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532 M. GRADINARU ET AL.

INTRODUCTION

Let (X~ ~ 0) be a nice real-valued diffusion, with scale function s
and speed measure m; we are particularly interested in the case when Xt
is Brownian motion, or a Bessel process with dimension d 2[.

In a number of problems, the laws of inhomogeneous functionals

are of interest (see, e.g., [3,4,23]). Such functionals may be represented
as (inhomogeneous) integrals of the local times of X :

where

are the (diffusion) local times at level x associated with X (see, e.g., [II],
p.174).

Although the computations of the laws of f© f (s, may be

obtained, in theory, from the Feynman-Kac formula, these computations
are not easy in practice. Thus, it seemed natural to first consider the

"simplest" cases (in view of (0.1)), i.e., the computations of the laws of

where Lt = L? is the local time at level 0.
Now, the moments of L~ are easily obtained in terms of the densities

y) of the semi-group Pt (x, d y) with respect to m (d y), i.e.:

Indeed, it follows from (0.1) and the continuity of p;(x, y) (see,
again, [II], p. 175), that:

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques



533ABEL TRANSFORM AND LOCAL TIMES

We denote, for simplicity, q (t) := ~t (0, 0). With the help of the Markov
property, the moments of are given by:

Using Fubini’s theorem, we can write:

where

In the particular case when X is the Bessel process with dimension
d = 2( 1 + n ) , where n E ] -1, 0 [, we get

so that Q is then a multiple of the Abel integral operator (see Section 1.5
below) with index a = -n. Hence, the Abel integral operators are

naturally closely related to the laws of for Bessel processes (see also
Remark 4.1).
More generally, the above computations, which could be extended to

the computations of the moments of J~ f (s, Xs) d s are well-understood
in the diffusion literature (see, e.g., [ 19] for some particular examples).

However, what may be a little newer is that in this paper is our
characterization of the law of

for the Bessel process R, for the Bessel bridge, conditioned to take the
value y in time 1, and in particular y = 0. Recall that = L 1 ( R ) is

Vol. 35, n° 4-1999.



534 M. GRADINARU ET AL.

a Mittag-Leffler random variable with parameter In (see, e.g., [7], p. 447
or [ 14], p. 129).

Moreover, we show that the random variables

are independent, and Joz Z + v ) d Lv ( R ) is exponentially distributed
with parameter 1. Here, Z is a random variable independent from R. Its
probability density function, a f on [0, 1 ], is the Abel transform of index
1 + n of the derivative of a regular increasing function f. The function cp
is related to f by the equality cp = 

Clearly, the particular case n = -1 /2 corresponds to the process ,

with B the linear Brownian motion.
Our approach is based on two probabilistic representations for the so-

lution of a partial differential equation with mixed boundary conditions.
Using Abel’s transform and these two representations (the backward Kol-
mogorov representation and the Fokker-Planck representation) we de-
duce some useful information on functionals of local time L~. Some
results obtained here may be proved using the dual predictable projection
of the last passage time in 0 (see another proof of Corollary 3.4).
The plan of the paper is as follows. After some useful preliminaries on

Bessel processes and Abel operators (Section 1 ), we give the probabilistic
representations for the solution of this partial differential equation and the
analytic relations involving Abel’s transform (Section 2). In Section 3
we state our main results. The proofs are given in Section 4. We
also make a number of remarks. This paper is a complement and a
generalization of [ 10] . One of the novelties in this paper is the importance
of the Abel transform which we had not realized, hence also not
introduced in our 1997 preprint. Finally, for practical and pedagogical
purposes, we collect in Appendix A the main formulas obtained in both
papers.

1. PRELIMINARIES

In this section we review a few basic facts on Bessel processes and on
Abel operators. For the proofs of these results, the reader may consult the
book [17], Chapter XI (see, also, for a number of applications, [15,20,
22]), respectively, the book [9], Chapter 4.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



535ABEL TRANSFORM AND LOCAL TIMES

1.1. Bessel processes and Bessel semi-groups

For any d > 0 we denote by R; the square of a d-dimensional Bessel
process, the unique solution of the stochastic differential equation

where f3 is a linear Brownian motion. The law of the square of a d-di-
mensional Bessel process, started at x, is denoted and satisfies the

following additivity property:

for every d, d’ > 0 and x, x’ > 0. Take 0  d  2 and denote by n :=
d/2 - 1 E ]-1, 0[ the index of the Bessel process, and Q ? : := From

the additivity property we deduce the Laplace transform

By inverting the Laplace transform we get, for n > -1, the density of the
semi-group of the square of the Bessel process of index n, started at x :

where In is the Bessel function of index n. For x = 0 this density
becomes:

