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ABSTRACT. - A beam of light shines through the lattice and is

subjected to reflections determined by a random environment of mirrors
at the vertices of 7ld. The behaviour of the light ray is investigated under
the hypothesis that the environment contains a strictly positive density of
vertices at which the light behaves in the manner of a random walk. When
d ~ 2 and the density of non-trivial reflectors is sufficiently small, the
environment contains almost surely a unique infinite ’inter-illuminating’
class of vertices. Furthermore, when the light beam originates within
this class, then its trajectory obeys a functional central limit theorem
with a strictly positive diffusion constant. These facts are obtained

using percolation-type arguments, together with the invariance principle
proposed by Kipnis and Varadhan. @ Elsevier, Paris
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632 C. BEZUIDENHOUT, G. GRIMMETT

RESUME. - Un rayon lumineux se propage sur lld, subissant des
reflexions determinees par un environnement aleatoire forme par des
miroirs aux sites de lld. On etudie le comportement du rayon lumineux
sous Fhypothese que l’environnement contient une densité strictement
positive de sites ou le rayon lumineux se comporte a la maniere d’une
marche aleatoire. Quand d &#x3E; 2 et la densite de reflecteurs non-triviaux
est suffisamment basse, l’environnement contient presque surement une

unique classe infinie de sites s’ illuminant les uns les autres. Par ailleurs,
quand le rayon lumineux part d’un des sites de cette classe, sa trajectoire
obeit a un theoreme de la limite centrale fonctionnel avec une constante

de diffusion strictement positive. Ces faits se deduisent en utilisant

des arguments de la theorie de la percolation ainsi que le principe
d’ invariance propose par Kipnis et Varadhan. © Elsevier, Paris

1. INTRODUCTION

What is the behaviour of a beam of light passing through a medium
of reflecting bodies? Such an investigation was initiated by Lorentz [26]
nearly a century ago in a formulation which has come to be known as
the ’Lorentz gas’ . Suitably reformulated for the latter-day mathematician,
one version of the question becomes the following. Suppose that smooth
bodies are distributed randomly about d-dimensional space Rd according
to some given probability measure. A ray of light originates from a
specified point of travelling initially in a specified direction; this ray
passes through Rd subject to reflections at the surfaces of these bodies.
We now ask for properties of the trajectory. For example, what can be
said about the displacement of the point which is distance t along the
path, in the limit of large t ?
The work of Lorentz inspires a lattice model in which, conditional

on the environment of reflecting bodies, the trajectory of the light is
deterministic. Remarkably little is known about such systems in general,
although some progress has been made in the special case of the square
lattice towards deciding whether or not the light beam is confined to a
bounded region of space; see [5,17,18,28].

Several authors have considered stochastic relaxations of such lattice

systems. In one possible such relaxation, one allows random deviations
from the rules whenever light impacts on a mirror. Subject to certain
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633RANDOM WALKS IN RANDOM LABYRINTHS

conditions including one of irreducibility, the light ray then (a.s.)
illuminates the whole space and satisfies a central limit theorem; see [29].
We pursue another route here, namely that discussed in [2,3,21,22] and

involving the introduction of a positive density of points (or ’scatterers’)
at which the light beam behaves in the manner of a random walk. This
leads to a model which is partially tractable using probabilistic analysis,
but which poses substantial difficulties arising from the geometrical

’ 

constraints of the environment of mirrors. We show in this paper how the

geometry of the environment may be controlled using ’block’ arguments
taken from percolation theory. In this way, we extend the non-localisation
theorem of [21] in order to obtain a central limit theorem. This last

theorem may be viewed as a generalisation of certain results in [I1,22].
Next we present an illustration of such a stochastic relaxation asso-

ciated with the two-dimensional square lattice Z2. Let prw, pnw, pne be
non-negative numbers whose sum satisfies prw + Pnw + pne  l. Each
vertex of Z2 is allocated a random state from the local state space

{rw, nw, ne, +} where the probability of state a is and where p+ =
1 - prw - pnw - pne ; different vertices are allocated independent states.
These states are interpreted in the following way.

(a) A vertex labelled ’rw’ is called a ’random walk (rw) point’. Light
incident with a rw point behaves as a symmetric random walk, in
the sense that it departs the vertex in a direction chosen randomly
from the set of four possible directions, this choice being made
independently of all vertex states and of all previous choices.

(b) A vertex labelled ’nw’ is occupied by a NW mirror, which is to say
that

northerly light is reflected westwards,
westerly light is reflected northwards,
southerly light is reflected eastwards,
easterly light is reflected southwards.

(c) A vertex labelled ’ne’ is occupied by a NE mirror, which is defined
similarly but with north and south interchanged.

(d) A vertex labelled ’+’ is called a ’crossing’. Light incident with a
crossing passes directly through without deviation.

We now shine light from the origin in a specified initial direction, and
first ask the obvious question of whether or not the set of illuminated
vertices is a.s. finite. The problem of main interest for ergodic theorists is
the case when prw = 0, for which, conditional on the environment, the

light behaves deterministically. Under the contrasting assumption that
prw &#x3E; 0, it has been shown in [21] that the illuminated set is infinite
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634 C. BEZUIDENHOUT, G. GRIMMETT

with strictly positive probability if pnw + pne is sufficiently small (and
positive). In contrast to certain other arguments which are specific to
this two-dimensional system, the conclusion of ’non-localisation’ was
obtained in [21] for general systems of reflectors in Zd where d &#x3E; 2,
whenever the density prw of random walk points is strictly positive, and
the density of non-trivial reflectors (i.e., reflectors other than crossings)
is sufficiently small.
Assume now that the number d of dimensions satisfies ~ ~ 2. Let

us consider a situation in which prw &#x3E; 0, and where light originating at
the origin illuminates infinitely many vertices. Let Y (n) be the (random)
displacement of the light after it has travelled a total distance n (i.e., it has
traversed exactly n edges). Our purpose in this paper is to prove a central
limit theorem for Y (n ) . We shall prove, subject to suitable conditions,
that the d coordinates of Y (n ) are (asymptotically) independent normal
random variables with zero mean and variance 8n, where the diffusion
constant 8 depends on the parameters of the system and is strictly
positive.
We may think of the ’random field’ of reflectors as a special type of

random environment having a great deal of rigidity. Our basic strategy
in proving the central limit theorem is to adapt the arguments proposed
by Kipnis and Varadhan [24] and further developed by DeMasi, Ferrari,
Goldstein, and Wick [10,11]. Substantial difficulties arise in following
this strategy. Whereas the above papers considered reversible random
walks in a random environment on Zd, we shall need here to study the
Markov chain embedded in the light path by looking only at those times at
which the light passes through rw points. The set of rw points is a random
set, and the geometry of this set will be controlled using percolation-
theoretic arguments. Indeed, the majority of this paper is devoted to
obtaining and applying estimates for the geometry of the environment.
The technology for proving the central limit theorem is itself taken off
the peg from [ 11, 24] ; the main problems of the current paper are to prove
that the methods of [ 11, 24] are applicable in the current setting, and to
verify that the resulting diffusion constant is strictly positive.

It is a matter of substantial interest whether or not a light trajectory
is ’diffusive’ when the density prw of rw points equals 0. Extensive

Monte Carlo simulations have been carried out ([7-9,30,31]), but little
of mathematical rigour is currently known concerning this hard question.
The requisite definitions are given in the next section, and the central

limit theorem is stated at the end of that section. In Section 3, we present
certain lemmas concerning the geometry of the set of points illuminated
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635RANDOM WALKS IN RANDOM LABYRINTHS

by light originating at the origin. Section 4 contains several estimates
concerning the conductance of a certain disordered electrical network
derived from a random labyrinth. We prove the central limit theorem in
Section 5, but reserve until Section 6 the proof that the diffusion constant
is strictly positive. This last step is achieved, as in [ 11 ], by utilising the
electrical results of Section 4.

2. RANDOM LABYRINTHS

Random labyrinths were introduced in [2,3,21,22] and discussed
further in [ 18] . We describe here a general labyrinthine model for the
passage of light through the cubic lattice in d dimensions, where d &#x3E; 2.
By Zd, we mean the set of all d -vectors v = v2 , ....~j) of integers.
We shall use the norms |x| = and ~x~ = 1  i  d }
for x = (jq, x2 , ... , Xd) E Zd. The set Zd is turned into a graph by adding
edges (x, y) between all pairs x, y E satisfying ~ 2014 y I = 1. The
ensuing graph is denoted ILd = (Zd, Ed) and the origin is written as 0.

Let I = {Mi, M2,..., Mj} where u = (0, ... , 0, 1, 0, ... , 0) is the unit
vector in the i th coordinate direction, and let I ~ = {20141, +1} x I be the
set of all We define a reflector to be a map p : :f: --+ :f: with the
property that p ( - p ( u ) ) = 2014M for all u ~ /~, and we write R for the set
of all reflectors. ..

