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ABSTRACT. - We study the set of Gibbs measures on associated to
interactions of Gaussian type which decrease exponentially. We obtain
simple criteria for the existence and uniqueness of such measures in
a subclass defined by support conditions. Moreover, we establish the
connectedness of the set of admissible parameters for which there is

uniqueness. More precise results on phase transition are given when the
lattice is one-dimensional (d = 1). Finally, we verify the stability under
small perturbations of the uniqueness property. @ Elsevier, Paris
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RÉSUMÉ. - On étudie l’ensemble des mesures de Gibbs sur associées
à une interaction de type gaussien à décroissance exponentielle. On obtient
des critères simples pour l’existence et l’unicité de telles mesures au sein
d’une sous-classe définie par des conditions de support. On établit de plus
la connexité de l’ensemble des paramètres admissibles pour lequels il y
a unicité. Des résultats plus précis sur la transition de phase sont donnés
quand le réseau est unidimensionnel (d = 1). Enfin, on vérifie la stabilité
de la propriété d’unicité sous de petites perturbations. @ Elsevier, Paris
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INTRODUCTION

The study of lattice random fields with prescribed Gaussian conditional
distributions was initiated by Dobrushin in 1966. Gaussian fields on

are special Gibbsian fields of high relevance for the following
reasons: At first, it is well known that Gaussian variables allow

precise computations (which imply fine results), even when they are

strongly dependent. So, lattice Gaussian fields are an example of

completely solvable Gibbsian fields. An important remark is that Gaussian
fields offer the only example of random fields (with non compact
spin state) for which the structure of the set of Gibbs measures

is precisely described. This remarkable work has been performed
independently by Dobrushin and Künsch in 1980. Rozanov, Chay,
Benfatto et al. had also contributed to this domain with various

results.

Nevertheless, the structure result obtained by Dobrushin and Knsch is
essentially abstract, since it links theoretically the set of Gibbs measures
with the kernel -hard to compute- of a linear operator defined on a
subset of Dobrushin suggested in his paper that restrictions (like
support conditions) on the set of considered Gibbs measures could allow
to get more precise informations, and he obtained fine results for potential
decreasing like the inverse of a polynomial.

In Section 1, under the assumptions that the interaction is exponentially
decreasing, we give a necessary and sufficient condition for the uniqueness
of a Gibbs measure in a large class in terms of the existence of a root of
a function in an annulus. We show that the set of symmetric potentials for
which we have existence and uniqueness of the Gibbs measure -with the
same restrictions- is arcwise connected.

Then, in Section 2, we study the set of Gibbs measures on R~
associated to an exponentially decreasing interaction depending of some
parameters: we find for which values of the parameters there is existence
or uniqueness of a Gibbs measure and we completely describe the set of
Gibbs measures.

Finally, in Section 3, we remark that under the restrictions we have

made, we recover the stability of the uniqueness of Gibbs measures when
the potential is subject to small perturbations. This stability, well known in
the case of compact spin state space, is lost in the non compact case if we
do not make any restriction on the set of Gibbs measures.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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NOTATIONS

By a lattice random field, we denote a probability measure on H = 
i. e. an element As usually, for z E the random variable Xi
will denote the canonical projection on the i-th component.

Let us introduce the concept of Gibbs measure. Each w E 0 can be
considered as a map from Z~ to R. We will denote wA its restriction to A.
Then, when A and B are two disjoint subsets of Z~ and (~, ri) E IRA x R~,
wq denotes the concatenation of w and ri, that is the element z E 
such that

For finite subset A of we define a(A) to be the a-field generated
by i E A}. 

.

For every finite A in let OA be a real-valued 03C3()-measurable
function. The family when A describes the finite subsets of Z~,
is called an interaction potential, or simply a potential. For a finite subset
A of the quantity

is called the Hamiltonian on the volume A. Usually, HA can be defined only
on a subset of fRz . We suppose that there exists a subset Q of H such that

(HA)A is called the Hamiltonian.

We define the range of the interaction to be the supremum of the diameters
of the subsets A for which  A does not identically vanish.
We now define the so called partition function ZA: denoting by A the

Lebesgue’s measure on the real line, we let

By convention, we set = 0 when the Hamiltonian is

not defined.

