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606 P. AUSCHER, T. COULHON

1. INTRODUCTION

Consider a nearest neighbourhood random walk on an infinite graph r.
Assume that the transition probability of the random walk is given by a
Markov kernel p (x, y), x, y E F, which is reversible with respect to a
positive measure m(x) on r. Denote by Pk(X, y) the convolution powers
of p (x, y), by d (x, y) the combinatorial distance between the vertices
x, y, and by Vex, r) the volume of the ball B(x, r) := {y ~ ( d (x , y)  r},
that is V(x, r) = m (y) . One says that h has regular volume
growth, or satisfies the doubling property, if there exists C such that

It is natural to expect (mainly because of the analogy with the
behaviour of the heat kernel on non-compact Riemannian manifolds) that,
if r satisfies (D) and if its geometry is sufficiently regular, then pk (x, y)
is uniformly comparable from above and below to quantities of the type

when x, y E r, k E N* are such that d (x, (otherwise pk (x, y) is
zero ! ).

Indeed, Thierry Delmotte shows in [8] that the expected upper and
lower bounds are equivalent to some geometric properties of r (or rather
of the weighted graph associated with 0393 and p), namely the doubling
property and a family of Poincare inequalities. This is the exact discrete
time and discrete space analogue of the main result in [ 17], (see also [ 12],
and [ 18] for a complete exposition).
On non-compact manifolds, the best known strategy to obtain similar

heat kernel bounds goes through Moser’s iteration [18]; this does not
seem to work on graphs for discrete time. Delmotte’s strategy is instead
the following: using Moser’s iteration, he proves a parabolic Harnack
principle for the continuous time process pt associated with pk. The
estimates follow for then a careful pointwise comparison between
pk and pt gives the theorem. The method is fairly indirect, and none of
its steps is straightforward. It appears therefore desirable to get a direct
and truly discrete approach to the problem. 

’

Some progress on that program is made in [4], where the upper bound
is obtained for a strictly larger class of graphs than the ones with (D)
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607GAUSSIAN LOWER BOUNDS

and (P). More precisely, for graphs with regular volume growth, the
estimate

is shown to be equivalent to some kind of localised L2 isoperimetric
inequalities called relative Faber-Krahn inequalities. This is performed
in purely discrete terms, except for a technical lemma whose only known
proof uses the associated continuous-time semigroup.

In the present paper, we take up the second part of the program,
namely to obtain, by purely discrete means, the lower bound of pk (x, y)
for graphs with regular volume growth from the upper bound and
the Poincare inequalities. We avoid the parabolic Moser iteration by
importing in this discrete setting the methods of [ 1 ] .
The basic idea is to consider the parabolic heat equation Apk =

as an inhomogeneous elliptic equation and to get Holder
estimates on pk by applying the Morrey type elliptic regularity theory.
This is done in Sections 3-5 below. This is the main part of the paper,
which can be summarized by saying that it provides us with a direct
derivation of the parabolic Harnack inequalities from the elliptic ones.

Indeed, the initial input needed by this method is a growth property
of the Dirichlet integrals of harmonic functions on balls, called the De
Giorgi property. This property turns out to be equivalent to an elliptic
regularity estimate, which follows from the elliptic Harnack inequality.
The latter can be obtained by the Moser iteration which, in the elliptic

case, does not meet the same obstacles as in the parabolic case (see [7]).
However, in Section 6, we show that the De Giorgi method, which is
classical for differential operators [6], also works in our setting and
offers an alternative route to the elliptic regularity. As one can expect,
the proof uses the John-Nirenberg lemma. However, assuming a slightly
stronger version of the Poincare inequalities, we also show, following the
exposition by Giaquinta [ 11 ] of De Giorgi’s ideas, that one can obtain the
elliptic regularity without going through any kind of John-Nirenberg or
Bombieri-Giusti type argument.
Our methods carry over very easily to the setting of heat kernels on

non-compact manifolds, and yield an alternative approach to the results
of [17] and [12]. This is, however, of less interest than in the discrete
case, since when the time is continuous, the additional difficulty of the

Vol. 35, n° 5-1999.



608 P. AUSCHER, T. COULHON

parabolic Moser iteration process with respect to the elliptic one is not so
great.

Finally, these methods may also open the way to the study of operators
with complex coefficients, in the spirit of [ 1 ], but in a discrete non-
Euclidean context.