The physical interpretation of a reflector p is as follows. If light is
incident at a vertex x in direction u ( E /~), the effect of reflector p at x
is to deflect the light ray in such a way that it departs x in direction p (u ) .
The condition p (- p (u ) ) = -u is in response to the reversibility of light
paths, and it plays a role in the probabilistic arguments which follow.
We distinguish two special reflectors, as follows. The identity mapping

on I ~ is called the crossing, denoted by + . Crossings do not deflect light
beams. The reflector p satisfying p(u) = -u (for all u) is called the
blocker, and is denoted by D. It has the effect of reflecting any ray of
light back upon itself. -

Let  be a probability measure on the set R U {0}. We place a member
of R U {0} at each vertex x, this member being sampled according to /~,
and in such a way that different vertices are occupied by independent
members. That is, we consider the environment space

Vol. 35, n° 5-1999.
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Fig. 1. There are 10 possible reflectors in two dimensions. The blocker is D, the
crossing +, and the other icons represent the more complicated reflectors.

Fig. 2. A sketch of some two-dimensional light paths joining rw points
(represented by .). Note the existence of loops, parallel paths, crossing paths,
and blocked paths.

and let P be product measure on Q with marginals We introduce two

parameters which will play important roles later, namely

the densities of the local states 0 and + (recall that + denotes the
crossing). The notation will become clear soon.

Given an environment cv (e Q), we wish to construct a random walk
in ~. Such a walk will conform to the reflectors, but will behave in the
manner of a symmetric random walk whenever it arrives at a point in
state 0. See Figs. 1 and 2 for illustrations of random walks through two-
dimensional labyrinths..
For w = (wx: x E [2, let W(w) = c~x = 0), and call

W(w) the set of random walk (or rw) points in the configuration c~.

A path in ILd is an ordered sequence of vertices (not
necessarily distinct) such that E~ for o  k  ~ . A light path
in w is a path vo, ..., un with n  1 such that

(a) vk is a rw point if and only if k E {0,~},
(b) for k &#x3E; 2, we have that vk - Vk-I = (vk-1 - vk_2).

’ 
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637RANDOM WALKS IN RANDOM LABYRINTHS

Informally, a light path is the trajectory of light which departs the rw
point vo in the direction up to the moment when the light
illuminates a rw point for the next time. Such a path is said to connect
its endpoints.

For rw points x, y, let y) be the number of light paths connect-
ing x to y. For sets A, B of rw points, we set

B) and y) are defined accordingly. We define an equivalence
relation ‘H’ on by y if either x = y, or there is a sequence

xo = x, j~i,..., xm = y of rw points, where m &#x3E; 1, such that

Any rw point x lies in some equivalence class of the relation B.

We shall usually write n and C for n~’ and C‘~, except where such notation
would be ambiguous for the context. We sometimes denote B by H~’
when the role of 03C9 requires emphasis.

Let w E Q . We define a random walk in the labyrinth w to be a Markov
chain, denoted (X~(~): ~ ~ 0), having state space and transition

matrix given by

Such a random walk XúJ is the main object of study of this paper. We
denote by the law of conditional on = x.

One of the main properties of the chain XúJ is its reversibility (relative .

to an appropriate measure), and it is this that permits the use of the
arguments of [ 11,24]. If we were to permit rules more general than those
given above, then this vital property would generally no longer hold.

It is clear from the definition of the equivalence relation ~ that the
communicating classes are exactly the equivalence classes of H..
The asymptotic behaviour of for large n is an interesting object of
study only if the starting point XúJ (0) lies in an infinite equivalence class
of H . We therefore introduce the subspaces of Q given by ,
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and we write P* and P** for the measure P conditioned respectively
on the events Q* and Q**. (These measures are defined whenever

&#x3E; 0 and &#x3E; 0.)
We assume that = 0, and define the re-scaled variables

By the term ’standard Brownian motion’ we mean a Wiener process with
the identity covariance matrix. If W is a standard Brownian motion in JRd
and C is a real d x d matrix, then C W is a Wiener process with covariance
matrix CC~ .

Throughout this paper, we write Pc = site) for the critical

probability of site percolation on ILd; see [17] for the general theory
of percolation. The following theorem utilises a type of convergence
denoted in the form ’P**-dp’; the appropriate definition appears after the
statement of the theorem.

THEOREM 2.1. - Let 0. There exists a strictly positive constant
A = A(/?rw) such that the following holds whenever either 1- prw - p+ 
A or prw &#x3E; Pc:

(a) JID(il**) &#x3E; 0, ,
(b) as s j 0, the re-scaled process X £~’ converges to 

where W is a standard Brownian motion in Rd and D = is
a strictly positive constant.

We recall that ,~ is the marginal measure of P. In saying that X~
converges to we mean that, 0, 

.

for all bounded continuous functions f on the Skorohod space D([0, oo),
ffi.d). (For any random variable Z and appropriate probability measure P,
the quantity P (Z) is to be interpreted as the mean of Z. In (2.4), P is the
probability measure for the Brownian motion W.) In this two tiered mode
of convergence, the letters ’dp’ stand for ’in distribution in probability’.
Theorem 2.1 asserts a functional central limit theorem for the random

walk XúJ when it is confined to an infinite equivalence class, under the
assumption that the density of non-trivial reflectors (i.e., reflectors other
than the crossing) is sufficiently small. Note that X~’ does not conform
to ’real time’ ; that is, it jumps between rw points at unit times, rather
than following the light trajectory at constant velocity. Actually it may
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639RANDOM WALKS IN RANDOM LABYRINTHS

be viewed as the embedded chain obtained by observing a ’real time’
process at the epochs of visits to rw points. There is a central limit
theorem for such a ’real time’ process also.

Let 60 E Q . We define a Markov chain (Z~(~): ~ ~ 0) on the state

space I ~ x Zd as follows. Writing E I+ x Zd,
we require that

if is a rw point, then + 1 ) is chosen uniformly from 1 ~, this
choice being independent of c~ and of all earlier choices. As before, we
set = W 

THEOREM 2.2. - Let prw &#x3E; 0 and let A = A(prw) be given as in
Theorem 2.1. If either 1 - prw - p+  A or prW &#x3E; p~, then the re-scaled

process converges to ~W, where W is a standard Brownian
motion in and ~ _ ~ is a strictly positive constant.

The two diffusion constants D and 03B4 are related in the following
way. Suppose 0 is a rw point, and let x1, x2, ..., x2d be the vertices x
of Zd (appearing with the appropriate multiplicities) with the property
that x) &#x3E; 0. Let .~2, ... , ~2d be the numbers of edges in the

corresponding light paths. Then 8 = D / m where

The proof of this theorem may be found in Section 7.
Our principal theorem, Theorem 2.1, concerns the discrete-time proc-

ess A similar conclusion is valid for a process in continuous time.

At one point in the proof, we shall need to refer to such a process,
and therefore we introduce it here. Specifically, we let (X~: ~ ~ 0)
be the ’Poissonisation’ of X~’ given in the usual (following) way. Let
(M(t): t ~ 0) be a Poisson process with rate 1, independent of all random
variables so far considered, and let X~ = Then X~ is a

Markov process which follows the trajectories of X~(’) but with expon-
entially-distributed holding times at each rw point.

Finally in this section, we consider the special case when prw &#x3E; Pc and

when all non-rw points are (a.s.) blockers. In this case, the light moves in
the manner of a random walk between the rw points, and it experiences
a delay whenever it exits a rw point in the direction of a blocker. This

Vol. 35, n° 5-1999.
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process constitutes essentially a random walk on the infinite cluster of
a supercritical site percolation process, with holding times at each rw
point x having a distribution depending on the number of neighbouring
blockers at x. Such a process was considered in [ 11 ], and the results of
the present paper contain a certain generalisation of the corresponding
central limit theorem presented there.

3. GEOMETRICAL PROPERTIES OF LABYRINTHS

In order to establish results concerning a light path in a labyrinth, it

is first necessary to derive some geometrical properties of the labyrinth.
Several basic properties will be required, and we present these next.

Let úJ E Q , and consider the equivalence relation ~ on the set 
of rw points. Let M = be the number of infinite equivalence
classes. The following uniqueness theorem will be proved later in this
section using the approach of Burton and Keane [6], with variations.

THEOREM 3.1. - Suppose prw &#x3E; 0. Then either P(M = 0) = 1 or

P(M=1)=1.

It was proved in [21 ] that light paths are usually rather short in length.
Let e = ( u , v) be an edge. Either e lies in some light path vo, v 1, ... , vk
where Vo and Vk are rw points (and where Vo = vk is allowed), or it does
not. We write ~(~) = k if this path exists having length k, and ~, (e) = oo
otherwise. It is clear that ~, (e) is well defined.

THEOREM 3.2. - For any edge e,

The proof may be found in [ 18,21 ], but for the sake of being complete
we summarise it here. Light passing along e from u to v will continue
through Zd until it meets a rw point for the first time. At each new point
that it encounters, this point is a rw point with probability prw, and the
chance that r new points are not rw points is therefore ( 1 - The

coefficient 2 arises because e may be traversed in either of two directions;
the factor (2d) -1 in the exponent arises since no vertex is visited more
than 2d times by any given light path.
We turn now to the sizes of the finite equivalence classes of 

~). We augment the equivalence class C (x ) at each rw point x by adding
all vertices of Zd on all light paths connecting vertices in C (x ) , and we
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denote the augmented set of vertices by C (x) . The radius of a set A of
vertices containing the origin is given by

and its boundary a A is the set of vertices x (E A) which are adjacent to
some vertex y not in A. Recall that denotes P conditioned on the event

[2* that the origin is a rw point.
THEOREM 3.3. - Suppose that prw &#x3E; 0. There exist strictly positive

constants A = = such that = (0) &#x3E; 0 and

whenever either 1 - prw - p+  A or prw &#x3E; p~-

Further geometrical properties of this type may be established, using
comparisons with a percolation process, but we shall use only the above.
In proving Theorem 3.3 we shall make use of a ’block argument’ which
has other applications too. This argument is similar to one presented
in [21 ] .