Vol. 35, n° 3-1999.
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We suppose that for each (j in S2, we have 0  ZA(W)  +0oo. Then, we
can define for each bounded measurable function f and for each cv E [2,

The operator TA is a kernel, generalizing the Markovian ones, Z~ playing
the role of the time. If a measure J-L on H is such that = 1, we

say that  is a Gibbs measure or a Gibbsian field when for each bounded
measurable function f and each finite subset A of lLd, we have

1. EXISTENCE AND UNIQUENESS RESULTS
FOR QUADRATIC INTERACTIONS

1.1 The quadratic Hamiltonian

We now introduce the three parameters of a quadratic potential.
Let J : R be an even function such that !~(~)! 1  +0oo,

h E R and 03B2 be a positive real number, physically considered as the inverse
of the absolute temperature.

Given these parameters, we deal with Gibbsian random fields  associated
to the potential 03A6J,h,03B2 defined on H by

Then, the corresponding Hamiltonian function is equal to

We can define

. On !1, HA is well defined. It is clear that it could not be possible to take
a larger !1, so this is a canonical choice.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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For fixed (J, h, 03B2), we denote by 6§,~ the set of Gibbs measures on
associated to the Hamiltonian given in (1). If (9~ contains more

than one point, we say that phase transition occurs. 6§ ~ is a convex set
whose extrême points are called pure phases. (For général results on Gibbs
measures, see [7].)

Sometimes, we also will call J a potential.
More notations are necessary to recall the following propositions 1 and 2

simultaneously obtained by Dobrushin [5] and Künsch [ 10] which are the
basis of our finer analysis.

We introduce J, the dual function of J, defined on a subset of Cd by

whenever the considered series is absolutely convergent. Since J is

summable, it is clear that J always defines a continuous map on U.

PROPOSITION 1. - Given (J, h,,~), the set of Gibbs measures C~~,h contains
at least one element if and only if the following three conditions are fulfilled

1. c ~+.

2. U1 (z)dz  oo, where dz is the normalized Haar measure on the
torus U.

3. Mh = E dl~ E = h~ ~ ~.

Remark. - In the proof of Proposition 1 (see [10] or [5]), it appears that
the first condition implies that 0  Z A (w)  -I-oo for w E À.

PROPOSITION 2. - The assumptions of Proposition 1 being verified,
the pure phases are the Gaussian measures ~c on with covariance

(i, j ) 1--+ f~ and whose mean value vector belongs
to Mh . 

, 

.

Remark. - The general theory of Gibbsian fields states that C~ ~, h is a

Choquet’s simplex, that is every ~ E 6§ ~ can be represented as a mixture
of pure phases. Proposition 2 thus implies that, in case of existence, the
Vol. 35, n° 3-1999.
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Gibbs measures associated to this interaction are exactly those which can
be written as the convolution of the centered gaussian measure whose
covariance is given in Proposition 2 with any measure whose support is
include in M~ . Then, the lack of phase transition is equivalent Mt to be
a singleton, or by linearity, Mô to be equal to {0} - since Mg is a linear
space, we denote the constant sequence equal to zero by 0..

1.2 Uniqueness under certain growth assumptions

Except in the case of finite range interaction and for d = 1 which has
been investigated by Künsch (see [ 10]), it is very difficult to give a complete
description of Mi!.In the second section of this article, we will completely
describe Mg for a particular exponentially decreasing potential, but we
should remember that such description is not possible in the general case.

Nevertheless, it has a physical sense to consider in Mg only the elements
which do not increase too fast. For example, Dobrushin considers in [5]
the class of slowly increasing sequences. Under the assumption that the

potential is exponentially decreasing, we consider here a very large subset of
the sequences which increase not faster than a reference exponential

sequence.

Since our method is general, we will first state a result for a general
class of "sub-exponential" potential called potential of type C. It includes

the result of Dobrushin mentioned above (see Corollary 3) and the case of

exponentially decreasing potentials (Corollaries 4 and 5).
Let us introduce some definitions.

We say that a sequence a = : of positive numbers is of type
E if it verifies

~ a~ = l.
. (an)n is non decreasing.
. (an) is sub-multiplicative, i.e. Vn, p E N an+p  an ap .