2. PRELIMINARIES

2.1. Notation and assumptions

Let 7~ be an infinite graph. Assume that it is locally finite, i.e., every
vertex of 7~ has a finite number of neighbours. Write 
are neighbours. A path of length n between x and y in F is a sequence
xi , 0 = 1,..., n such that xo = x, xn = y and xi - i = 0, ..., n - 1.
Assume that 7~ is connected, i.e., there exists a path between any two
vertices. Let d be the natural metric on .T: d (x, y) is the minimal length
of a path between x and y. Denote by B (x , r) the closed ball of center
x E 7~ and radius r &#x3E; 0.

Let p be a Markov kernel on f, reversible with respect to a measure m :

Assume that p (x, y) = 0 if d (x, y) ~ 2 and that there exists K &#x3E; 0 such
~ 

that

The latter hypothesis is crucial to obtain lower bounds (at least in the
above form), see [8], and also [9] to see how one can deal with situations
where it does not hold.
We stress that the above will be standing assumptions throughout this

paper.
Next, set

Notice that all the information is contained in the function

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



609GAUSSIAN LOWER BOUNDS

since x - y if and only if /vtxy &#x3E; 0 and x ~ y, then m (x ) = xy and

p (x, y) = -~-. The object under consideration in the sequel is therefore
the weighted graph (F, 

Define y) = p(x, y) and

The volume I Q of a subset Q of r is defined by

Denote as above by V (x, r) the volume I B (x, r) of the ball B (x, r). The
lP norms on F are taken with respect to the measure m. For M G and

Q c r, the notation .

One says that (r,/~) has regular volume growth, or satisfies the

doubling property, if there exists C such that

Calculus on functions f defined on F is performed with the help of
the following operators.

1. Gradient

2. Length of the gradient

Note that

3. Laplace operator
Vol. 35, n° 5-1999.
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The following integration by parts rule holds:
If one of the functions f, g on f has a finite support then

One says that (V, /~) satisfies the Poincare inequality if there exists
C &#x3E; 0 such that

where ~) := 
One says that u E is harmonic (respectively subharmonic) on

Qcrif

We shall use several times the fact that if u is harmonic on S2 and k is a
real number, then (u - k)+ is subharmonic on Q .
The following Cacciopoli inequality is ’classical; in our setting see [7],

Lemme 5 .1.

PROPOSITION 2.1. - There exists C such that, for all x E F, 0  r 

R, and u subharmonic on B(x, R),

Note that in the above inequality one can of course substract any
constant to u in the right hand side, and that a good choice is .u R (x) .
One says that (7~, satisfies the De Giorgi property if there exists

C &#x3E; 0 and a ~]0,1[ such that for every x E r, every r, R such that

1 r  R, and every u E R0393 which is harmonic on B (x, R - 1 ), one
has

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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We prove in Section 5 below that (DG) is a consequence of (D) and

( P ) through the elliptic regularity theory.
For x E F and 7? ~ 1, define

One says that (r, satisfies a relative Faber-Krahn inequality if there
exist C &#x3E; 0 and v &#x3E; 2 such that

where q = v 2. For more information and a variational formulation of
(FK), see [4], §2.
Note the following easy consequence of (D) : for all 7? ~ r &#x3E; 0, for all

One can always take e &#x3E; 2. The following lemma can be found in [7],
p. 31, see also [4], §6.

LEMMA 2.2. - (D) and (P) imply (FK) with v = 6~.

2.2. Upper estimates

Assume that (F, ~c) has regular volume growth. The main result of [4]
is that the estimate

is equivalent to (FK). More precisely, together with (D), the on-diagonal
upper estimate

implies (FK), which in turn implies (D) and the off-diagonal upper
estimate

Vol. 35, n° 5-1999.
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Recall that the latter together with ( D ) implies easily the on-diagonal
lower bound

(see [4], §6). In contrast, the off-diagonal lower bound

such that d (x, y) C k may very well be false under these sole assump-
tions, as it is the case for the standard random walk on two copies of Z2
glued together by a single edge. To see this, notice first that on this graph
( UE) holds (see, for instance, [3] for references) but ( P ) does not. Then
apply Theorem 3.11 in [8].

For the rest of this section we shall assume that (F, satisfies (UE),
which is in particular the case if (P) holds together with (D).

Fix y E F and set

Note that uk is a solution of the discrete heat equation

The following estimate, whose consequences are to be used in Section 4,
is derived from ( UE) in [ 16], Lemma 5. The proof relies in a crucial way
on the hypothesis (K ) on p. A much stronger and more difficult estimate
can be found in [2], but we shall not need it here.