Consider the box B N = [- N, N - l]d. We shall introduce a property
of B N which will depend only on w restricted to BN. Roughly speaking, ,

this property is that: BN contains no reflectors other than crossings,
and light originating anywhere in B N will illuminate the whole of B N .
In order to achieve a proper definition, we introduce the following
terminology.

For W E 03A9, we use the term co-path to mean a path vo, 03BD1, ... of Zd
with the property that, for all j ~ 1,

whenever is not a rw point,

which is to say that the path .conforms to the reflectors at all non-rw

points; we impose no special condition for how an co-path behaves at
a rw point. For x, y E Zd, we write x ~ y if there exists an w-path with
endpoints x and y. For any box T, we write x T y if there exists an

w-path with endpoints x and y which has at most one vertex lying outside
If T = BN, we write for -~r.

We declare the box B N to be good if the two following properties hold:
(a) B N contains only crossings and rw points,
(b) there exists a rw point x in such that x ~N y for all

yEaBN.
Vol. 35, n° 5-1999.
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(We call any such point x a seed of the good box BN.) S i m i 1 arl y, we
call a translate T = v + B~~ good if it contains only crossings and rw
points, and there exists a rw point x E v + BN/2 such that .v --- .j. y for all I
y ~ ~T = v + aBN; such a point x is called a seed of the translate.

THEOREM 3.4. - Suppose that prW &#x3E; 0 and 7] &#x3E; (). There w-i.st.v n

strictly positive constant A = A(prW, 1}) and a M 
that

whenever 1 - prw - p+  A.

The value of this theorem is as follows. For l E Zd, we colour I 
if the translate BNl = 2Nl + BN is good. By choosing 1] small enough,
we can make the density of green sites close to 1, and in particular bigger
than the critical probability of site percolation on Zd. Furthermore, the
definition of ’good’ entails that any cluster of green sites corresponds
to a collection of good boxes in Zd whose rw points lie in the same

equivalence class of ++). By using percolation estimates for
such clusters, we obtain information about the geometry of equivalence
classes. In particular, if there exists an infinite cluster of green sites on
the renormalised lattice, then the corresponding region of the labyrinth
contains an infinite ’inter-illuminating’ class of rw points.

Proof of Theorem 3.1. - Since M is a translation-invariant function
on Q, and since P is ergodic, we deduce that there exists a constant
m E f 0, 1, 2, ... } U {00} such that P(M = m) = 1. We can rule out the
possibility that 2 # m  oo as follows. If 2 # m  oo, then there exists
an integer N such that

intersects m infinite equivalence classes) &#x3E; 2 .
We may place a rw point at every vertex in B N, thereby causing the m
infinite equivalence classes to coalesce into a single such class. It would
follow that P(M = 1 ) &#x3E; 0, a contradiction.

It remains to rule out the case m = oo, and to this end we assume
henceforth that 3) = 1. For any úJ E Q and any finite box B, we
denote by co) the following configuration:

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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where D denotes the blocker. For v E Zd and a positive integer N, we call
a translate E = v + B N of the box B N an encounter zone if the following
hold:

(a) E contains only rw points,
(b) the unique equivalence class of (W(c~), H) containing points in E

is infinite, and may be partitioned as Ci U C2 U ... U Cr U F U E,
where r = r(E) ~ 3, and where Ci, C2,..., Cr are distinct infinite

equivalence classes and F is a union of finite equivalence classes
of (W(cv°), B).

Loosely speaking, an encounter zone E has the property that it ’welds

together’ three or more infinite equivalence classes of Zd B E. Note that
encounter zones may overlap one another.
Some care is needed in order to follow the strategy laid down by

Burton and Keane [6]. First, it follows by the construction given above
that is an encounter zone) = 1] &#x3E; 0 for some N, and we pick N

accordingly. It follows by translation-invariance that

P(E is an encounter zone) = 1] &#x3E; 0 (3.5)

for all translates E = v of BN.

Next, write L1G for the set of edges of the lattice having exactly one

endpoint in the set G of vertices. We shall consider the set of encounter
zones contained within a large box Bn . Let E = v + BN be such an
encounter zone, and let L1nE be the set of edges e in L1Bn with the

following properties: 
.

(i) e belongs to some 03C9[]E-path which visits infinitely many distinct
rw points, and

(ii) e lies in some co-path 7r using edges of Bn only (apart from e
itself), such that jr has an endpoint in E.

Using property (b) of the definition of encounter zone, we have that L1n E
may be partitioned into the union of non-empty sets L1nEI, ... , L1nEr .

where r = r(E) ~ 3, and with the following property: for every j, there
exists an infinite equivalence class of B) such that all edges in

0394nEj lie in co-paths joining rw points of this class.
Now let E1 and E2 be distinct encounter zones contained within Bn .

(Note that Ei 1 and E2 may have non-empty intersection.) It may be seen

(aided perhaps by Fig. 3) that: either 0394nE1 ~ 0394nE2 = 0, or the partitions
corresponding to L1nEI and 0394nE2 are ’compatible’ in the sense that there
exist orderings of the sequences An Ef , ... and An E2 , An E2 , ~ ~ ~
Vol. 35, n° 5-1999.
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Fig. 3. Two encounter zones, generating compatible partitions.

such that

where r = r ( E2 ) .
Using the lemma of [6] (see also [ 18, Lemma 7.5]), suitably adapted

to the present setting in which r (E) may exceed 3 for some encounter
’ 

zones E, we deduce that the number Rn of encounter zones within Bn
satisfies Taking expectations, we obtain from (3.5) that

which is impossible for large n. We deduce by contradiction that 
3) = 0 as required. D .

Proof of Theorem 3. 4. - A closely related proof may be found in [21 ].
Let &#x3E; 0, and let DN be the event that BN contains no reflectors
other than crossings. Then

Let T be the minimum non-negative value of m such that the point
(m, 0, 0, ... , 0) is a rw point, and write X = ( T , 0, 0, ... , 0). Since

Prw &#x3E; 0, we may choose an integer t such that I~ ( T &#x3E; t ) # 4 r~ . Note that

by the FKG inequality.
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Let yEa BN satisfy

For

let Sk be the set of points (k , 0,0,..., 0), (k , ~2.0,..., 0), (k , ~2, y3 , 0,

... , 0) , ... , (~~2~3.....~). Since if the events Uk =

{all points in Sk are rw points} are conditionally independent given DN
and the choice of X ; furthermore, the conditional probability of Uk is at
least p, since for all k. If Uk occurs for some k, and also DN
and {F  ~}, then X y.

Now, 

We required above that y # (+N, 0, 0, ... , 0) . It is immediate however
that X --N (+N , 0, 0, ... , 0) so long as T  t  ) N and DN occurs.

There are at most (2N)d possible choices for y. It follows that, for
t  )N,

P(for all y E X +-o+N y ) T  t, DN) ) 1 - (2N)d(1 -
Therefore, for t  ! N ,

is not good)
-,.... J

We pick M (&#x3E; 2t ) such that

and A = A(prw) such that 1- ( 1- A) ~2M~d  4 q . The required conclusion
follows. D
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Proof of Theorem 3.3. - Let prw &#x3E; 0. By Theorem 3.4, there exists
&#x3E; 0 and an integer M such that

the critical probability of site percolation on IL2. We choose A and M
accordingly, and suppose for the moment that 1 - prw - p+  A. With

y = is good), let be the percolation probability of site per-
colation on IL2 with density y. By the remarks after the statement of
Theorem 3.4, and the fact that &#x3E; 0, we have that there exists a.s.
an infinite cluster of green sites in the renormalised lattice. Every corre-
sponding box of the labyrinth contains some rw point, and all such rw
points lie in the same equivalence class. Therefore, the labyrinth contains
a.s. an infinite equivalence class. It follows that P(~C(0)~ = oo) &#x3E; 0.
Assume now that d &#x3E; 3. We shall use a slab argument, related to

that used to prove Theorem 6.48 of [17]. We build the set C(0) in a
natural recursive manner. Let el , e2, ... be a fixed ordering of the edges
of JL d, and suppose that 0 is a rw point. We select the earliest edge,
e say, which is incident to 0, and we add, vertex by vertex, the unique
light path departing 0 in the direction e. Having completed this step,
and obtained a pair f 0, x ~ of (possibly identical) rw points, we pick the
earliest edge incident with 0 or x which has not yet been traversed, and
we iterate the procedure. Continuing likewise until all possibilities have
been exhausted, we have constructed the set C(0).

