes of functions with uniformly bounded vari-
ations for which, of course, L~-entropy is irrelevant. The control of the
entropy with bracketing of the class of influence functions .~ introduced
in Section 2, will be precisely derived from the entropy computation of
the class of functions with uniformly bounded variations, due to van de
Geer [24].

LEMMA 1 (van de Geer). - Let be some nonnegative bounded
measure on some interval U C R. Given some positive number M, the
L2( )-entropy with bracketing H of the class of functions defined on U
with variation bounded by M satisfies the inequality,

for any ~ &#x3E; 0, where y is some absolute constant.

We now provide some general exponential bounds for empirical
processes which are refinements of related bounds in Birge and Mas-

Vol. 35, n° 6-1999.
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sart [2]. As compared to their Proposition 3, the main novelty here is
that we provide a Hoeffding type inequality with an explicit optimal sub-
Gaussian rate of decay. The proof uses the adaptive truncation proce-
dure introduced by Bass [ 1 ] for partial sum processes and Ossiander [20]
for empirical processes. Throughout the sequel, P* will denote the outer
probability measure associated with P (we recall that, generally speaking,
supf~F|03BDn(f) | is not necessarily measurable).

THEOREM 5. - Let F be a class of measurable functions defined on
Z. We assume that for some constants m and M

Let a = M - m. Then, a2/4 for any f in 0. Let H denote the
L2(P)-entropy with bracketing of0. Assume that H1/2 is integrable at 0,
and let

for any positive t. Let £0 E ]0, 1 [, and a be some positive number such
that a~ 2  a2 /4. For any positive t and h, we set

= t + 1 - 1 + 2t and

Then, for any positive h,

where C is an absolute constant, and h can be taken as h 1 or h2.

We first deduce from Theorem 5 a sharp Hoeffding type inequality
taking benefit of a special shape for the entropy function. Because of
the entropy computation by van de Geer [24], this inequality will imply
Theorem 2.

COROLLARY 2. - Let .~ be a class of real functions defined on ,~
and satisfying condition (9). Suppose the L2(P)-entropy with bracketing

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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of0, denoted with H, satisfies H(£) ~ y/e for some y in R+. Then for
any positive real number À:

where C is an absolute constant and a = M - m.

Since the function 1/r defined in Theorem 5 satisfies 1/r~ (t) ~ t2 ,
one can also straightforwardly get from Theorem 5 a Bernstein type
inequality. Although we shall not present here applications of this bound,
it should be noticed that it can be used to derive local properties of the
Kaplan-Meier estimator in the spirit of B itouze’s Thesis [4j .

COROLLARY 3. - Let 0 be a class of real functions defined on Z
such that condition (9) holds. Let H be the L2(P)-entropy with bracketing
of0. We assume that is integrable at 0 and we define

Let () E ]0, 1 ]. The following inequality holds for any positive a such that

supf~F VarP(f)  03C32  a2/4 and for any positive À:

where C is an absolute constant and

4. PROOFS

4.1. Proof of Theorem 2

Identity (8) ensures that

Vol. 35, n° 6-1999.



746 D. BITOUZE ET AL.

where

and J( is the class of [0,1] valued and non decreasing functions on R.
Therefore, inequality (3) may be derived from Corollary 2 applied with
the class I. In order to apply Corollary 2, we have to verify that, for
some constants m and M, any f in I satisfies m  f C M and we have
to evaluate the IL2 (P) -entropy with bracketing of l.

Since vn is centered, we may add a constant to the function f without
affecting Vn (f). More precisely, the following equality is equivalent
to (8): for any x in R,

where

may be written

We now consider the class of functions J = {JK,x, K E JC, x E R) . This
modification will make easier the evaluations of the constants m and M.

Indeed, noticing that on ] - oo, x ] , both (1 - K)(x)/(1 - K ) and ( 1 -
G - ) (x ) / ( 1 - G - ) belong to [0,1] (since K and G - are nondecreasing
maps), one can verify that 0 ~ 1 for any JK,x in J.
We now use the following lemma whose proof is postponed to

Appendix A. This result derives from Lemma 1 due to van de Geer [24].
LEMMA 2. - For any probability measure P, the L2(P)-entropy with

bracketing of the class J satisfies H (s) x y / £, where y is an absolute
constant.