LEMMA 2.3. - There exists C independent of y such that for every
k E N*, x E B ( y, ~),

COROLLARY 2.4. - There exists C independent of y E 1-’ such that,
for every k E N*, r such that 0 ~ r C and x E B(y, 

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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and

Proof. - Notice first that

since x E B(y, ~) . Then (i) is straightforward from Lemma 2.3. The
estimate (ii) is in [16], Lemma 7, where one takes y = 0, but in this
particular case the proof follows from Lemma 2.3 and the discrete heat
equation by a simple integration by parts. D

2.3. Statement of the main result

The following statement is contained in [8]. Our main goal is to prove
it in a more direct way. ,

THEOREM 2.5. - Suppose that the weighted graph (h, satisfies
(D) and (P). Then

for all x, y E r such that d (x, y)  k.

Remember that, with our assumptions, pk (x , y) = 0 if d (x , y) &#x3E; k.

2.4. The Morrey-Campanato embedding

In this section, we only assume that (r, ~c) satisfies (D). Let 7? ~ 1,
x E r and y &#x3E; 0. For f E JRr, define the Morrey-Campanato norms

The following kind of characterisation of Holder continuous functions
through such norms is classical (see [ 10], III, 1 ).

PROPOSITION 2.6. - Let y &#x3E; 0. There exists C depending only on the
doubling constant and on y such that, for every R &#x3E; 1, x, y E h such
that d (x , y) ~ R, and f E Iaer, one has

Vol. 35, n° 5-1999.
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Proof - Fix first x E F. Let 0 ~ r x R and e N. Write

It follows that

Now, if x, y E r and r = d (x , y)  R, one has

Finally

and thanks to doubling, n B(y,r)!, , vex, r) and V ( y , r ) are

uniformly comparable.
This yields

which is the claim. 0

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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3. FROM THE PARABOLIC OSCILLATION ESTIMATE TO
THE OFF-DIAGONAL LOWER BOUND

Assume that ( U E ) holds, and that there exist &#x3E; 0, and C &#x3E; 0

independent of y such that, in the notation of Section 2.3,

In other terms, Vx , y E r such that d (x , y )  ~ ~,

Now recall that the on-diagonal lower bound

is a consequence of the upper bound and the doubling property ([4], §6).
It follows that

and if one chooses a x 3 such that one has

for all x, y E r, k E N*, as soon as d (x , y) ~ 
From there a classical iteration argument ( [5,14] ) yields the full off-

diagonal lower bound

for all x, y E r such that d (x , y) ~ k.
Our main task is therefore to obtain the parabolic oscillation estimate

(PO). To this end, thanks to Proposition 2.7, it is enough to control the
norm of the functions uk in some suitable Morrey-Campanato spaces.

Vol. 35, n° 5-1999.
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4. FROM DE GIORGI’S PROPERTY TO THE PARABOLIC
OSCILLATION ESTIMATE

From now on we assume that ( h, ~~ ) satisfies (FA*) (therefore (D),
see [4], §2).

Let us begin with two lemmas. The first one follows directly from (FK)
by Hölder. Recall that C R..r = { /’ e supp / c f3 (.v, R - ))}.
LEMMA 4.1. - There exists C &#x3E; () .r E F, R &#x3E; I ,

u E CR,x(r),

Our second lemma is an application of Lax-Milgram.
LEMMA 4.2. - Let u ~ R0393, x E F, R &#x3E; l. There exists a unique

v E CR,x such that Ov = Du on B(x, R - 1 ). Moreover,

Proof - Set

This bilinear form restricted to CR,x is a scalar product:

yields a norm by Lemma 4.1.
The representation theorem of Riesz shows the existence of a unique

v E CR,x such that

Now

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Since one clearly has

this yields the final assertion of the lemma.
Finally, if f’ E integration by parts gives

which implies

This ends the proof. D

Note that u - v can also be seen as the solution to the Dirichlet problem
in B (x , R) with boundary values equal to u.
We now state a first estimate for the inhomogeneous equation’ AM = f.

LEMMA 4.3. - Let f E JRr and u E CR,x be such that Du = f on
B (x , R - 1 ) . Then

Proof - By integration by parts,

Cauchy-Schwarz gives then

The conclusion follows by Lemma 4.1. D

The following proposition is the key to our analysis. It is similar

to Morrey’s fundamental estimate in his treatment of inhomogeneous

Vol. 35, n° 5-1999.
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elliptic equations (see [15]). The idea to use it in order to obtain parabolic
estimates comes from [ 1 ] .