For k &#x3E; 1, let L k be the region of Zd containing all vertices v =

~2..... Vd) satisfying 2k M  2 (k + I)M, and let Hk be the set
of all V with v = k. If C(0) contains some point w = w2, ... , wd )
with wj 1 &#x3E; 2 K M, then C(0) contains some path traversing every ’slab’
L o , L 1, ... , Now, by Theorem 3.4 and the remarks thereafter, each
time that the above construction encounters a new slab Lk for the first
time, there is probability at least B (y) that it intersects an infinite set
of intercommunicating rw points contained in Lk. It follows (by the
argument given in [ 17, pp. 127-128]) that

Therefore

and the theorem is proved (when d &#x3E; 3).
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We next present a sketch of the argument required when d = 2.
For / = (/1./’2). let be the box 2Ml + BM, where M is chosen to
satisfy (3.6). We colour I green if BM is a good box, and red otherwise.
Using (3.6), there exists a.s. a unique infinite cluster I of green vertices
in the renormalised copy of IL2 obtained by replacing each BMl by the
vertex /. Let .C be the set of all l such that BZM intersects C(0). If

k x rad ( C (0))  oo, then 1: contains a path of L2 whose endpoints are at
least distance apart (in the norm 1.1), and in addition every BMl,
for / E /~, either is red, or is green but lies in a finite green (site) cluster
of JL’2. Therefore, the renormalised site 0 belongs to a ’hole’ in I, this hole
having diameter at least The boundary of this hole contains
a red circuit of the matching lattice obtained from IL2 by adding
diagonals to each face; this red circuit has length at least and

the origin lies in either the circuit or its interior. Using standard arguments
from percolation theory (see [23, Eq. 3.89], [ 17, Section 9.4]), we deduce
that the probability of such a red circuit decays exponentially in A;/(2M),
so long as M has been chosen sufficiently large that (3.6) holds.

Suppose now that prw &#x3E; p~; we have from the definition of p~ that
= oo) &#x3E; 0. Assume that d ~ 3, and let Pc(M) be the critical

probability of site percolation on the slab

We pick M such that prw &#x3E; (This may be done since p~
as M -~ oo. See [18,20].) We now repeat the slab argument presented
above, and (3.3) follows immediately.

Finally consider the case when prw &#x3E; Pc and d = 2. Let An be the
event that the annulus [ - 2n , 2n ] 2 B [ - n , n ] 2 contains a circuit Cn of rw
points having the origin in its interior and such that Cn lies in an infinite
connected cluster of rw points. On An, we have that either I C (0) = oo
or rad ( C (0) )  2n. However,

for some 0, whence (3.3) follows.
In order to obtain the above bound for we may use standard

path-intersection arguments from percolation; see [17,23]. Briefly, if the
annulus fails to contain a circuit of rw points, then it is traversed in the
matching lattice by a path of non-rw points. If such a circuit exists but
is not in an infinite cluster, then its external boundary corresponds to a
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circuit of non-rw points in the matching lattice. Each of these two events
has a probability which decays exponentially quickly to 0 as n -~ oo. 0

4. AN ELECTRICAL NETWORK

In the proof of Theorem 2.1, we shall require an estimate of the
conductance of a certain electrical network arising from the labyrinth.
Such an estimate is necessary in proving that the diffusion constants in
Theorems 2.1 and 2.2 are strictly positive. The required notation and
estimate are presented in this section.

Let 03C9 ~ 03A9 and let N be a positive integer. Write BN = [-N, N - 1]d
c: Zd as usual. The pair (w, N) gives rise to a periodic configuration

(e Q) obtained by tiling Zd with copies of c~ restricted to BN.
More precisely, we first write x - y if xi = yi mod 2N for 1  i  d.
For each y E Zd, we find the unique x ~ BN satisfying x, and
we set We denote by [x] the equivalence class of a
vertex x under the equivalence relation ^-; more generally, for Zd,
we write [S] for the union of [x] over x e S.

In advance of studying the labyrinth generated by we need

to eliminate certain bad configurations. Suppose that 0. Let
0  p  1, and consider the set of light paths of Let 

be the set of all w ( E Q ) for which every light path of has length not
exceeding NP. We shall see at (4.7) that

where c = c (d ) is a positive constant. Thus is close to 1 for

large N, and we shall assume henceforth that the event occurs, i.e.,
that .

We shall concentrate on the set of rw points lying in BN, and write
WN (m) = n B N (= W(wN) n BN) for this set. It will be useful to
represent WN as the set of nodes of an electrical network (illustrated in
Fig. 4). The ’terminals’ of this network will be sets of nodes near to the
’left’ and ’right’ faces of BN. We argue as follows in order to construct
these sets.

Suppose that x, y E WN (m) are such that nwN ([x], [y]) &#x3E; 0. Pick

u E M, ~ E [y] such that nwN (u, v) &#x3E; 0, and let yr be a corresponding
light path of directed from u to v. Let us keep count of the number
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Fig. 4. An illustration of the electrical network constructed from an equivalence
class C which straddles BN . The open circles o represent rw points in the left
and right ’terminals’, and the dense circles ~ represent other rw points.

of times Jr intersects the set jci E (2Z + 1)TV - ~}; each
time 7T intersects this set in the direction of increasing first coordinate
(respectively, decreasing first coordinate) we score +1 (respectively, -1 ).
We write for the total score. Using the assumption that

03C9 ~ 03A9N, we may see that u, v ) can take only the values 0, ±1,
and furthermore that u, v) depends only on x and y, and not further
on the choice of u , v, 7r. We define m (x , y) = u, v ) , and note that
m(x~ y) _ -m(y~ x)~ 

.

For x, y E WN (w) satisfying n~’ ([x], [y]) = 0, we define m (x, y) = 0.
Note that the function m depends on N and c~, and we sometimes write
m = 

Suppose x, y E We write x y if x [y]. It is easily
checked that -~ is an equivalence relation on Let C be an

equivalence class of HN . We define the ’right edge’ r and ’left edge’
l of C as follows:

Under (4.2), we have that no light path of (J)N has length exceeding NP
where p  1, and therefore t n r = 0 for large N ; note that land r
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may be empty in general, but that l = 0 if and only if r = 0. We shall
consider in Section 6 a Markov chain on the state space obtained from C

by identifying all elements of l and all elements of r. To that end, we
define

(We use the notation f (respectively, r) to denote both a subset of C and
an element of V. The cardinality of a set A of vertices will be denoted
by !A~.) A member of V is called a simple state if it is a singleton and a
composite state otherwise.

Let C be an equivalence class of rw points of B N under the relation
as above. Assume that r # 0 (and hence ~ ~ 0) and that there exists

a sequence vo , v 1, ... , un in n B N such that
(i) for 1  i  n,

(ii) 
(iii) n &#x3E; 2.

Under these circumstances, we say that the equivalence class C strad-
dles BN. 

’

In studying the Markov chain on the state space V, we shall interpret V
as the node-set of a certain electrical network, and we shall estimate the
conductance of this network between the composite nodes f and r. The
edges of the network are placed as follows. For a, b E V, with {a, &#x26;} 7~
{.~, r}, we place exactly b) unit resistors in parallel between a
and b, where the symmetric function KN = is given by

(Recall that the composite nodes f and r are subsets of 
Suppose that C is such that f and r are non-empty and disjoint. We have

constructed a certain electrical network between the two ’terminals’ £
and r, and this network has a certain effective conductance, denoted
as aN = which may be calculated by applying the theory of
electrical networks to C. We shall prove a theorem concerning the

asymptotics of aN as N - oo, for a suitably chosen equivalence class C
of wN. In advance of stating this theorem, we present some further
notation.

Let Ci, C2,..., Cs be the equivalence classes of WN under ++N. Let
N = CJ be an equivalence class having maximal cardinality (if there are
two or more such classes, we pick one according to some predetermined
rule).
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THEOREM 4. l. - Suppose that prw &#x3E; 0 and 0  p  1. Let A be

given as in Theorem 3.4 with ( 1 - r~)2 = p~ (IL2, site), and suppose
that either 1 - prw - p+  A or prw &#x3E; p~. There exist strictly positive
constants ci such that the following statements are (simultaneously) valid
with P-probability approaching 1 as N --~ oo.

(a) The event = occurs.

(b) We have that ci 

(c) The sets .~ = r = are non-empty and disjoint, and
satisfy (.~, r) &#x3E; c2Nd-l.

(d) .J~ is the unique equivalence class of BN, under HN, which
straddles B N .

(e) The conductance 03C3N = satisfies c3 Nd-2.
Before proving this, we make a remark concerning the value of A. We

have not attempted to ’maximise’ this value in Theorem 4.1. A first step
in this direction would be to note that the conclusion of the theorem is
valid with A replaced by the quantity A’ given as in Theorem 3.4 with
1- 1] = p~ (IL2 , site). The proof of this stronger statement is slightly more
complicated, and follows well trodden paths of percolation theory.

Proof. - Assume that prw &#x3E; 0. Theorem 3.2 is not quite sufficient to
imply that - 1 as N ~ ~, since is defined in terms of
the periodic configuration However, the argument of the proof may
be used to obtain the following conclusion. Let ~.N (e) be the number of
edges in the light path of c~N containing the edge e, and let Re be the
event that at least one endvertex of e is a rw point. Then

where we have used the fact that no light path of length less than 2N can
visit any equivalence class [x] at two or more different vertices. Therefore

as required for (4.1 ).
Assume now that 1- p+  A, where A is given in Theorem 3.4.

Let M be the integer given in the conclusion of Theorem 3.4. Following
the discussion after that theorem, we colour the vertex v E Zd green if the
translate B~ = 2M v + B M is good, and red otherwise. Since the colours
of vertices are independent, and since
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we deduce that there exists a.s. an infinite green cluster F of Zd. By
the definition of ’good’, the corresponding region rM = 2MF + BM
is an infinite connected region of the labyrinth every rw point of which
lies in some infinite equivalence class £ of the labyrinth, and every other
point of which belongs to some light path joining two rw points in ~. In
particular, the labyrinth contains an infinite equivalence class ~, which
by Theorem 3.1 is a.s. unique.