Then, we define the characteristic exponent ra of the sequence a by

It is clear that 0  r~a  +0oo. We will see that we have in fact

1  Ta  

Basic example: Given a real number 0152 ~ 1, the sequence

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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is of type ? and its characteristic exponent is a. We call it the reference

sequence of exponent a.

We set

Aa will be the space where the potential lives.

We will consider the intersection of Mg and Ba .
3. We need the annulus

(Remark that Ui = U.)

Remark. - For J E defined by (2), is well defined on 

Proof. - For all z E we have

so

which implies the convergence of the series.
Let us recall what is the convolution of two sequences.
Given two sequences u = such that

the convolution u * v of u and v is defined by

We now formulate two easy lemmas, whose simple proofs are omitted.
Just remark that the proof of the first one uses the assumption of

sub-multiplicativity of the sequence a, which will never more appear.

Vol. 35, n° 3-1999.
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LEMMA 1. - is an unital commutative Banach algebra.

LEMMA 2.

Let us recall some useful results of the theory of Banach algebras (for a
concise exposition, one can see for example [11], chapter 4.)

Let B be a Banach algebra with e as unit: we denote by G(B) the subset
of invertible elements in B. It is easy to see that G(B) is open. When x
belongs to B, the spectrum of x is the following subset of C:

It is a compact subset of C. We denote by p( x) the spectral radius of x,
i.e the maximum modulus of the elements in the spectrum of x. Recall
the spectral radius formula:

Let A be the set of the continuous homomorphisms from B to C

different from the constant 0 and which respect the algebra structure:

such homomorphisms are called characters. A powerful result of Gelfand’s
theory is the following:

Lemma (2) shows that, for all z in we can define a character xz by

Let us now state the main theorem of this subsection.

THEOREM 1. - Let J E Aa where a is some sequence of type £. The

following assertions are equivalent :

3. J does not vanish on 

Proof of 1 ~ 3
Let z E Ura verifying J(z) = 0. We have

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Taking real and imaginary parts, we see that the sequences u := (Re(zn))n
and v := belong to Since z # 0, one of them does not
identically vanish, u for example. It remains to prove that u E Ba . On
the one hand, we have

On the other hand, by the definition of ra , &#x3E; Then u E Ba .

Proof of 2 ~ 1
Let us first prove

LEMMA 3. - 1. Vc E Ba d E Ba, with

Proof of the lemma:

Then c * d E 

First, we will show that the double indexed sequence 
is summable.

Then, we shall write

Thus, we set p = k + l (summation by bundles). Hence

We can now prove the implication 2 # 1:

Vol. 35, n° 3-1999.
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Let u E Mg n Ba and J E G(Aa): since J is even, we can write

~I * ~c = 0. But this implies that:

Proof of 3 # 2
This will follow from Lemma 4 and from the results of spectral theory

mentioned above.

LEMMA 4.

Proof. - We have already shown that the xz defined by (4) are characters.
Let us show the converse: so, let x E ~ and c E Aa. We denote by
(ei , ..., ed) the canonical basis of Cd. For each n E we define bn as
the sequence indexed by Z~ composed by vanishing components, except
the nth which equals 1.

We can represent c by a strongly convergent series:

the second equality being given by the identity 8n * bp = 8n+p.
If we set z = ( x ( be 1 ) , .. , x ( ~e d ) ) , the continuity of x allows to write

It remains to prove that z E We have, for 1  k  d,

(Hère the spectral radius is computed with the help of the spectral radius
formula. )

In the same way, ra. Then X(8~1) == °

Thus, we have

Moreover, this last inequality shows that 1, as announced at the

beginning of this subsection.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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It is now clear that x = xz, for some z in So the lemma is

proved..

Remark. - The formula cn = Iu shows that the mapping c - c is
injective. Lemma 4 allows to identify c with the x(c). The so
called Gelfand’s transform is then an algebraic isomorphism: we say that
Aa is a semi-simple algebra. This will be very important later, because it
allows us to deal with functions rather than with séquences.
We can now prove the last implication: J does not vanish on means

that for all z E # 0. But from Lemma 4, this means that for
all x in A, ~(J) 7~ 0: so 0 does not belong to the spectrum of J and
J is invertible..

COROLLARY 1. - 0 is the only bounded sequence in Mô if and only if j
does not vanish on U.