Now the proof of Theorem 2 follows immediately from Corollary 2. 0

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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4.2. Proof of the LIL (Corollary 1)

Let s be in ]0,1[ and Mk be G~) (Fk - We deduce
from Theorem 2 that, for À ~ C/(2s),

Let ~(n) = lnlnn/2 and let 9 &#x3E; 1. From the above inequality applied
to ~  1 - and À = 03B803A6(nk), we derive that

where nk is the integer part of From Borel-Cantelli lemma, we deduce
that a.s., M~  for k large enough (k &#x3E; k*). Let now n
be large enough such that nk- for some k &#x3E; k*. We have

so since, as easily -- 1 as n - +0oo, we deduce
that for any 0~ &#x3E; 1, a. s.  ()’ for n large enough. This leads to

This concludes the proof of inequality (4).

4.3. Proof of Theorem 5

We set

We shall prove exponential inequality ( 10) by controlling 
The required two sided inequality will follow by considering the class
-0 instead of .~ and multiplying the one sided probability bound by 2.

4.3.1. Notations
We first introduce some notations. Let k be fixed in N and sk be 

for any k in N.

Vol. 35, n° 6-1999.
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We consider a covering of .~’ by a set Nck of brackets with diameter not
larger than sk . We assume that Nck has cardinality not larger than eH(Sk).
For any f in 0, we denote by a bracket of Nck such that 
f  and we denote by Ok ( f ) the function For any function

g E L~(P), we shall denote the quantity P 1 /2 (g 2 ) = 
Let be f U A M, where A denotes the minimum, so that the

function f - is nonpositive (recall that m  f  M for any f
in F).
We consider some decreasing sequence of positive real numbers

and, for any f in 0, we set i(f) = min{k E N, &#x3E; uk } /B p
where p has to be chosen in N.

We denote by Id the identity operator.

4.3.2. Decomposition
We shall use the following decomposition given in Doukhan et al. [8],

p. 412. 
°

Let A be a real number. The following inequality derives from the
previous identity.

where, assuming that ~=1 ~ ~ A,

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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The ~ ’s will be chosen later on.

4.3.3. Controls of Pi to P6
We shall often use the following two arguments.

ARGUMENT 1. - For any j in N and any set A,

ARGUMENT 2 (Markov’s inequality). - For any nonnegative random
variable Z and any positive real number ç,

Control of In order to control we shall use essentially
Hoeffding’s inequality and a special version of Bernstein’s inequality
due to Birge and Massart [3]. These inequalities provide controls

in probability for the partial sum Sn of independent and centered
variables. In fact, since they rely on Chernoff’s bound, it follows from
classical martingale arguments (mainly Doob’s inequality) that they
remain valid for Sk instead of Sn. The resulting inequalities are
stated below without proof (for more details about the combination of
Chernoff’s bound and martingale arguments see for instance Shorack and
Wellner [21], pp. 444-445).

LEMMA 3. - Let !7i,..., Vn be independent random variables such

Vol. 35, n° 6-1999.
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E(Ui )). Then, for any positive À,

LEMMA 4. - Let Ul , ..., Un be independent random variables satis-
fying for some positive constants 03B4 and c and any m &#x3E; 2 the following
moment condition

Let Sk = (Ui - E ( Ui ) ), for i ~ k  n. Then, for any positive À,

where

with ~/r (t) = t -f- 1 - 1 -~ 2t. Moreover,

In what follows, we shall use Lemma 4 repeatedly in the situation where
! L~ ~&#x26; and E ( U 2 )  ~ 2 . In that case, inequality ( 12) holds with c = b / 3 .
We shall now control ]IDI- When f describes the set 0, there are at most

functions of the type 77o(/). Since each of these functions satisfies
m C M, it follows from Lemma 3 that for any ~,1 &#x3E; 0

Moreover, we note that _

and

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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Applying Lemma 4, with Ui = 77o(/)(Z,) - P(77o(/)), we obtain

where c = a/3. This implies that

where h(À) can be taken as 2~,2/a2 = h 1 (~,) or (À) = h2(~.).