For notational convenience, we shall assume that N = (2k + 1 ) M for
some k &#x3E; 1; equivalent arguments are valid without this assumption, but
the notation becomes slightly more complicated. Under this assumption,
B N may be partitioned into exactly (2k +1)~ translates of namely
the set 2MT + BM where T = [-k, Z~.

For positive constants d = (di ), let Tk (d) denote the intersection of the
following events (i)-(iii).

(i) After appropriate re-labelling, the green clusters fi, 7~,... of T
satisfy I r1 ~ d2 log k for i # 1.

(ii) There exist at least pairs of points in h1 of the form
( - k, t2 , t3 , ... , td ) , (k, t2 , t3 , ... , td ) ; we denote by L (respec-
tively, R) the set of all points t lying in this family which satisfy
tl = -k (respectively, tI = k).

(iii) There exist at least d4kd-1 site-disjoint paths of h1 each joining
some site of L to some site of R.

There exist positive constants d = (di ) such that

The principal arguments necessary to establish this are fairly standard in
percolation theory, and may be found in [ 17,18] . We therefore omit a full
proof, and choose d accordingly. Here are some brief notes concerning
parts (ii) and (iii). Let y = P(0 is green), and note that y 2 &#x3E; site).
Let It be the indicator function of the event {t is green } . For t =
(tl , t2, ..., td) E T, let g (t) = (-tl , t2, ..., td) . Now define Jt = ItIg(t),
noting that Jt = It if ti = 0, and that Jt dominates a site percolation
process on the subset ~ = [-k, 0] x [-k, of T having intensity y~.
We call t (e T) black if Jt = 1. Let 8 &#x3E; 0. Using arguments of [20], we
find that there exists a constant d3 such that A is traversed (in the short
direction) by at least site-disjoint black paths, with probability
at least 1 - 6B Since Jt = Jg~t~, the reflections of these paths in the
hyperplane Ho = {t E T: tl = 0~ are black also. Therefore, on the above
event, T is traversed by at least site-disjoint black paths with the.
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following property: the two endpoints of each such path have the form
( -k, t2 , t3 , ..., td ) , (k, t2 , t3,..., td ) for some t2 , t3,..., td. Properties (ii)
and (iii) follow, since ~ ~ It.
On the event Tk (d), we have that BN contains an equivalence class C

which includes all rw points in the region 2M03931 + BM. Using the
definition of ’good’, this region contains at least rw points, whence
Tk (d) implies statement (b) of the theorem with an appropriate ci =
y(dl,M) &#x3E;0.

Clearly C, defined above, straddles BN. Next we prove that (with large
probability) no other equivalence class Ci straddles BN, and that C = .J~.
There is a variety of ways of doing this, of which we choose a simple
one. Consider the event that the following four statements hold:

. the vertex x E B N is a rw point,

. x E for some equivalence class D of ++N ,

. D straddles BN,

. QN occurs.

Suppose we "’grow’ D in a recursive way starting from x (similar
to the general method given in the proof of Theorem 3.3). Since D
straddles BN, and since QN occurs, this construction must intersect every
slab of the form Sr = 2M Tr + BM, where Tr = { t E T: ti = r } and r
satisfies

In the construction of D, there occurs a first time that the light enters
each Sr . On entering Sr, there is a strictly positive probability 6~ that
D enters some translate 2Mt of BM, with t E Tr, such that t
is green and t lies in a green cluster of Tr having cardinality at least

for some ds &#x3E; 0. On the event Tk(d), this green cluster must,
by virtue of its size (see (i) above), be a subset of TI’ Using the usual
slab argument (see [ 17, pp. 127-128]), we deduce that, for an appropriate
constant c,

where Ex is the event that x is a rw point belonging to an equivalence
class other than C which straddles B ~ . Therefore
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This implies that

as N - oo. Therefore, with probability tending to 1 as N - oo, we have
that .J~ = C, and that no other equivalence class straddles BN .

If Tk (d) n QN occurs, and in addition C = J~, then statement (c) of the
theorem follows by (ii) above. It remains to show (e). This we do in the
way laid down in [19]. Let l = and r = and assume that

occurs.

Let 03C01, 7T2,..., 03C0D be a collection of site-disjoint green paths of ri,
each joining some vertex of L to some vertex of R, where D is maximal.
We write 1 # j ~ ~ for the green sites taken in order, so
that vi,1 e L and E R. The corresponding translates + BM
are good, and therefore each contains a seed. For each we pick a
corresponding seed si, j E 2M03BDi,j .+ We think of the paths as

joining the ’leftmost seeds’ L’ = i = 1, 2,..., D } to the ’rightmost
seeds’ R’ = = 1, 2, ... , D } . Between any two consecutive seeds

1 on any path ni , there is an co-path of length not exceeding
2(2M)d = S, and therefore containing no more than S rw

points. The corresponding electrical path joining si,1 to has resistance
not exceeding S (Ji - 1 ) .
Now each si,1 (respectively, si, ~l ) is joined by some (V-path to a member

of l (respectively, r ) lying in 2Mvi,1 + B M (respectively, +
BM), this path containing fewer than is rw points. Using the Rayleigh
monotonicity principle (see [13]), we deduce that the conductance aN
satisfies

whence, by the arithmetic/harmonic mean inequality,

for some strictly positive constants d6 and d7. Statement (e) of the
theorem is therefore valid with probability tending to 1 as N - oo.
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For the second part of the proof, we assume that prw &#x3E; We write

and

for the left and right parts of BN, and

Then AN is a copy of BN. A left-right rw crossing of A is a
rw path of A (i.e., a path all of whose vertices are rw points in A) whose
endpoints x, y satisfy x = -N, Yl = -1; we make a similar definition
for top-bottom rw crossings of A , and also for crossings of other boxes
in Zd.

For positive constants d = (di ), let UN (d) be the intersection of the
following events.

(i) BN contains a rw cluster (i.e., a connected subgraph of ILd all of .
whose vertices are rw points) of size at least dl Nd, and no other
rw cluster of size exceeding 4 N..

(ii) This large cluster contains at least left-right rw crossings
of BN, and at least one top-bottom rw crossing of each of the sets
A and R .

(iii) A N contains at least d2Nd-1 left-right rw crossings, in the ’

configuration 
Using standard arguments (see [1,20,27]), there exist positive constants d
such that --+ 1 as N -~ oo, and we choose d accordingly.
On the event QN n UN (d), we write C for the large cluster under (i)

above. Let .J~ be the equivalence class of WN under HN which
contains C.
Assume that n UN (d) occurs. If d = 2, then (ii) above precludes

the existence of any other equivalence class of WN which straddles A.
When d &#x3E; 3, we follow the argument which led to (4.9) in order to
obtain the same conclusion. Let Pc(M) be the critical probability of site
percolation on the slab L M = [0, M - 2] x We choose M such that

Prw &#x3E; Pc(M); this is possible since ~c(A~) -~ p~ as M - oo, see [20].
Let Ex be the event that x is a rw point of B N which lies in an equivalence
class other than C which straddles A. For d3 &#x3E; 0 and x ELM n BN, we
let SM (x) be the probability that x lies in a rw cluster of LM n BN having
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size at least d3Nd-l. We pick d3 ( &#x3E; 0) in such a way that

that this may be done is a consequence of the block construction of [20].
Now, as in (4.9),

for some c &#x3E; 0. Let SN (A) (respectively, SN (R)) be the event that
there exists no equivalence class other than C which straddles A

(respectively, R). Arguing as following (4.9), we deduce that

which implies the validity of (d). Using (i) and (iii), we deduce that
claim (c) holds on the event S2N n UN (d) n n SN (R).

It remains to establish claim (e), and to this end we employ a block
argument. Here is some notation. Let M be a positive integer. For a E
{2014, +} and 1 # j # d, we define the box

and the face

See Fig. 5 for an illustration of this definition when d = 2. We call the
box B2M good in 03C9 if the following hold. (Here, d4 is a positive constant
to be chosen shortly.)

. B M contains a unique rw cluster of size at least d4 Md , and no other
rw cluster of size exceeding 4 M.