Proof - It suffices to apply Theorem 1 to the constant sequence
an = 1..

This result has already been proved by Georgii ([7], chapter 13), using
the well-known theorem of Wiener about the functions of the class A. (This
theorem could itself be easily deduced from Lemma 4.)

COROLLARY 2. - Let J be a potential such that  -f-oo

for some cx &#x3E; 0 The following assertions are equivalent
1. Ml supn~Zd |un| 1+|n|03B1  +00} = {O}
2. j does not vanish on U.

Proof. - We verify that the sequence an = 1+2~~~ is of type E with
Ta == 1, and apply theorem 1..
We say that a sequence is fastly decreasing when, for each

polynomial P, the sequence is bounded. It happens if and
only if the map 03B8 ~ îc(eie) is C°°. We say that a sequence 
is slowly increasing if there exists a polynomial P such that for every
n E 7Ld, 

COROLLARY 3. - When J is a fastly decreasing potential and j is strictly
positive on U, then Mô does not_ contain any slowly increasing sequence,
except 0.

Proof. - It is a consequence of the previous corollary..

This result has already be proved by Dobrushin [5], using the theory
of distributions.

Vol. 35, n° 3-1999.
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To simplify the notations, we now denote by Aa (resp. Ba) the sets
Aa (resp. Ba), where a is the reference sequence of exponent a defined
by formula (3).

DEFINITION. - We say that J is exponentially decreasing if it verifies one
of the following equivalent conditions:

1. J E Aa for some sequence a of type £ such that ra &#x3E; 1.

2. J E A17 for some ~ &#x3E; 1.

3. There exists ~&#x3E;0and0~! such that Vn E lLd, J ( n )  
COROLLARY 4. - Let J be an exponentially decreasing potential such that

J is strictly positive on U.
Then there exists a &#x3E; 1 such that Mô n Ba = ~ 0 ~ .
Proof. - Let r &#x3E; 1 such that J E Ar. We want to prove that there exists

a &#x3E; 1 such that J does not vanish on Ua. Let us suppose that

The sequence (zn)n&#x3E;no is bounded, so it admits a limit point z : clearly, we
have z E U and, since J is continuous, = 0: this is a contradiction.

So, there exists a [ such that J does not vanish on Ua. Since
J E Ar, a fortiori J E Aa. Then, Theorem 1 gives the desired result..
We now want to impose supplementary conditions on the support of ~c.

Given a sequence ( an ) n of type £, we define

and for 03B1 ~ 1,

THEOREM 2. - Let J E Aa where a is some sequence of type ~ verifying

We suppose that c 

The following assertions are equivalent:
1. Mô n Ba - ~0~
2. J E G(Aa)
3. J does not vanish on 
4. 1 == 1. °

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Proof. - Let us suppose that 1. , 2. and 3. -which are equivalent- are
checked. Since J does not vanish on U, which is compact, we see that J
is bounded, and therefore integrable. Propositions 1 and 2 imply that the
stationary Gaussian measure with mean and with ] as spectral density
belongs to 03B2J,h. Let (Yi)iEId be a random variable whose law under P
is this Gaussian measure.

Let a2 be its variance and L E R be such that 2~ 2 &#x3E; d + 1. For
1, we have

From Borel-Cantelli’s lemma, we conclude that i.o. ) = 0.
So E Ba almost surely.
We have just proved that ~~,h n ~a (SZ) ( &#x3E; 1. Now let us consider

~c E C~ ~, h n By proposition 2 and the remark which follows, we
can find random variables (Zi), (Yi) with Z and Y independent such
that (Zi)iEId E Mg almost surely, (Yi) is as before, and the law of

(Yi + Zi)iEzd is Z + Y E Ba a.s and Y E Ba a.s. , so Z E Ba a.s.

We have Z E Mg n Ba a. s, and Mg n Ba = {0}. Then, Z = 0 a.s. This
proves that n ] = 1.

Now, we will suppose that |03B2J,h n 1 = 1. Let (Xi)i~Nd be a
realization of this measure. Let x E Mg n Ba . Using Proposition 2,
one can see that the law of (Xi + xi)iEzd belongs to C~~,h n 
But )6§,~ n = 1, so we get x = 0. So we have proved that
Mt n Ba = {0}. M .