The square root of the square of a Bessel process of index n, started at a2,
Rt, is called the Bessel process of index n started at a > 0. Its law will
be denoted by The density of the semi-group is obtained from that of
the square of a Bessel process of index n, by a straightforward change of
variable. We obtain, for n > -1,

and

Vol. 35, n° 4-1999.



536 M. GRADINARU ET AL.

From ( 1.1 ) we see that, for positive Borel functions u, v,

where 03A0nt denotes the semi-group of the Bessel process of index n

and

Hence the semi-group is symmetric with respect to the invariant measure
given by:

The infinitesimal generator of the Bessel process is

on

(see also [ 13], p. 761, or [6], pp. 114-115).
A continuous process (rt: t E [0, to]), the law of which is equal to

is called the Bessel bridge from a to b over [0, to]. In the sequel, we shall
be interested in the Bessel bridge rt from 0 to 0 over [0, 1 - s], with
S E [0, 1].

1.2. Absolute continuity properties and law of the first hitting time
of 0

It is known that for -1  n  0 the point 0 is reached a. s. under p~ and
it is instantaneously reflecting. Let us denote To := inf{t > 0: Rt = 0}
and Ft := t } . Then, the laws of the Bessel processes satisfy

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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the following absolute continuity property:

an equality which is satisfied for every ~ ~ 2014 1. Note that p~ is the law of
the 2-dimensional Bessel process starting from a. From this we deduce,

= -n, since 20141~~0).
Let us denote by the semi-group of the Bessel process killed at To

and we can deduce from ( 1.2) and ( 1.4), that, for positive Borel functions
u, v,

Moreover, by (1.4), we can deduce the Williams’ time-reversal prop-
erty : the processes

are identical in law (cf. [ 18], p. 1158 or [ 15], p. 302). Here we denote

Therefore

Using a result in [ 15], p. 329 (or [ 17], p. 308, Ex. (4.16), 5° ), we can write

Using ( 1.1’) we obtain the density of To, under Px,

(for this particular result and n > 1 /2, see also [8], p. 864).

Vol. 35, n° 4-1999.



538 M. GRADINARU ET AL.

We also note that, using the strong Markov property at To we get, for
y > 0,

Here pt ~"(o, y) is the density of the semi-group IIt with respect to the
invariant measure v.

1.3. Local time at level 0

The local time at level x for the Bessel process L: (R) can be defined
as an occupation density: for every positive Borel function h,

Note that we use a different normalisation than in the formula in [17],
p. 308, Ex. (4.16), 4° and also than in (0.1 ) in the Introduction.

This choice of local times agrees with the fact that 21n is

a martingale. Indeed, is a 5i -submartingale and it suffices to write
its Doob--Meyer decomposition to obtain (up to a constant factor).
We often denote Lt(R) instead 

Let us now mention two related scaling properties. Firstly, the Bessel
process has the Brownian scaling property, that is, for any real c > 0,
the processes Ret and cl/2 Rt have the same law, when Ro = 0. Secondly,
{Lt(R): ~0} inherits from R the following scaling property: indeed,
by ( 1.9),

We also recall that,

(see [16], p. 655, and [12], p. 44, for the case of Brownian motion,
n = -1 /2).

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



539ABEL TRANSFORM AND LOCAL TIMES

1.4. A simple path decomposition and the Bessel meander

It is known that, conditionally on gt, gt} is independent of
{~: ~ ~ gt}, where gt := = 0} . More precisely, the Bessel
meander

is independent of Fgt (see [20], p. 42). Let us recall also that, for fixed
t > 0,

where by Za,b we denote a beta random variable with parameters a, b
> 0:

Moreover, for every t > 0,

where ~(1) denotes an exponential variable with parameter 1 and 2~(1)
is a Rayleigh random variable having density u e’~ ~t[o,oo[(~).
1.5. Abel’s integral operator

The Abel transform of a positive Borel function f on [0, oo[, is defined
as

o

where a > 0. The operator Ja is called Abel integral operator, or

fractional integral operator. Our principal interest is for 0  a # 1.