. For every a E { -, +} and j E { 1, 2, ... , d } , the region B ~ U 
contains a unique rw cluster Ca,j of size at least d4 Md , and no other
rw cluster of size exceeding Furthermore contains a vertex

lying in the face 
Using arguments of percolation theory (see [1,20,27]), we may show the
following. There exists a strictly positive constant d4 such that: for all
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Fig. 5. The inner square B M has four ’ears’ corresponding to the regions Ja,j

s &#x3E; 0, there exists M = M(s) satisfying

We pick d4 accordingly.
Any translate of B2M is called good if the corresponding facts hold

for that translate. We colour the vertex v E tld blue if the translate

B;M = 3Mv + B2M is good, and grey otherwise.
We now assume that N = ( 3 k + 2) M + 1 for some k &#x3E; 1, noting that

may be expressed as the union of the set 3MT + B2M, where
T = [-k, Unlike in the first part of this proof, these blocks
may intersect one another; therefore the colours of the points in T are
dependent random variables. The event {t is blue} depends on the states
of vertices lying in the region

Since Sv n Sw = 0 ~! ~ 2, these colours form a 1-dependent family
of identically distributed random variables. Let 7t satisfy
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Using the main conclusion of [25], we may choose £ in (4.12) sufficiently
small to ensure that these colours dominate (stochastically) a site

percolation process on T with density jr.
We now follow the arguments presented after (4.8). Let Ak be a

set (with maximal cardinality) of site-disjoint blue paths traversing T
between its left face {-k{ x [-k, and its right face {k{ x [-k, 
and having the property that the two endpoints v and w of every such path
satisfy vi = -k, wi = k, Vj = Wj for 2 x j x d. Then

for some d5 &#x3E; 0.
Let v and w be blue neighbours in ILd. Since Sv n Sw is a box of

dimensions M x 2M x ... x 2M which is traversed by rw paths in its short
direction, we find that the ’large’ rw clusters in these boxes form part of
the same (larger) rw cluster in the union Sv U Sw. It follows that 
contains at least I Ak I rw paths each of which has the property that its
endpoints x, y satisfy xi = -N + 1, yi = N - 2, 4M for

For t E T, we define the ’left’ and ’right’ edges of St by

(Here, u 1 is a unit vector in the direction of increasing first coordinate.)
Let V = {~(A): ~ E be the set of left endpoints v (~,) of paths A in 7~,
and W = {~(~.): ~ E the set of right endpoints M;(~). For À E Ak,
we define IÀ to be the indicator function of the event that all vertices
in Lv~~,~ U /~(;L) are rw points. Conditional on Ak, the h, are identically
distributed random variables with

Let ~1k be given. By Cramer’s theorem or otherwise, there exist strictly
positive constants ci such that

If ~, E Ak and h, = 1, then À gives rise to a left-right rw path of B N whose
left and right endvertices x, y satisfy x j = y~ for 2 x j x d.
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Suppose that the events in (4.11 ), (4.13) and (4.14) occur. Combining
the above observations, we conclude as in the first part of this proof that
claim (e) is valid with probability approaching 1 as ~V 2014~ oo. D

5. PROOF OF THEOREM 2.1

Our principal method is the general invariance principle of Kipnis
and Varadhan [24] and DeMasi, Ferrari, Goldstein; and Wick [ 11 ] ; see
also [16]. The proof that the diffusion constant is strictly positive is

distinct from the application of the general principle, and is contained
in Section 6. Since we shall make several appeals to this invariance
principle, we begin by stating it (Theorem 5.1 below).
We suppose that (~(~): ~ ~ 0) is a discrete-time Markov chain on a

topological which is ergodic and reversible with respect to a
given invariant measure v. Let F be a Borel-measurable function from
E x ~ to .IRd which is anti-symmetric (i.e., F(w, w’) = 2014F(~/, w) for
all c~.~ , w’). We define

Let Q be the transition probability measure for the chain ~ . Then Q
may be regarded as an operator on L2(b, j6(~), v ) , where is the

collection of Borel subsets of ~7, by defining

for f E L2(~, ,13(~), v), where E°~ is the law of ç when ) (0) = a . We
define the vector . 

. 

_

Finally, we write (/(~))~ for the mean of a function f of ~ , under the
assumption that ~(0) has distribution v. That is to say
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for appropriate functions f. As usual, L 2 ( ~, ,l3 ( ~’ ) , v) may be endowed
with an inner product {’, ’)p by

With this notation, we have that

for real-valued functions f and g.

THEOREM 5.1 ( [ 11 ]). - Assume that ( I ( 1 ) 2 ~"  00. The quantities
Di j given by

are finite, and we write D for the real symmetric d x d matrix with
entries Dij. It is the case that X E converges v -dp to as 0,
where W be a standard Brownian motion in and is a real

symmetric square root of D. Furthermore, if u is a unit vector of 
then

As before, we say that X~ converges v-dp to Dl/2 W if

for all bounded continuous functions f on the appropriate space.
We shall make several applications of this theorem in proving Theo-

rems 2.1 and 2.2. The basic method is similar to that used in [ 11,24],
namely to take E = Q , and to let (n) be the environment seen from
the position of the light ray at its n th visit to the set W of rw points. We
begin with an elementary lemma. We define translation operators on Q
as follows. For x E Zd, let zx : ~2 ~ Q be given by = wy-x for
y E Zd. We call an environment W periodic if there exists x (~ 0) such
that rxw = w. The set of periodic configurations is denoted T. We call
the probability measure p a point mass if there exists a E R U {0} such

1.

LEMMA 5.2. - not a point mass, then P(T) = 0.
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Proof. - Suppose that p is not a point mass. Then

as required. D 
’

The only point mass which is consistent with the condition prw &#x3E; 0 of

Theorems 2.1 and 2.2 is the point mass on the state cvx = 0 for all x. For
this environment, the chain XúJ is the usual symmetric random walk, for
which the claims are well known. Therefore we may assume henceforth
that p is not a point mass.

In the light of Lemma 5.2, it suffices to prove a central limit theorem
under the assumption that the environment space is Q = Q B T. Suppose
that 0 is a rw point. With = 0 and defined as before (see
Eq. (2.1 )), we let ~ (n ) be the environment seen from the position 
that is, ~(~) = if = x. It may now be seen that (~(~): ~ ~ 0)
is a Markov chain on Q * n!2 with transition function

where 81/1 is the probability measure .on Q which places a unit of
probability on the environment 1/1.

Define F on Q x Q by

and let ( I (n ) : n &#x3E; 0), ( X (n ) : n &#x3E; 0), and ( X £ (t ) : t &#x3E; 0) be given by
(5.1)-(5.3), and 03A6 as in (5.5). Note that X (n ) = where

cv = ~(0), and that X8(t) = for cv = $ (0) E Q* (cf. (2.3) and the
paragraph containing (2.1 )).

It is now straightforward to verify that Theorem 5.1 may be applied to
the process ~ with either P* or P** in the place of v. There follow some
remarks about this.

In order to check that P* and P** are reversible invariant measures

for ~ , one need only check the detailed balance relation: for A, B E
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this may be checked directly from the definition (5.8) of Q.
The proof that P** is an ergodic invariant measure for the chain ~

follows exactly the proof of the corresponding Lemma 4.9 in [ 11, p. 825].
In the present case, the argument uses the fact proved in Theorem 3.1 that
any infinite equivalence class of rw points is a.s. unique.
The square integrability of I ( 1 ) under both P* and P** is a conse-

quence of Theorem 3.2.
One may now apply Theorem 5.1 to the situation described in

Theorem 2.1, thereby obtaining as weak limit a Wiener process having
covariance matrix D given by (5.6). In order to show that D is diagonal,
one proceeds just as in the proof of Theorem 4.6(iii) in [11, p. 823].

It follows that D = DI where I is the identity matrix, and

where i = Ii (the subscript indicates that we are taking
the first coordinate). In the next section we prove that the constant D
is strictly positive, under the conditions appropriate for Theorem 2.1.

6. STRICT POSITIVITY OF THE DIFFUSION CONSTANT

This section is devoted to proving the following.
LEMMA 6.1. - Let 0. There exists a strictly positive constant

A = such that D &#x3E; 0 whenever either 1 - p+  A or

prw &#x3E; pc.

This we prove by the general route described for Theorem 4.7 in [11,
p. 828 et seq.], and we begin with a sketch of the argument. Fix cv E SZ .
We shall approximate the process XW by another process (denoted 
which is constructed in a certain way on the periodic configuration c~N
(see Section 4). It will suffice to study the first coordinate of
this process, and we shall study the asymptotic variance of Xj 

’~ by
expressing it as an additive functional of a certain ’driving 
The latter process will be essentially a random walk on the set of
rw points in the box B N endowed with periodic boundary conditions.
This random walk will be reversible with respect to the uniform
distribution on WN .

Taking the above paragraph on trust for the moment, we may see
that the asymptotics of X~ will be given in terms of the number of
times that ~’~ heads either eastwards from the right (hyper)edge of
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BN, or westwards from the left (hyper)edge of B N (recall that we are
regarding j8~ as a torus).

. 

There are complications in pursuing this strategy. First, we need to
’recognise’ the effect on of transitions of ~~. In order to do this,
we shall assume that úJ E QN n f2, where ~2~ is defined above (4.1 )
with p chosen to satisfy

The assumed absence of long light paths will be relevant to the

relationship of to 

Secondly, the process ~~ is not generally ergodic, since its state

space WN generally contains a multiplicity of closed sets. These sets
are exactly the equivalence classes of the relation Each such

set D gives rise to a separate diffusion constant We shall use

Theorem 4.1 to show that = 0 if D does not straddle BN, and
that there is (with probability tending to 1 as N - oo) a unique D which
straddles BN.

Let N denote this unique straddling set, when it exists. We shall

(in Lemma 6.2) relate to the conductance of N viewed as
an electrical network (as in Section 4). In order to utilise the theory
of electrical networks, we recall from Section 4 the identifications of
certain sets of rw points near (respectively) the left and right edges
of BN. These identifications will contribute to the definition of the

process .