Remark. - By proposition 1, Condition 4. implies J(U) c R~. Then, for a
sequence a verifying (6), a potential J E Aa is such that é5 §,~ n Pa (Q) ) = 1
if and only if J does not vanish on Ura and C 

1.3 A connected set of parameters for which there
is existence and uniqueness

The aim of this subsection is to get informations about the structure of
the set of potentials for which there is a unique associated Gibbs measure
(within a certain class of probability measures). We will prove that, under
suitable symmetry assumptions, a potential J for which there is uniqueness
can be continuously perturbed until any pair-interaction vanishes (i. e until

J (k) = 0 for each k # 0) and such that along this perturbation the
uniqueness of the corresponding Gibbs measure is preserved.

Vol. 35, n° 3-1999.
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Let F be the group generated by the orthogonal symmetries with axis
ei, 1  z  d. It is isomorphic to (Z/2Z)~. We say that a potential J is
r-invariant if it verifies

Remember that a potential is necessary even. Then, it is easy to see that
for d = 1, every potential is r-invariant. In many cases, the potential has a
natural symmetry which makes it r-invariant. (For example, if J (n) only
depends on a lP norm of n.)

Let a &#x3E; 1. We denote by Sa the set of potentials J which belongs to
Aa and are r-invariant. We let

By theorem 2, for each ~3 &#x3E; 0 and h E R, we have

endowed with the topology inherited from Aa. We will show the following
theorem

THEOREM 3. - Sa is an open connected subset of Sa.

Proof. - We will need some lemmas. Two of them are only stated, since
their proofs can be found in [8] (They are given for d = 1, but they can
be easily generalized.)
We let

Let J E S;. Our method is to exhibit a well chosen B E Aa such that
exp(B) = J and consider on [0,1] the map 1 : t - exp(tB). Remember
that Aa is a Banach algebra with the convolution as multiplication. Then
exp(B) is well defined by the absolutely convergent series:

LEMMA 5.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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algebraic homomorphism, we have

For each z E it means P~(B(z)) = Pn(B)(z). By the definition
of exp (in Aa and in C) and the continuity of B ~ B(z), we get the
desired result..

LEMMA 6. - Let f : Ua --~ C such that

1. f is continuous on 

2. f is holomorphic on the interior of 
3. The map g(z) = f (cxz) belong to Âl.

Then there exists a E Sa f = â.

Proof : by 2., there exists an unique sequence such that for each
z in the interior of 

The uniqueness of this expansion implies (using assumption 4) that a is r-
invariant and (using assumption 5), that a is real-valued. For each n e Zd
and 1 03B1  r  03B1, we have

where sn = ni. Since f is uniformly continuous on one can

make r tend to 0152 and the formula (8) remains true for r = a. We have
found the Fourier expansion of g. By 3., we get

Moreover, we have

Vol. 35, n° 3-1999.
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where F(n) = {0(~);0 Then

We have proved that a E Sa and f = à..

LEMMA 7. - Let f be a map defined on U such that, for each z E U, there
exists a neighborhood W of z and g E Âl verifying f = g on W.

Then f E Âl.

Proof. - See [8]. It is to note that the first proof of this result was given
by Wiener..

LEMMA 8. - For each f E A1, E &#x3E; 0 and z ~ U there exists a

neighborhood W of z and a E Al such that ~a~A1  E and â = f on W.

Proof. - See [8]..

LEMMA 9. - Let f be a continuous map on U and g E Âl such that
= 9~

Then f E A1.

Proof. - Let Let E &#x3E; 0 be such that for each z E B ( zo , E )

Let In be a détermination of the logarithm in B (g( zo), ~‘’~2°» ) such that

Since f is continuous, we have for each z E B(zo, e), f (z) = In( g(z) ) . By
lemma 8, there exists 8  E and a E Ai with  and

g = à on B(zo, 8). There exists a sequence such that

Then, for each z E B(zo, 6)

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Since the radius of convergence of the power series is strictly
greater than ~~a - we can we define