Clearly, J 1 is the ordinary integration operator, that is J 1 f is the

primitive of f.
By straightforward calculation we can verify that, for a, ~8 > 0,

This, together with the previous remark, implies, if f (0) = 0,

Vol. 35, n° 4-1999.



540 M. GRADINARU ET AL.

Let us also note that if 8y (t) := tY , y > 20141, then

2. TWO PROBABILISTIC REPRESENTATIONS

Let us consider c~o a continuous function with growth less than

exponential at infinity, and f a continuous function such that f E
C~(]0, oo [) . Assume that = f (0) = 0.

2.1. Dirichlet and Fokker-Planck representations

Recall that £ is the generator of the Bessel process (see ( 1.3)). There
is existence and uniqueness of the solution of the problem

with

and

It admits both a Dirichlet representation (Proposition 2.1 below) and
a Fokker-Planck representation (Proposition 2.2 below). We shall then
compare these two representations (Proposition 2.3 below).

PROPOSITION 2.1. - The solution x) of (2.1)-(2.3) can be writ-
ten as

where

Proof. - To obtain (2.4) it suffices to solve the Dirichlet problem for the
operator £ - on [0, oo[x[O, t ] (see also[10], Proposition 1.2). D

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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PROPOSITION 2.2. - The solution co(t, x) of (2.1 ~(2.3) (also) admits
the following Fokker-Planck representation

where, if cv is given by (2.4),

Remark. - (i) Unlike formulae (2.5) and (2.6), formula (2.7) features
the "unknown" function both on its left and right hand sides.

(ii) The decomposition (2.4), ~ = WI + W2 yields a corresponding
decomposition

(with obvious notation). In Proposition 2.4 below, and f03C62 shall be
given in a closed form, in terms, respectively, of cvo and f.

Proof ofProposition 2.2. - Let ~p be given by (2.8) and define

We introduce, for t > 0. x > 0. the function (t, x l defined hv

Here h is an arbitrary bounded positive Borel function and we denote

(i) Let g : [0, oo[x[0, oo [-~ [0, oo [ be a smooth function with compact
support disjoint of [0, oo[x{0}. Ito’s formula gives
Vol. 35, n° 4-1999.
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v

so, taking the expectation, we can write

u

Taking the derivative with respect to t we get

Since the support of g is disjoint of [0, oo[x{0}, integrating by parts we
deduce

Hence w satisfies (2.1 ).
(ii) Let us consider u and v two smooth functions defined on [0, oo[
and take now g : [0, oo[x[0, oo [~ R a smooth function with compact
support such that get, x) := + vet) in a neighbourhood of
[0, oo[ x {0}. Since 21n is a martingale, Ito’s formula gives

t

(iii) Assume that u, v, cp verify

By the same arguments of (i) and by (c), we obtain again (b). Since the
assumptions on the function g are different, let us detail the integration

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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by parts on the right hand of (b). Using the form ( 1.3) of the operator ,C
we can write,

Since ~ verifies (2.1 ), replacing the above equality in (b), we deduce

(iv) Since u, v are arbitrary functions, combining (c) and (d) we get

Moreover, ~ satisfies

Since wand w verify the same parabolic equation (2.1 ) with the same
initial and mixed boundary conditions (2.2) and (2.3), we deduce that
5== w.

(v) Therefore, by (a) we deduce that, for every bounded positive Borel
function h,

Vol. 35, n° 4-1999.
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By conditioning with respect to Rt = y on the right hand side of the above
equality we obtain (2.7), since h is arbitrary. D

Now, the Dirichlet representation of 03C9 naturally decomposes (ù into
WI + cv2 and, in the next proposition, we also find this decomposed form
in the Fokker-Planck representation.
PROPOSITION 2.3. - The decomposition 03C9 = cvi + w2 appears as

.follows in the Fokker-Planck representation: for t, y > 0,

and

ox equivalently,

Here, pt is given by ( 1.1 ), ( 1.1’), ~ by ( 1.7) and cp by (2.8).

Proof. - The first equality in (2.9) is only the translation of the

symmetry of the semi-group of the killed Bessel process /7jB with respect
to the measure v (see ( 1.5)). The second equality in (2.9) is obtained
thanks to formulae ( 1.1 ) and ( 1.4), from which the formula

follows. To get (2.11) we use the strong Markov property at To. D

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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2.2. Analytic relations involving Abel’s transform

There exist some analytic relations between the functions f and cp
involving Abel’s transform (cf. Proposition 2.4 below).