Let denote the asymptotic diffusion constant for the process
suitably normalised. Using Fatou’s lemma together with the

formulae for D and DN, we shall obtain that

where denotes P conditioned on QN, i. e., = P(. 
We shall next express in terms of and shall apply

Theorem 4.1 in order to obtain that

for some strictly positive constant c. It will follow by (6.2) that D &#x3E; 0.
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6.1. A Process on a Strip

Let p satisfy (6.1 ), and let QN be the set of all cv E f2 such that has
no light path of length exceeding NP. We have from Theorem 4.1 (a) that

--+ 1 as N ~ oo. Assume for now that

We shall work with the set of rw points lying in BN, and we
follow the notation of Section 4. As in that section, for any equivalence
class C which straddles BN, we define its left edge f = and right
edge r = appropriately. With M = C B (.~ U r), we shall construct
a Markov chain on the state space

and we shall explain how this Markov chain is related to the electrical
network on V studied in Section 4.
We define the symmetric function x V - R by

and the function QN = V x 1&#x3E; ~ R by

(We recall some notation. First, [ w ] = { y E Zd: y~ = wi mod 2N for 1 
i ~ ~}, and [~] = { y E ye [ w ] for some w E ~}. Secondly, Iv = 1
if v is a singleton, and otherwise I v is the cardinality of the subset v of
BN.) Note that nN agrees with the function defined in (4.5), except
for the terms nN (r, ~), r ) . Let

be the Markov chain with state space V + 2NZu1 1 (where u i is a unit

vector in the direction of increasing first coordinate), and with transition
probabilities given as follows. For i, j E Z, define qN = by
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where 8i,j is the Kronecker delta. That is to say, X N is a random walk
on the set V + 2NZu 1. At each stage, the walker departs the current rw
point in a random direction, and proceeds to the next rw point reached
along the subsequent light path. The process X N is defined on the strip
BN + 
From the process XN we obtain a new process ~N = by

projecting X N onto V. That is,

~ N (n) = v if 1 for some (6.9)

It may be seen that N is a Markov chain on V having transition

probabilities QN given by (6.7).
Let (I N (n) : n &#x3E; 0) = (I N~~’~~ (n) : n &#x3E; 0) be defined by:

where the subscript indicates that we are taking the first coordinate, and
we adopt the convention that

We have therefore that

where FN = is given by

and

Note that FN is anti-symmetric and bounded (for any given N).
We define a probability measure aN = on V by

Vol. 35, n° 5-1999.



666 C. BEZUIDENHOUT, G. GRIMMETT

Then a N is a reversible ergodic invariant measure for the chain N. Since
OJ E QN (cf. (6.5)), the process can be realised via (6.11) as an
additive process in the sense of Theorem 5.1, with ~N and aN playing
the roles of the driving process ~ and invariant measure v respectively,
and with F replaced by F N . 

°

We now apply Theorem 5.1 in this situation. The required square-
integrability condition is satisfied, since FN is bounded. We deduce an
invariance principle for the process suitably re-scaled, having some
diffusion constant DN = 
We write

where EN’x = EN,x,w,c is the law of the chain ~N, with ~(0) = x E C.
By (5.6), the diffusion constant DN is given by

Using (5.7), we remark that DN is also given as the a.s. limit of the sample
variance,

Noting that

and !~(M) - )/ (0) [ x 2N, we deduce that

6.2. Computing the Diffusion Constants .

It was proved in Theorem 4.1 that, with probability tending to 1 as
N - oo, there exists a unique equivalence class which straddles BN. It
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is clear from (6.16) that, on we have that DN = = 0 for

equivalence classes C which do not straddle BN.

LEMMA 6.2..- Assume that cv satisfies (6.4) and that C straddles BN.
Then

where is the electrical conductance introduced below (4.5).

Proof. - Assume that C straddles BN. With

we have that

By (6.15)-(6.16) and Theorem 5.1,

The first term here is given by

In order to study the last term in (6.19), we look for solutions X to the

equation

In particular, [(1 - = 0 for v E M; that is harmonic

It turns out that such x may be represented as the potential function of
a certain electrical network, namely the network introduced in Section 4.
As we did there, we construct a network having node set V by placing
exactly KN (v, w ) = [ w ] ) unit resistors in parallel between each

pair v, w E V satisfying { v, w { # {r, ~}; we allow the case v = w. No
direct connection is made between r and .~ .

Let V be the potential function induced in this network when a
unit potential difference between rand l is established. That is, [ ( 1 -
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= 0 for all v and we shall take V (r ) = 1, Vel) = 0. We
write aN for the conductance of the network between r and f.

It follows from (6.18), (6.21), and the theory of electrical networks,
that any solution X of (6.21 ) may be expressed in the form X = a V + b
for some constants a, b whose values are to be determined. We prove
next that b is arbitrary, and that

It suffices to prove that a V + b satisfies (6.21) when (6.22) holds.
Certainly a V -~- b satisfies (6.21 ) at all nodes v e M, since V is harmonic
on A4 and b is a constant.
We have that

and

The net current in the network at r equals the net current at .~, and both
are equal to the effective conductance a N of the network. The current
flowing along a light path is equal to the potential difference between its
endpoints. Therefore the net current at r equals the sum over all paths
ending in r of the potential differences between their endpoints, which
equals

and similarly the net current at l equals

Therefore
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Since

we have by (6.23)-(6.24) that

Hence a V + b satisfies (6.21) if and only if a is given by (6.22). We
choose a accordingly.

Returning to the last term of (6.19), we have now that

Combining this with (6.19) and (6.20), we deduce that

whence (6.17) follows from (6.22). 0

6.3. Comparison of D with the 

Let be the measure P conditioned on the event QN (see the
discussion above (6.4)), and assume that 03C9 E If C is an equivalence
class of rw points of BN under the relation -~ (introduced above (4.3)),
let be as in (6.5) and as in (6.13). Let

where the union is over all such equivalence classes C, and define a
measure on by

We define the function on by
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where q5’~~~°~~ is given in (6.14). Let (~N~‘~~~(n): n &#x3E; 0) be as in (6.9),
and define the process (~ ‘~’~~ (n) : n ~ 0 ) on by 

E Next, let

where as in (6.12). Finally, for x E let .) be the
transition probability distribution on defined by

where is given by (6.7). Finally, let

The next lemma is closely related to Proposition 4.13 of [ 11 ] .
LEMMA 6.3. - Let &#x3E; 0, let ~ = I~*(SZ**), and let D* be the

analogue of D with JP&#x3E;** replaced by in (5.10). Let A = A (prW ) &#x3E; 0
be given as in Theorem 3.3, and suppose that either 1- prw - p+  A or

(i) We have that ~ &#x3E; 0 and D* = t/f D.

(ii) For a fixed integer k &#x3E; 0,

(5.10).
(iii) We have that D* &#x3E; lim 

Proof. - The strict positivity of 03A8 is given in Theorem 3.3. The
remainder of part (i) follows as for the proof of (4.26a) of [11, p. 825].
(See the proof of (4.37) on p. 827 of [ 11 ] .) The argument given there uses
the fact, implied by Theorem 3.3, that the radius of a finite equivalence
class containing the origin has a finite second moment under P*.

Next we prove (ii). Fix k &#x3E; 0. We define

Then, for some constant C depending on k, B since

p  1. It follows that
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We turn now to the left side of (6.27). By the definition of 

We split the last sum into two parts depending on whether or not x E
BN B Since is uniformly bounded by NP under the first

sum (over x E B N B J N and composite x ) is bounded above by

for appropriate constants Ci (we have used the fact that, every

sphere of radius NP contains some rw point). This tends to 0 as N - oo,
since p  (d + 3)-1; cf. (6.1).

Therefore,

where denotes IfDN conditioned on x being a rw point.
Let be the Markov chain having state space + 2NZu1

and transition probability measure ~~(~ ’) = whenever

x E + 2NZu1 (see (6.8)). For given w E and x E 

the processes XW and may be coupled in such a way that

where

is the first hitting time by XúJ of the set

note that + 1 for x E by (6.28). Hence, using (6.32),
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where Replacing by (i.e., P con-
ditioned on x being a rw point), we have that

where

Now -~ 1 as N - oo, whence, by (6.29),

Also, by the Cauchy-Schwarz inequality and properties of the binomial
distribution,

as N - oo. (Remember that =  oo by Theorem 3 . 2. )
Secondly,

Now

We apply the Cauchy-Schwarz inequality once again, and use properties
of the binomial distribution together with the fact that =
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 oo, obtaining thereby that RN (2) ~ f -~ 0 as N - oo. The
required equation (6.27) follows from (6.29) and (6.33)-(6.34).

Finally, we prove (iii). There is an argument using Fatou’s lemma
which we seek to apply. Unfortunately a minor difficulty arises, namely
that can be negative as well as positive; certainly 0

for even values of k, since is stationary and reversible for ~ , but the re-
verse inequality can hold when k is odd. In order to obviate this annoying
detail, we move from discrete to continuous time. Let M = (M(~): ~ ~ 0)
be a Poisson process having intensity 1 and right-continuous sample
paths, independent of all random variables discussed so far in this paper.
For any sequence Z = (Z(~x): ~ ~ 0), of random variables we define the
corresponding continuous-time process (Zt: t &#x3E; 0), by Zt = Z(M(t)).

Before continuing, we note one elementary property of the ’Pois-

sonised’ process.

LEMMA 6.4. - Let Z be a random sequence satisfying E(Z(n)2)
-~ ~ 2 as n ~ oo. If M is independent of the Zen), then t - I E ( Zt ) --+ cr 2
as t --~ oo.

Proof. - This follows in an elementary way from the fact that

Central limit theorems are valid for Poissonised versions of the

processes considered above. As shown in [11,24], there is a version of
Theorem 5.1 for continuous time. We do not present the full details of
this, since they are very close to those presented already. However, we
shall make use of the following consequences.