PROPOSITION 4.4. - Assume that (F, satisfies (FK) and (DG). If
u, f ~ g0393 and Au = f on }Rr, then, Vx E r, 1 x r  R, one has

where C &#x3E; 0 and 0  a  1 are the constants in De Giorgi’s property,
and C’ is the constant in Lemma 4.3.

Proof - By Lemma 4. 2, there exists v E Cx , R ( h ) such that Au = f on
B(x, R - 1). Set w = u - v. Write

Since Aw = 0 on B (x , R - 1 ) , (DG) yields

Lemma 4.2 says that

hence

This gives the first term in our estimate. Now Lemma 4.3 yields

The conclusion follows. D

We are now able to prove our key result. In the next section we shall
see that in fact (DG) follows from (D) and (P).

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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PROPOSITION 4.5. - Suppose that (I~’, /1) satisfies (D), (P), and
(DG). Then the parabolic oscillation estimate (PO), therefore the lower
bound (LE), holds.

Proof - By Lemma 2. 2, (D) and ( P ) imply (FK), therefore we can
use Proposition 4.4. Let y ~ F. Define uk = uk as in Section 2.2. For
x ~ 0393, k ~ N* and r &#x3E; 0, set

Since

Proposition 4.4 yields, for 1 x r  R,

with 0  a  1. According to Corollary 2.4, (i), Qk satisfies,
if 1 ~ r ~ 7? ~ ~,

Fix fJ, 0  j6  a and choose i e]0,1[ such that 8Cr~"-~ ~ t2(,~-1) .
Then, if t R &#x3E; 1 and R # V~,

By iterating, one obtains

By doubling, ~~~+~ ~ C(r), so that the second term is smaller than

Vol. 35, n° 5-1999.
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Set now R = and, for r E [ 1, ~], let j E N be such that

One has

Since Corollary 2.4, (ii) tells us that we obtain, for

all x e r, k ~ N*, and 1 ~ r ~ 

By Poincare,

i.e., in the notation of Section 2.4,

Recall now that u k = uyk, with d(x, y) x Jk;, hence 
V (y, k). We have therefore

and Proposition 2.7 yields

i.e., the estimate (PO). The lower bound (LE) follows from Sec-

tion 3. D

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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The step from (*) to (**) in the above proof was very much inspired
by the Lemma in [ 11 ], p. 44. 

5. FROM THE ELLIPTIC REGULARITY TO DE GIORGI’S
PROPERTY

In [7], Delmotte proves the following result (Propositions 5.3 and 6.2),
as a consequence of the elliptic Moser iteration process.

PROPOSITION 5.1. -Assume that (r, satisfies (D) and (P). Then
there exists a, C &#x3E; 0 such that for every xo E 1-’, R &#x3E; 1, u E harmonic
in B (xo , R) and x, y E B (xo, R ~4), one has

The estimate (DG) follows from this result. Indeed, if u is harmonic
in B (xo , R ) (we change R - 1 to R for convenience) and 1 x r  R / 8,
write, for x E B (xo , 2r ) ,

thus

Vol. 35, n° 5-1999.
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Applying doubling, Poincare and Cacciopoli (Proposition 2.1 ), one

obtains

if 1 x r  R / 8. The case RI8  r  R being trivial, this yields (DG).
Theorem 2.5 is proved.
Note that under ( D ) and (P), one can also easily deduce (ER) from

(DG), with the help of Section 2.4.

6. ALTERNATIVE PROOFS OF THE ELLIPTIC REGULARITY

In this section, we present an alternative proof of Proposition 5.1,
following the scheme of the De Giorgi method (or rather its exposition
by Giaquinta) for regularity of solutions of elliptic PDEs (see [6,11 ] ).
An additional ingredient needed is a John-Nirenberg type lemma taken
from [7]. We also show that, if one makes a slightly stronger assumption
than (P), one can give a self-contained and elementary proof of (ER),
therefore of the lower bound in Theorem 2.5, that does not rely on the
John-Nirenberg lemma (or alternatively the Bombieri-Giusti lemma).
We first use the fact that (FK) implies an L2 mean value property

for harmonic functions. This is also a step in the proof of (ER) in [7]
(Proposition 5.3). However, we give a slightly different proof, inspired
by [ 11 ], Theorem 5.1.