Recall that f is a continuous function such that oo[) and

f (o) = 0. Let us introduce, for ~0, and -1  n  0, the constant

and the function

Recall that, from ( 1.14’), we have = cn f ) (t), hence

We now give the promised explicit representations of cpl and cp2 (see
the remark following Proposition 2.2):

PROPOSITION 2.4. -Assume that ~p is given by (2.8) with cv the

solution of (2.1)-(2.3). Write cp = cpl + 03C62, where

Then, we have

and, consequently:

Proof. - We need to compute the limits in (2.8’). First, using (2.9)
and ( 1.1 ), we can write

Vol. 35, n° 4-1999.
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Since

(2.14) follows from (a) by direct calculation.
On the other hand, by (2.6) and ( 1.7), we can write

from which we deduce

To obtain (2.15 ), we write in (b), f (t - s ) - f (t ) = J/-S f ’ ( u ) d u , and,
by straighforward calculation, we find (2.12’ ). D

3. MAIN RESULTS

Before stating our new results, we explain the guiding idea behind
them: suppose (ùo and f are given. We shall write another form of (2.11 ),
using (2.6) and (2.16). For t = 1 and every y ~ 0, we get

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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since, by ( 1.7),

The first above equality was obtained using the two probabilistic
representations (2.1 )-(2.3) and Abel’s transform. We see that the given
function Wo does not appear in the above equality. It suggests the

following general result, where, this time f and cp are given as new
parameters:

THEOREM 3.1. - Consider the continuous functions f : [0, 1 ] ~
[0, oo[ and ]0, 1] - [0, oo[. Assume that (]O, 1]), f(O) = 0
and that converges as t j 0. If a f is given by (2.12’ ), then, for
every y > 0,

or, equivalently, for any positive bounded Borel function h,

In Remark 4.13 we prove a reciprocal result to Theorem 3.1. As
consequences of this theorem, we can prove the following interesting
results: Propositions 3.2 and 3.3 below concern the Bessel process,
whereas Propositions 3.5 and 3.6 below concern the Bessel bridge r (see
also the end of the Section 1.1 ).

PROPOSITION 3.2. - Consider a continuous increasing function
f : [0,1] - [0, oo [ such that f E C~(]0,1]), f(0) = 0 and ctP

for some constants c, p > 0) as t j 0. We also assume, without loss
of generality, that the function f is chosen such that the constant k f
Vol. 35, n° 4-1999.
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in (2.13) equals 1. Consider a random variable Z with the proba-
bility density function a f ( 1 - independent of R. Then, for
cp := a f / f, the random variables

are independent. Moreover,

PROPOSITION 3.3. - Consider a continuous function Q : ]0, 1]
- [0, oo[ such that converges as t j 0. For ~, > 0, we denote

Then,

where, cn is given by (2.12), and we denote, for a positive Borel
, function h,

Here and elsewhere h(a) = h ( 1 - a). Hence,

COROLLARY 3.4. - For any random variable Z > 0 a.s., independent
of R, the integral .

is a standard exponential variable and is independent of Z.

In Remark 4.6 we prove a reciprocal result to Corollary 3.4.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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PROPOSITION 3.5. - Consider a continuous increasing function f :
[0, 1 ] - [O,oo[ such that f E 1 ] ), f (0) - 0 and f ’ (t ) ^J ctP
for some constants c, p > 0) as t t 0. We also assume, without loss
of generality, that the function f is chosen such that f ( 1 ) = 1 /2, or,

equivalently

Consider a random variable Z with the probability density function

and Z is independent of r. Then, for cp : = a f/f,

COROLLARY 3.6. - If Z (l~) a > 0, is a beta random variable,
independent of r, then,

PROPOSITION 3.7. - Consider a continuous function Q : ]0, 1] -
[0, ~[ such that converges as 0. For À > 0, we denote

Then,

where cn is given by (2.12), and we denote, for a positive Borel function h,

Vol. 35, n° 4-1999.
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(recall that Ey (s) = sY). Hence,

4. PROOFS AND REMARKS

Proof of Theorem 3.1. - (i) Let us denote = It is enough
to consider (3.1) for f and 1fr positive polynomials. Indeed, for general
functions f, 1fr, the result is obtained by a limiting procedure: there exist
positive polynomials fk and 1frk, such that

uniformly, when k t oo (thus a fk - a f ).
(ii) As said in the beginning of the previous section, to get (3.1 ) we need
to verify the equalities (2.11 ) (combined with (2.6)) and (2.16). Suppose
that, for given f, cp, the integral equation (2.16) has a solution, cvo.