Consider the two continuous-time processes Xrt and these are
the first-coordinate processes of X~ and X~. These processes have zero
means, which is to say that

and their second moments satisfy
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as t -~ oo, for some constant L1* and random variable Further-

more, by [11, Theorem 2.2], may be represented as

where Land Q t (respectively, L N = and Qf = are the

generator and transition semigroup of Xt (respectively, cf. (5.10)
and (6.15).

Parts (a) and (c) of the following lemma imply Lemma 6.3(iii).

LEMMA 6.5. - Let &#x3E; 0, and let A = A (prW) &#x3E; 0 be given as in
Lemma 6.3. Suppose that either 1 - p+  A or &#x3E; p~.

(a) We have that a* = D* and = 

(b) For a fixed time t ~ 0,

(c) We have that B* ~ lim 

Proof. - Part (a) is a consequence of Lemma 6.4. Turning to (b), we
have by the fact that is reversible with respect to that

for any t &#x3E; 0. The second part of (6.39) follows thus from (6.27). Note
first that, under the conditions of the lemma, there exists a constant C
such that . 

’

(Such inequalities may be obtained from (4.6) and Theorem 3.2, respec-
tively.) Also,
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whence, for K 3 1,

Therefore, by (6.27),

which tends to 0 as K - oo. This proves part (b).
Finally we prove (c). By (6.39) and Fatou’s lemma,

where we have used Fubini’s theorem at the last step. Moreover, .

where EN’x is the law of the random walk on starting at the

(possibly composite) state x ; cf. (6.15). Arguing as in the proof of (6.27),
we obtain that 

.
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where Y~ is given by (6.28) with k = 2, say. We obtain part (c) by
combining (6.37)-(6.38) and (6.41 )-(6.42). 0

6.4. Conclusion

Finally, we deduce that D &#x3E; 0, as claimed in Lemma 6.1. Let prw &#x3E; 0

and let A be chosen as in Theorem 3.4 with ( 1 - r~)2 = site).
Assume that either 1 - prw - p+  A or Pc. When statements

(a)-(e) of Theorem 4.1 hold, we have by Lemma 6.2 (together with the
remark preceding it) and (6.26) that

where N is the largest equivalence class of WN under Therefore
&#x3E; c4) - 1 as N - oo, whence

.implying by Lemma 6. 3 (i, iii) that D = 8 D * &#x3E; 0.

7. PROOF OF THEOREM 2.2

We shall deduce Theorem 2.2 from Theorem 2.1 with the aid of

the ergodic theorem. In order to achieve this, we shall adapt various
standard arguments used to prove functional central limit theorems.
These arguments may be found in [4,12,15].

Let 03C9 E {2** and u E I± = {±ui: 1 = 1, 2, ... , d }. We define l (cv, u)
to be the number of edges in the light path starting at the origin 0,
heading off in the direction u, and ending at the first rw point encountered
subsequently. Then

Cf. (2.5). Let W = (Wt : t &#x3E; 0) be a standard Brownian motion in 
let D be as in Theorem 2.1, and write Vt = We shall prove
that F~’ converges P**-dp to the process V.
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We begin by stating some general facts. Let ( S, p ) be a complete
separable metric space, and ,t3 ( S) the set of its B orel subsets. Let ~ ( S)
be the collection of probability measures on (S, ,~3(S)), and topologise

by the topology of weak convergence. (See [4], pp. 236-239.) Let
,~ (~ ( S) ) be the corresponding B orel subsets of P(S) . Let (Q , X, I~** ) be
a probability space and suppose that, for s &#x3E; 0, the mapping w r-+ v~ is a
measurable function from (Q , F to (P(S) , ,l3 (~ ( S ) ) ) .
LEMMA 7. .1. - Let v E The following statements are equivalent.
(a) f fd03BD~03C9 ~  f d v in P**-probability as s ~ 0, for all bounded

continuous functions f on S.
(b) f ~  fdv in P**-probability as 8 --+ 0, for all bounded

uniformly continuous functions f on S.
(c) v) ~ 0 in P**-probability as s --+ 0, where 7t is the

Prohorov metric on 

Proof. - Suppose T is any topological space, v E T , and (for s &#x3E; 0)
v£ is a T-valued random variable on the probability space (Q , X, IP&#x3E;**).
Let Mv be a sub-basis for the topology at v. Then 03BD~ --+ v in IP&#x3E;**-

probability if and only if

By results in [4] (pp. 236-239, and Theorem 1.2 on p. 8), (a)-(c) may
each be rephrased in the form (7.2) for a suitable choice of sub-basis .l~"
for the topology of weak convergence on T = at v. D

If (a)-(c) hold, we say that v~ converges weakly in P**-probability to
v, written v~ - v P**-wp.
Now suppose that (SZ’, ~, is another probability space and that, for

8 &#x3E; 0, the mapping (w, w’) is a measurable function from the

product space (~2 x S2’, ,~ x to (S, ~(5’)). Let v E We shall

say that X~ ’converges in distribution in P**-probability’ (abbreviated
to ’P**-dp’ ) to v (as 8 -~ 0) if P’({~: .}) - v(.) P**-wp. We
note that it is a consequence of Fubini’s theorem that the mapping 
P’(X~ . e -) is a measurable function from (S2, .I’~ to (P(S) , ,~3(~(S))).
The next lemma follows from the characterisation of weak conver-

gence contained in Lemma 7.1 (b) (cf. Corollary 3.2 of [ 15], p. 110).

LEMMA 7.2. - Let v E Suppose that, for 8 &#x3E; 0, both and

are measurable maps from (S2 x S~’’, ,~’ x 0/) to (S, ,~(S)), and that
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P’(03C1)(X~03C9,., Y~03C9,.) &#x3E; 1]) - 0 in P**-probability as £ ~ 0, for all ~ &#x3E; 0.

Then V - v 0.

We now return to the particular situation discussed in this pa-
per. We claim first that since X~ converges P**-dp to (as
~ - 0), the process t ~ 0) converges in P**-probability
to (~W (t / m ) : t &#x3E; 0). We next indicate why this holds. Let f be a
bounded continuous real-valued function on the Skorohod space A =

D([0, oo ) , The function on d defined by

is also bounded and continuous.
Note also that if T &#x3E; 0 and X, Y E 2!, then

where p is the Skorohod metric on L1 (see [15], p. 117). Therefore, by
Lemma 7.2, it suffices to show that, for fixed ~ &#x3E; 0 and T &#x3E; 0,

To this end, let ()o, 81, ... be the successive times n at which E

W(w). We shall couple the processes XW and Y~’ together by setting
= Y°(9k) . For t ~ 0, let N (t) be the number of renewals of the

sequence 90, 91, ... up to time t, i.e., N (t) = t }; we

define a process XW by = For s &#x3E; 0 and t &#x3E; 0, define
= In order to prove (7.3), it suffices to show that, for

&#x3E; 0,

and

Now,
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where A is the length of the longest light path intersecting the box
[-~-2T, E-2T ]d. Therefore

unless A &#x3E; r~/s. It follows that

by Theorem 3.1, where 03BE &#x3E; 0 is a constant. Eq. (7.4) follows.
In proving (7.5), we use the following result, which follows by:

standard manipulations using characterisation Lemma 7.1 (c), the Arzela-
Ascoli characterisation of compact subsets of C([o, oo), and the
definition ([15], p. 117) of the Skorohod metric p on the space /1 =
D([0, oo), }aed). We omit the details of the proof.
LEMMA 7.3. - For given T, ~, ~ &#x3E; 0, there exists y &#x3E; 0 such that

If 0  y  T, we have that

Note that N(~) ~ n, so for t &#x3E; 0. Since m § 1,
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we have that

If for T, then

Therefore,

By Lemma 7.3, it suffices to show that, for y, ~ &#x3E; 0 and T &#x3E; y,

This follows if we can show that, for 1] &#x3E; 0,

Using standard arguments from renewal theory, it suffices to prove that,
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It remains to establish (7.6). Let

Since a.s. convergence implies convergence in probability, it suffices to

show that, for cv, we have that fK - 0 Pg-a.s.; the rest of the
proof is devoted to proving this fact.

Suppose

is distributed according to P**, and suppose that 17 1, ... is a sequence
of random variables independent of ~o and of each other, each of which is
uniformly distributed on the set 7~ = = 1, 2,..., d } . For n ) 0,
let = where x E Zd is the first rw point encountered when
proceeding along the light path starting at 0 in the direction within

the environment ~n . (The shift r-x was defined above Lemma 5 .2. )
Let ~n = (~n, r~n ) . Then (~: ~ ~ 0) is a stationary Markov chain on

~** = Q ** x I ~ having invariant measure P** x v, where v is the uniform
measure on 1~. Let A C ~** be invariant under the action of the chain

(~n ) . It may be shown that A has the form A x I ~ for some A (d S2 ** )
which is invariant under the action of the chain (~). It follows from

the fact that the chain (~n) is ergodic that (~n) is an ergodic chain also.
Following the argument of [ 12] (Theorem 1.1, and the preceding remarks
on pp. 459-460) we deduce that (~n ) is an ergodic stationary sequence.

Let Àn = l (~~) where l : ~** -~ N was defined at the beginning of this
section. Since (~n ) is an ergodic stationary sequence, the same is true of
(~). Therefore,

by (7.1 ) and the ergodic theorem. Using Fubini’s theorem, the ’a.s. a. s.’

version of (7.6) follows.
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