Control of P2. From Argument 1, we get

and, since = 0 implies Ao(/) &#x3E; uo, we obtain by Argument 2

Setting À2 = we conclude

Control of ]ID3. From Argument 1, we get

and, by Cauchy-Schwarz inequality,

Setting À3 = we conclude

Vol. 35, n° 6-1999.
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Control of ?4. From Argument 1, we get

and, since i ( f ) = k implies Ok_ 1 ( f )  we get

Argument 2 provides us with

We deduce from the above inequality that, setting À4 = fl 

Control of From Argument 1, we get

Argument 2 provides us with

We deduce from the above inequality that, setting À5 = 

Control of IP°’6. Let

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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We have in view to use Lemma 4 to control vn ( Vk (. f )) for each k and
then sum up the resulting probability bounds to handle ?6. We can bound
from above by 2uk-1 and P(Vk(f)2) by 9 sf . Indeed,

. since i ( f ) ~ k implies A~-i(/) ~ 

. by triangular inequality and since 1 = 

Lemma 4 with c = and 8 = 3sk yields for any ~k &#x3E; 0

We now control the quantity We recall that 
.

When f varies in 0, there are at most &#x3E; functions Vk ( f ) .
Therefore, setting IHfk = N(~y), we get:

Hence, for any ~1, ... , 1 &#x3E; 0,

Vol. 35, n° 6-1999.
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Note that H is a nonincreasing function so

It follows that, if we set ~k = 2Hk + h (~,), we obtain

Moreover, 1 by definition, so

Setting K = and

we get at last

4.3.4. Conclusion

Collecting inequalities (11) and (13) to (14) gives, setting A =

6

It remains to bound from above A .

1= 1

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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since 1 = 2Ek . In order to minimize the previous bound, we will now
choose the sequence (Uk)kEN such that, for k &#x3E; 1,

which is equivalent to uk-i = (observe that, from the
definitions ~~ = 2-k~o and ~k = 2IHIk + /~), the sequence is

indeed decreasing). Replacing uk-l, we get the following upper bound

We recall that flsp-i = tends to 0 as p - +00. This

allows to bound from above A - ~.1, for any £ &#x3E; 0, by

We will now control By definition of ~k, IHIk and ~k,

Moreover,

Vol. 35, n° 6-1999
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Collecting the above evaluations we obtain, for any £ &#x3E; 0,

which leads, recalling that ~,1 = À, to

It follows from inequality ( 15) that

where = 0.25. Since o~2  a2/4 and ~(t)  t2/2, we have
that /x(~) ~ ~.2/20~ 2. This concludes the proof of Theorem 5. 0

4.4. Proof of Corollary 2 .

Let H (s) be bounded by y / ~ . By Theorem 5,

where C3 and C4 are absolute constants.
Setting ~- = ~, ( 1 + + ~4~0, it follows that for any § ) 

Using that 1 / ( 1 ~- t ) 2 &#x3E; ( 1 - t ) 2 for any 0 ~ we get

as soon as So  1/(2C3).
Setting So = 1/~. there exists absolute constants ~ * and Cs such that,

for any ~ ~~,

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Possibly enlarging Cs , previous inequality holds for any ç &#x3E; 0.
This concludes the proof of Corollary 2. D

4.5. Proof of Corollary 3

We claim that the function h2 satisfies for any positive À and K, the
inequality h 2 (~, -r- I~ ) &#x3E; ~W+~2(~). Indeed, since = 

it is clear that + y) ~ + ~ -1 (y ) . Therefore, the reverse
inequality holds for h 2 . Let

Since Hl~~(80~)  ~, we get K ) h]~ (H (9a)) .
We now apply inequality (10) to ~/ = À + K, for some

8 E ]0,1]. We get, possibly enlarging C,

Since ’~’ ~ ) ~ 2 +2 ~ we get

This concludes the proof of Corollary 3. a

5. CONCLUSION

To conclude we would like to mention several questions of interest that
derive from the results of this paper.

5.1. Substituting Gn for G

For statistical~purposes, it would be desirable to replace the factor
1 - G by 1 - Gn in the exponential inequality ( 1 ). We do not know
whether such an inequality holds nonasymptotically. All we can do is
to provide an asymptotic evaluation which is analogous to Theorem 3.
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THEOREM 6. - Let Fn be the Kaplan-Meier estimator of F, Gn be the
Kaplan-Meier estimator of the distribution function G of the censoring
times, and be the largest observation. Let B° be a Brownian bridge.
Then, for any positive À,

Inequality (16) actually allows to build confidence bands for F in
the spirit of Hall and Wellner [17] and Gill [14]. Nevertheless, the
conservatism of these bands may make them useless under heavy
censorship.