Then, Section 2.1 asserts the existence of the solution w (t , x) of the
problem (2.1)-(2.3), with boundary conditions f and wo. Moreover,
by (2.8), we can find a function, which we denote, for the moment, as

Since, by Proposition 2.4, if; verifies (2.16) we conclude that if; = cp.
Finally, by Propositions 2.1-2.3 we get (2.11 ). Therefore, we need to
study the integral equation (2.16).
(iii) By composition with J -n in (2.16), and using ( 1.14’ ), and (2.12’ ),
we obtain

(since f (0) = 0). Now we use the next equality

We can verify (b), by ( 1.8), ( 1.7) and ( 1.1’). Replacing (b) in (a) and using
again ( 1.1’) we obtain that (2.16) is equivalent to

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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We need to prove the existence of a solution cvo for (c).
(iv) Let us note that, for given f, cp, such that = with f, ~
positive polynomials, J-n(cpf) is also a positive polynomial. By ( 1.13),

and the right hand side is a positive polynomial in t.
(v) It suffices to prove the existence of a solution c~o for

where net) is a positive polynomial, with 7r(0) = 0. Since, for p > 0,

there is existence of a solution, wo(x), of the equation (c’), which is a
polynomial in x, with = 0. D

Proof ofProposition 3.2. - First, we note that by the hypothesis on f,
the function cp satisfies the assumptions of Theorem 3.1. Take h > 0 and
apply (3.1’) with the function cp = a f/ f replaced by Then, for every
positive bounded Borel function h,

Since 1 / ( 1 + À) = Jooo exp( -(1 + h) u) d u, we obtain (3.2), noting that h
is arbitrary. Taking in the above equality h = 1, by (2.13) and integrating
with respect to y, we get on the right hand side ( 1 + ~,) -1 (because
k f = 1 ). We deduce (3.3) at once. o

Proof of Proposition 3.3. - It is enough to prove that ~1~ verifies (3.5).
We begin by proving that, for l a regular function,

Vol. 35, n° 4-1999.
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(with l’(s) = -l’(1 - s)). Indeed, by (2.12’) and integrating by parts,

Taking f : := the Dirac delta function in the above equality, we get

from which we deduce (4.1 ).
Integrating with respect to y in (3.1) (with 03BB 03C6 instead of we obtain

Take now l(s) and f = ~a and assume just for a moment that
Acp is regular. In this case, using (4.1 ), the above equality becomes:

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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or, since = 1,

By composition with J-n and by (1.14), we obtain,

(since r (n + 1)). Moreover, this equality is true for

continuous so the regularity assumption can be removed. D

Remark 4.1. - Clearly, by (3.7) we get, for a E [0, 1], and k E N* ,

If a = 0, this expression for the moments is identical to (0.2), up to
multiplication by 2, since, by (0.4), = 1. The factor 2 is given
by the different normalizations in (0.1) and ( 1.9); the local time defined
in (0.1) is the double of that in ( 1.9).

Remark 4.2. - We can prove the second part of Proposition 3.2, that
is (3.3), as a consequence of Proposition 3.3. Indeed, we need to compute

Z)], where Z is a random variable with the probability density
function f on [0, 1 ] . We can write

Vol. 35, n° 4-1999.
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(since cpf = a f ). Taking the expectation in (3.5) we get (1 + À) 
Z) ] = 1. Therefore, E[03C6(1 - Z) ] is the Laplace transform of ?(1).

Remark 4.3. - In the particular case := ~B > 0, we can

perform more calculations. Indeed, by (3.6) and induction, we get, for

Therefore, we obtain the moments

In [10] the case := tn was considered (see Section 2.3), and
the results were obtained by a slightly different method. Explicit laws ,

appeared for beta random variables Z 1, a , a > 0.