We have j(z) = b(z) for z E B ( zo , ~). Then, by Lemma 7, f E Âi ..
We now explain the different steps in the proof of the theorem. Lemma 5

make us able to handle functions rather than sequences. Then, once we will
have found a logarithm to J, we will use Lemma 6 to check it is in the right
space. But, since Ua is not simply connected, we must use a trick to define
a logarithm of J. In fact, we will lift J to replace Ua by a convex set.
We denote by Ea the range of the annulus ~z E C, â  ~ z (  a)

by the map z + ~. An easy computation shows that Ea is a full
closed ellipse:

Since J is r-invariant, we can define a map 03C6 on Eâ by

Since Ua is compact, using the sequence criterium for continuity, we see
that Ç is continuous. By Theorem 2, J does not vanish, so neither does
~. Since E~ is convex, there exist a continuous I&#x3E; : E~ 2014~ C such that
cp = exp( I». We define 03A8 on Ua by

Then we have J = exp(w). By Theorem 2, J(l,..., 1) E By adding
a constant to W , we can assume that ~(1,..., 1) E R. Since J(U) c R~B
we have W(U) C R + But U is connected and W is continuous,
so W(U) c R.
Since W is locally a logarithm of J, W is holomorphic in the interior

of Ua.
Lemma 9 implies that z belongs to A 1.
(9) implies that W verifies the condition 4. of Lemma 6. Then, we can

apply Lemma 6 and we get B E Sa such that W = B .

Vol. 35, n° 3-1999.
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Now, we set, for t E [0, 1], y(t) = is continuous, with

q(0) = e.

By Lemma 5

Since Aa is semi-simple, it implies ~y ( 1 ) = J. It remains to prove that

’)1 ( ~0, 1] ) C Sà .
For t C [0, 1], since Sa is a closed sub-algebra of Aa, we have

exp(tB) E Sa . Moreover exp ( tB ) is already invertible, and exp ( tB ) ( Q.J ) ==
because 03A8(U) C R. Then, by Theorem 2, it follows

that C Sa .
Since every point can be linked to e, we have proved that Sa is arcwise

connected.

It is easy to see that J - m(J) = z C ~J~ is continuous.
So Sa = Sa n (G(Aa) n +oo [) ) is a open subset of Sa ..

Remark. - Using Proposition 2, it would be easy to prove that, to this

map t 1-+ drawed in Sa , corresponds a continuous flow with values
in ~~~h n 

1.4 Phase transition for d = 1

When the dimension of the lattice is 1, it is sometimes possible to give
more precise details about phase transition. The following theorem shows it.

In all this section 1.4, d = 1.

THEOREM 4. - Let us suppose that J E Aa, with a ~ 1 and that J does
not degenerate, i. e. ~ k ~ 0 J(k) ~ o. If moreover j does not vanish on the
circle of radius a ~z E C, Izi = a) or, equivalently, on the circle of radius
1 03B1 , then MJ0 n Ba is a finite-dimensional linear space, whose dimension
is exactly the number of roots of j (counted with their multiplicity) in the
annulus Ua.

We will need the following lemma:

LEMMA 10. - We suppose u E Aa. Then, if z is an interior point of Ua
satisfying = 0, there exists y E Aa such that u = ( be 1 - z ~o ) ~ y.

Proof of the lemma. - We define a sequence x := by

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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The assumption û(z) = 0 allows to have the representation

We want to show that x E Aa. We will prove 
using the last representation and |z| &#x3E; 1 03B1. Similarly, we could prove

 +0oo using the first representation and |z|  a.

Let us show that the sequence Sn = Z~~=o is bounded. For its

purpose, we will use a discrete integration by parts - sometimes called a
Abel’s transform-: we have

where Ek == +1 when xk &#x3E; 0, and Ek == -1 otherwise. Then, we set

Thus, we have

Using the definition of x, we get

We easily verify that

We deduce
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Since Izi &#x3E; ~ ~ + k  0 implies  a~l’~+*~) , we finally get

Thus, x E Aa. So,we and y is the desired element..

Proof of the theorem. - The equivalence between the lack of roots on

Izi = a and on Izi = 1 comes from the identity J(z) = ~(~)-
Since J is holomorphic on the interior of Ua, the theorem of isolated

roots implies that J can only have a finite number of roots, necessary with
finite multiplicities. Let us note them z2, with multiplicity di.

Applying several times Lemma 5, we find Y E Aa, such that

Since v = ûv, we see that Y does not vanish on So by theorem 1,
Y is invertible. Then, J * u = 0 is equivalent to .