5.2. Proof of Theorem 6 
’

Using inequality (6) and the decomposition

we have to show that

We first notice that the problem is symmetric with respect to F and G.
This allows to assume that 

.

We shall distinguish two cases: either G (r)  1, or G (r) = 1.
In the first case, we write for t x 

It follows from Theorem 2 that the supremum on R of the process

We conclude with a result due to Wang [27] which ensures that
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If G (r) = 1, either F (r)  1 and we can argue as above by
exchanging F for G, or F-(i) = 1. If it is so, F and G are continuous
at point r, therefore = r) = 0, and G(W(n))  1 a. s . Let a  r.

Since F’(r)  1, it follows from Remark 3 that supt03C3 I CGn - G) (t) | ~
0 a. s. Using this result, and similar arguments as above, we show that

Now,

It follows from Gill [12], Lemma 2.6 that (Gn - G) / ( 1 - G) [
is bounded in probability. Moreover, it follows from the convergence of
the process ,In(1 - G)(Fn - F) towards ((1 - F)(1 - G)/(l - K)) x

in D(T) that

Since K is a [0,1] valued, continuous and nondecreasing function, we
shall consider the case of K(t)  1 and the case of this limit

equals 1. In the first case, since F and G are continuous at point r and
tend to 1, we get

In the second case, we get (B°(K))(t) = 0 a.s. Moreover, the process
BO(K) is continuous. Finally, we obtain in both cases,

This concludes the proof of Theorem 6.
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5.3. Normalizing factor

One could wonder whether the normalizing factor ( 1 - G) used in
Theorem 1 is adequate or not. If one tries to answer this question, it is
interesting first to notice that some weighting is actually necessary if one
wants to get a uniform result on the real line since otherwise one really
gets into trouble due to the bad behaviour of the Kaplan-Meier estimator
in the tail (see Stute [22]). In order to better understand what kind of

weighting should be considered, let us analyse the asymptotic behaviour
of the Kaplan-Meier process F). Let

and let = if C(t)  +0oo and = 1 if C(t) = +0oo. It

follows from Gill [12] that the process ,In(1 - G)1/2(R - F) conver-
ges in D(T) towards {(1 - F)(1 - G)1/2/(1 - where T =

{t, G-(t)  1}. One can notice that the variance of the limiting process is
uniformly bounded since it is equal to ( 1 - G ) ( 1 - F ) 2 C . Therefore, a
question arises: is it possible to replace in the exponential inequality ( 1 )
the normalizing factor 1- G by ( 1- G) 1 ~2. Our method does not allow to
do this since it is based on the use of the influence function of the process

F). The influence function has to be normalized by ( 1 - G-)
(or 1 - G), in order to be stabilized on the whole interval. It is not clear
at all whether another method could work since it could happen that the
size of the supremum norm of the influence function indeed plays a role
in an exponential bound like ours.

APPENDIX A

A.l. Proof of Lemma 2

In order to get the L2(P)-entropy with bracketing of the class J, we
will use Lemma 1. We recall that

where may be written under the form
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if we set

We denote by = 1, 2, 3, the classes of functions defined by

Since the functions JK,x are [0,1] valued and monotone, it follows
from Lemma 1 that there exists some constant 1] such that for j = 1, 2, 3,
the L2(P)-entropy with bracketing Hj of the class J(j) satisfies 
~/6B By definition of the entropy, we can find sets of brackets Nj with
diameter not larger than ~ /3, covering defined by

where N is bounded by For each function in 

j = 1, 2, 3, we can find i E {1,2,... N } satisfying 

Since the functions Jx,x are [0, 1 ] valued function, we can choose also
[0, 1 ] valued functions to define the sets of brackets covering the classes
y~j=i,2,3.
With these sets, we can build a set of brackets with diameter not larger

than £ covering the class J. Indeed, for each function JK,x in J there
exist i, i’, i" in f 1, 2,..., N~ such that

It is easy to verify that the JL2(P)-norm of the function + fL2,i’)fL3,i"-
+ bounded by ~. Hence, we found a set of brackets with

diameter not larger than E covering y with cardinality bounded by N3. It
follows that the JL2(P)-entropy with bracketing H of the class J satisfies
H (~)  for some y E R. This concludes the proof of Lemma 2.
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