Remark 4.4. - We consider cp(t) := (1 - ~8 ~ n. Then we get,
by (3.6) and induction, for k E N*,

Therefore,

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Remark 4.5. - If we take in (3.7’) cp = 1 and a = 0, by the above
calculations with ~8 = 0, we obtain the moment expressions

that is the moments of a Mittag-Leffler random variable with parame-
ter Inl [ (see, e.g., [7], p. 447, or [14], p. 129; see also [5], p. 452). This
is equivalent to the well known fact that the subordinator { it : t > 0} is
stable with index In I:

Here i is the inverse of L(R), it := inf{s: > t}, and satisfies the

scaling property:

We can write, for any k E N*,

By (4.4),

and we deduce (4.5), using the injectivity of the Mellin transform.
Assuming (4.5), the above equality gives (4.4).

Proof of Corollary 3.4. - We simply take in (4.3), ~8 = n to obtain the
k-moments and the Laplace transform of Then, by
scaling, we note that Acp does not depend on a E [0,1[. The independence
property announced in the corollary also follows by scaling. D

Another proof of Corollary 3.4. - To prove (3.8), we may assume that
Z = 1, by scaling.
(i) We denote g : = gi = = 0}. It is sufficient to prove that
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is the dual predictable projection of Ct E [0,1], that is

for every predictable process h > 0 (see, e.g., [21], pp. 16-18). Indeed,
we can follow the method in [2], p. 99. Since Ag = Ai, taking in (b)
h = exp(-~A), we have, for every ~ ~ 0,

Thus, we obtain = 1 / ( 1 + À), the desired result.
(ii) We shall verify (b). It is enough to show this formula, for hv :=

where T is a stopping time with values in [0, 1]:

Using ( 1.7), we can write

where we denoted @ (y) : = fo e-s /2 ds . Then,

Here we denoted 03A8(y) := 03A6(y1/|n|) and by 0  t fi 1 }, the square
of the Bessel process of index n, whose infinitesimal generator is:

Clearly, (l + s ) ) = 0. Using the fact that 
21n I Lt(R) is a martingale (see Section 1.3), by Ito’s formula we can write
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Since = we get

by (a), and (c) is verified. D

Remark 4.6. - We can prove the following result which is, in some
sense, a reciprocal result of Corollary 3.4:
Assume that, for any a E [0,1[, the integral

is a standard exponential variable. Then

For the proof, we note, by (3.4), that, for any a E [0,1[, 
1/(1 + J~). By Proposition 3.3, 7~ verifies (3.5). Hence = cn .

Since, by (1.15), = r(n + 1), we conclude using the injectivity of
Abel’s transform.

Proof of Proposition 3.5. - The right hand side of (3 .1 ) can be written
as

We replace in (3.1) (with instead of cp) the above equality, the

expression (LF) for ps (0, y) and we simplify by y2n+l. Then, letting
y ~ 0, we get
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(recall that cp f = a f ). Since (recall that f ( 1 ) = 1 /2)

we get (3.10). To justify (3.9), we use (1.14’) and (2.12’):
1

Proof of Corollary 3.6. - The result is obtained taking f(t) =
in Proposition 3.5. D .

Proof of Proposition 3.7. - Let us denote

and

Clearly, and, for y = 0, f= 8-n-l With these
notations and using ( 1.1’), (3.1 ), with instead of cp, can be written
as

u

Taking in (c) f : = 3~ , the Dirac delta function, and using (4.1 ), we obtain
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Since, by (b), /(1) = 0, we get

or, by composition with J-n,

On the right hand side of (d), we make the change of variable u = vy2 to
get

Then, letting y t 0 in the above equality, we obtain,

and making a straightforward calculation on its right hand side, we
get (3.12). D

Remark 4.7. - By (3.14) we get the following moment expressions:
for a E [0, 1 ], and k E N*,

Remark 4.8. - We take = ~8 > 0. Then we get, by (3.6) and
induction, for k E N*,
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Therefore, we obtain the moments

Remark 4.9. - As in [10], Section 1.4, we can use the moment (or
the Laplace transform) formulas to deduce some limit theorems. For
example, by (4.6) we can prove that, for fl j 0,

Here, N(0, 1 ) denotes the standard normal distribution and

The proof of this result is similar to the proof of Theorem 1.27 in [10].
The same result can be obtained for the Bessel local time using (4.2): for
fJ {, 0,

Remark 4.10. - Proposition 3.5 can be obtained as a consequence of
Proposition 3.7. Consider Z a random variable with density

independent from the Bessel bridge r. We compute
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(since a f = Then, we take the expectation in (3.12) and we
deduce (3.10).