The solutions in C of this linear recurrence equation are well-known: It is a
linear space on C with ~ ai as dimension (see for example [ 1 ], page 654).
The solutions can be written as un = ~i where Pi is a polynomial
with coefficients in C whose degree is strictly smaller than di.

Nevertheless, we are looking for solutions in R: since J is a real valued
function, when z is a root of multiplicity k of J, so does z . We conclude
that the desired sequences are of the form

where Pi, Qi, Ri are real polynomials whose degrees are strictly smaller
than di.

It defines a real linear space of dimension ~i di..
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2. THE EXPONENTIAL INTERACTION:
AN EXACTLY SOLVABLE MODEL

In all this section, d = 1. We study here in more details a particular case
of Gibbs measures introduced in the first section, i. e the Gibbs measures
on IRI associated to the potential defined by

where 03B2, K &#x3E; 0, h E E {+1,-1} and 0   1.

This corresponds to the interaction coefficients J defined by

For this potential, we will denote 9~ ~ by 6 ( 03B2 , K, E, c, h). In this section,
we draw the phase diagram, i. e. we determinate for which values of the

parameters we have existence of a Gibbs measure or phase transition.

2.1 Existence of a Gibbs measure in 5(/3, K, E, c, h)

2.1.1. Values for which J is non negative
From Proposition 1.1, a necessary condition for the existence of a Gibbs

measure is the positivity of J. Let us compute J.

Or equivalently

A necessary and sufficient condition to have j &#x3E; 0 is then

Since t - _~J ~ 2 is non decreasing (1 - c2 &#x3E; 0), we have
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the first (resp. the second) inequality is an equality if and only if 03B8 = 0

(resp. F = 7r).

By a separate analysis for the different values of E and c, we get finally

2.1.2 Integrability of ~J-1

Another necessary condition for the existence of a Gibbs measure in

Proposition 1 is the integrability of J- i with respect to the Haar measure
(condition (2)).

If K &#x3E; ~, we have for each z E U J(z) &#x3E; 0, and then z - 
is a continuous function, therefore it is integrable.

If K = ~, J-1 is not integrable: we will prove it only for E = +1 and
c &#x3E; 0, since the other cases can be proved similarly.

Hence

and

2.1.3 Domain of existence of Gibbs measure

THEOREM 5. - Associated to the potential defined by ( 10), there exists a
Gibbs measure in C~ ~,C3, K, E, c, h) if and only if the self potential is large
enough, that is

Proof - First and second conditions of Proposition 1 are fulfilled if and
only if K &#x3E; ~. Then, the condition 3 of Proposition 1 is automatically
true, because we get j (1) &#x3E; 0 and we exhibit the constant séquence equal
to as an élément of Ml..
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2.2 Phase transition

Under the assumption of existence, there exists a phase transition if and
only if the set Mt contains more than one sequence, or, by linearity, if and
only if M~ 7~ {0}. Then, we now describe Mô .
LEMMA 11.- Every sequence u in Mô satisfies the recurrence equation:

Proof - By the definition of we have (eventually after a

reindexation).

We now multiply the left hand side respectively by c+ ~20141,20141 and
sum. Since

we get

Computing J ( 0 ) , J(1) , J ( 2 ) , we get the desired result..

LEMMA 12. - Let S E R such that &#x3E; 2. Let c be the exponential
parameter defined in ( 10). We set

1. The following assertions are equivalent
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2. When these assumptions are satisfied, we have

Proof.
(a) # (b) Every sequence in Ec n Rs different from the 0 sequence can

be written as un = Ay" + ~~, where (A, B) ~ (0, 0).
When A = 0 or B = 0, the result is immediate. Otherwise, if we

suppose for example q &#x3E; 1, we get un ~+00 and Un By-’~.
Then and are both convergent series: it

proves that v E Ec.

(b) # (c) It is immediate, because every sequence in Rs can be written
as un = + 

(c) # (a) Immediate, because f 0}.
(b) ~ (d) (b) implies +  +00

Thus (b) ~ Ici  11’1  2014. By considering the map x - x + ~, it is
easy to see that Ici  11’1  I~I is equivalent to 11’ + 1’-11  le + c~~ ).
But 03B3 + q-1 = S, so (b) ~ ISI  le + 1 c|.