PROPOSITION 6.1. - Assume that (h, ~u,) satisfies (FK). Then there
exists C &#x3E; 0 such that, for all R &#x3E; 0, Xo E r, and u E JRr harmonic
in B (xo, R),

Proof. - By Holder, for q = 8 2 , p &#x3E; 0 and h E R,

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Apply now (FK), to obtain

Now (u - h)+ is subharmonic and Proposition 2.1 yields, for r E]p, R],

Denote by p ) = A (h , p) the set {x E B (xo , p ) ; M(;c) ~ h } and by
a (h, p) its measure. Set

One has

Moreover, for h &#x3E; k,

that is

Using the fact that u (h, p) is non-increasing in h and non-decreasing in
p, ( 1 ) and (2) yield

Vol. 35, n° 5-1999.
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Inequality (3) yields

/ ()
therefore, since ~~B ~ C (--1L), V(~,~+l)~ ’

From (4) one proves easily by induction that

with p = (9 + 2.

By letting n go to infinity, one concludes that

This means that, for all x E B (xo, R/2), .

The lemma is proved. D

Set M(r) = u (x ) and mer) = u (x ) . Applying
Proposition 6.1 to u - h, where h E R is such that h  M ( R ), one obtains

Here is the crucial lemma.

LEMMA 6.2. - Assume that (h, ,cc) satisfies (D) and (P). Let u 
be harmonic in B(xo, R), xo E h, R &#x3E; 0. Set M = M(R/2), m =

m ( R / 2), and h o = h Q ( R / 2) _ There exists C independent of xo, R
and u such that, if a (ho, R/2)  ~~x~2R ~’~, then for all h with m  h  M,

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Proof. - Normalize u so that M = 1 and m = 0. Then

Hence, for every a &#x3E; 0,

Now, since 1 - u is a positive harmonic function,

([7], p. 28; this is where ( P ) is used), therefore, by the John-Nirenberg
lemma ([7], p. 25), one can choose a for which there exists C such
that

Next, by the hypothesis,

One obtains

and the desired inequality follows. D

Proof of Proposition 5.1. - Fix xo E 1-’, R &#x3E; 1, and let u E be

harmonic in B(xo, R). Define M(r), m(r), ho = ho(r) and a(h, r) as

Vol. 35, n° 5-1999.
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above. Let r R /21 . Apply (6) with R replaced by r and h replaced
by

to obtain

Assume that a (ho, r)  v~ 2 ’r~ , otherwise work with -u . Lemma 6.2 says
that

therefore one can choose i large enough so that

One obtains

hence

Set = M (r) - One has

where ~ = 1 - 2i+2 E]O, 1 [. It follows that there exists C, a &#x3E; 0 such that

In particular,

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Now, it follows easily from Proposition 6.1 that

Proposition 5.1 is proved. 0 

Now, instead of ( P ) = (?2). we assume, for ~ e]0,1],

We shall use in fact the following formulation of ( P2_~ ) :

‘d f E x E r, r &#x3E; 0. It is easily seen by checking the elementary
inequality

For the fact that ( P2_£ ) implies ( P2), but that, given £ &#x3E; 0 there exists a

graph r such that ( P2 ) holds but ( P2 _£ ) fails, see [ 13 ] .
We are going to prove the following weak form of Proposition 5.1.

PROPOSITION 6.3. - For every ~ e]0, 1], (D) and (P2-g) imply (ER).

In order to by-pass the John-Nirenberg type argument, one first

replaces Lemma 6.3 by the following one.

LEMMA 6.4. - Assume that (F, satisfies (D) and (P2_£). Let xo E
r, R &#x3E; 0 and u E r harmonic in B (xo, R). Set

Vol. 35, n° 5-1999.
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Assume that a (ko, R /2)  v~x°2R 2) . Then

where C does not depend on xo, R, or u.

Proof. - For h &#x3E; k &#x3E; ko, set v = (u - k)+ A (h - k). By assumption,

The Poincare inequality (P2-s) yields therefore

Hence

Now one easily checks that Vx E F, that = 0
if x is not in A (k, R / 2) B A (h , R / 2) and has no neighbour there, and

. finally that ifjc~A(~/?/2)BA(/!,/?/2), but there exists y ~ x belonging
to A(k, R/2) B A(h, R/2), then where C only
depends on the constant in (D). Therefore

By Holder,

Now

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Since (u - ~)+ is harmonic, one infers from Proposition 2.1 that

Thus

Since k k 1 = M(R)-ko and M(R) - k - M(R)-kO the above
inequality yields

Using the fact that a (ki , R /2) is non-increasing in i , one obtains

Hence

and the claim follows. D

Then the proof of Proposition 6.3 is similar that of Proposition 5.1
above except that, instead of (7), one begins with the inequality
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