Remark 4.11.-We can obtain (3.3) from (3.10) and vice-versa.

Indeed, by ( 1.10), it is not difficult to see that

Here, we denote g := sup{s  1: R~ = 0} which is independent
from (g -1 /2 Rg t : ~  1 ) , hence from 0). From (4.8), we
obtain that, for any positive Borel function 1fr,

Recall that (see Section 1.4) g is a beta random variable with parameters
-n, n + 1. Then, by (3.14), to deduce (3.7) (both for a = 0), we need to
verify, for any k e N*,

For k = 1 we can write, by (3.13),
Vol. 35, n° 4-1999.
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as we can see by making the changes of variables t ( 1 - u ) = v and
s = (t - v ) / ( 1- v ) . The same reasoning applies for arbitrary k. We leave
to the reader the proof of the fact that (3.14) can be obtained by (3.7).

Remark 4.12. - Assume that the conditioning is { R 1 _a - y }, with
arbitrary y. Then a functional equation, similar to (3.5), can be written,
using (3.1 ):

where

and

Therefore, we get a similar expression as (3.7) for y) with 03C8(2022; y)
instead of the constant function 1.
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Remark 4.13. - Here, we give a probabilistic explanation for the

appearance of Abel’s integral operator, using the Bessel meander. In fact,
we can state a reciprocal result of Theorem 3. l:

Consider the continuous function f : [0, 1 ] - [0, 00[, such that f E
f (o) = 0, and assume that the random variable Z is

independent from the Bessel process R, having the probability density
function ~B ( 1 - Suppose that the random variable Rz has the
probability density function given by

Then, the function 03B2 is an Abel transform of f’. More precisely,

For the proof, we recall that, by ( 1.12) and ( 1.12’ ),

and independent of gt , being Rayleigh distributed. Let us denote,
for any positive bounded Borel function h,

Then, by (4.13 ),

Hence, the probability density function of the random variable Z - gz is

On the other hand, Z - gz Z(1 - gi), with gi independent from Z.
Recall that 1 - gi is a beta random variable with parameters n + 1, -n .
Hence,
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for any positive bounded Borel function l on [0,1]. Combining (a) and (b)
we get, for ye [0,1],

We make on the right hand side of (c) the change of variable v =
1 - (1 - y)/u and we get, after straightforward calculations,

We get the same result by composition with J-n in (4.14).

APPENDIX A. FORMULAE ON INTEGRALS OF BESSEL
LOCAL TIMES

We gather here the main results obtained in [10] (these are denoted
between brackets) and in the present paper.

Explicit laws

We denote by Lt (B) and Lt(b) the local times at 0 of the Brownian
motion B starting from 0, and of the Brownian bridge b ; we denote

by Lt (R) and Lt (r) the local times at 0 of the Bessel process R, of
index n E ] -1, 0 [, starting from 0, and of the Bessel bridge r. Here, Za, b
denotes a beta random variable with parameters a, b independent of the
process for which the local time is considered; in particular U = is

a uniform random variable on [0, 1 ] and V = Zi i is an arcsine random
variable. is the standard exponential distribution and y (2) is the

gamma distribution of parameter 2. c denotes a normalisation constant.
The last passage time in 0 before time 1 is denoted g = sup{s  1: Bs
or R~ = 0} . Z is independent of the process for which the local time
is considered. ~, is a strictly positive parameter. If f E with
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f (0) = 0, we denote by a f the function

(1) Brownian motion

(2) Brownian bridge
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(3) Bessel process
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(4.3), see also [D-K]

(4) Bessel bridge

(5) Ornstein-Uhlenbeck process
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k-th moments

Here, k E N* ; j6 > 0; cn = 2n+i r (n +1)/ For ~p, h : [0, 1 ] - II~+
Borel functions, we denote, for a E [0,1], 

-

and

(1) Brownian motion
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(2) Brownian bridge

(3) Bessel process
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(4) Bessel bridge

Limit theorems

Here 8n = (r’(1)/ r(1)) - (r’(~n~)/ 8-1/2 = log 4. We have
the convergence in law to the standard normal distribution of:
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