To show the second part of the lemma, it suffices, by linearity, to prove it
for Vn == l’n, where 7 is a root of .x2 - Sx + 1 = 0.

(Of course, we use the fact that + ’"’(-1 = S.) .
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Let us retum now to the initial problem of phase transition. Let K &#x3E; K~ .
We apply the results of Lemma 11: when K = 1 and E = 1, we have

Mg = ~0~.
Otherwise, ~20146~0. Thus, we set

Let us suppose that ISI &#x3E; 2.

We get Mg cRs, where Mg = Mg n E~ C Rs nEc.
Using Lemma 7 1., we have M~ 7~ {0} # ISI  le + ~.
Conversely, if  

the second part of Lemma 7 implies

This implies {0}.
We have now to determinate when ISI  le -I- ~ ~ and to verify that

K &#x3E; K~ implies ISI &#x3E; 2. To this aim, let us study the map f (K)

It is a rational function whose discriminant is -~(1 - c~). We separate
four different cases.
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4. E == -1 c  0

It is then clear that for K &#x3E; K§ , ]S] &#x3E; 2.

For E == -1, we have S) le + 1 c| for aIl K &#x3E; K§.
For E = +1, On a 181  le + 1 c| 1 if and only if K  3c2+1 2(1+c2).
Then, we have proved

THEOREM 6. - 1 . For E == -1, the set É5 (fl, K, E, c, h) is non-empty if and
only if K &#x3E; = j. Then, there exists a phase transition, since the
set Mj is a two-dimensional linear spa ce.

2. For E == +1, the set Q5(03B2, K, e, c, h) is non-empty if and only if
K &#x3E; Kj = ©. Then, there exists a phase transition if and only if
K  3c2+1 2(1+c2), in which case Mj is a two-dimensionallinear space.

Remarks. - For a  l, c we have J E so Theorem 4 gives the
description of Mj n But, by Lemma 12, every element in M) belongs
to Bq, where q is the largest root of x2 - Sx + 1 == O. But, by Lemma 12
]S]  c + 1 c, so |03B3|  1 c. Then, we have

This example shows that sometimes, the fact to restrict us to the study of
the subsets Mg n Bc, is not a restriction at all.

We can remark here that the phase diagramm does neither depend on {3
-it is a general fact in the case of the quadratic Hamiltonian- nor on h..

3. CONCLUDING REMARKS ON THE INSTABILITY
OF UNIQUENESS OF GIBBS MEASURES

The instability of the uniqueness of phase under small perturbations on
the potential is one of the difficulties for the study of unbounded potentials
with infinite range.

Let us give a simple example in our framework. In section 2, we have
exhibited non trivial cases of uniqueness of phase for a potential with
infinite range. Since the potential decreases exponentially, we could expect
that, after truncation at a large radius,we would get a potential with the
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Phase diagram for E = 1 and c e]0,1[.

Phase diagram for E = -1 and c E~ 0,1 ~.

same property of uniqueness. But theorem 2 shows it is false: if we dénote
by JR the truncated potential, zRJR is a non constant polynomial, so JR
does have a root which belongs to the critical annulus Ura for large ra :

since has finite range, it belongs to every The trouble is that the

roots of JR went to infinity when R tends to infinity and do not stay in
the annulus How explain this discontinuity phenomenon? The first
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reaction is drastic: As mathematician physicist, we can eliminate from the
set of Gibbs measures the elements which have no "physical reality". It is
the idea beside Corollaries 3 and 5; in this more restrictive sense of Gibbs

measure, we recover the stability of the uniqueness of phase.
A mathematical explanation for this discontinuity phenomenon is that

the set

in which we seek a priori harmonic functions is not a normed space: that
makes its topology harder to describe.

Nevertheless, we want to state a result which shows the stability of
uniqueness in a weak sense.

THEOREM 7. - Let J G Aa such that Mg il Ba = {0}.
Then, there exists E &#x3E; 0 such that

Proof. - It is an easy consequence of theorem 1 and the fact that G(Aa )
is open..

It shows that small restrictions for the Gibbs measures, i. e. the choice

of a certain class of measures, can allow to preserve the stability of the

uniqueness.
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