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ABSTRACT. - Let n particles move in standard Brownian motion in one
dimension, with the process terminating if two particles collide. This is

a specific case of Brownian motion constrained to stay inside a Weyl
chamber; the Weyl group for this chamber is the symmetric group.
For any starting positions, we compute a determinant formula for the
density function for the particles to be at specified positions at time t

without having collided by time t. We show that the probability that there
will be no collision up to time t is asymptotic to a constant multiple of
t-r~(n-1)/4 as t goes to infinity, and compute the constant as a polynomial
of the starting positions. We have analogous results for the other classical
Weyl groups; for example, the hyperoctahedral group B~ gives a model of
n independent particles with a wall at x = 0.
We can define Brownian motion on a semisimple Lie algebra, viewing it

as a vector space with the Killing form. Since the Killing form is invariant
under the adjoint, the motion induces a process in the Weyl chamber of
the Lie algebra, giving a Brownian motion conditioned never to exit the
chamber. If there are m roots in n dimensions, this shows that the radial part
of the conditioned process is the same as the n + 2m-dimensional Bessel 

-

process. The conditioned process also gives physical models, generalizing
Dyson’s model for corresponding to un of n particles moving in a
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diffusion with a repelling force between two particles proportional to the
inverse of the distance between them. © Elsevier, Paris

RESUME. - Soient n particules se deplagant selon des mouvements
browniens en dimension 1, le processus etant tue si deux particules se

rencontrent. C’ est un cas particulier du mouvement brownien contraint a
rester dans une chambre de Weyl; le groupe de Weyl pour cette chambre
est An-i, le groupe symetrique. Pour toutes les positions initiales, nous
calculons une formule de determinant qui donne la fonction de densite
pour les positions des particules a l’instant t lorsqu’ elles ne se sont pas
rencontrees avant t. Nous demontrons que la probability qu’il n’y ait pas de
collision avant le temps t se comporte comme quand t - ~, et
nous calculons la constante intervenant en fonction des positions initiales.
Nous donnons des resultats analogues pour les autres groupes de Weyl
classiques; par exemple, le groupe Bn donne un modele de n particules
independantes avec un mur en x = 0.
On peut definir le mouvement brownien sur une algebre de Lie

semisimple en considerant 1’ algebre comme un espace vectoriel avec la
forme de killing. Puisque la forme de killing est invariante par 1’adjoint, le
mouvement induit un processus dans la chambre de Weyl. Ceci donne un
mouvement brownien conditionne a ne jamais sortir de la chambre. S’il y
a m racines en n dimensions, la partie radiale du processus conditionne est
identique au processus de Bessel en (n + 2m) dimensions. Le processus
donne aussi des modeles physiques qui generalisent le modele de Dyson
pour An-i correspondant a un, avec n particules en diffusion et une force
repulsive pour chaque paire de particules proportionnelle a 1’ inverse de la
distance entre ces particules. @ Elsevier, Paris

1. INTRODUCTION

Let n particles move in standard Brownian motion in one dimension, with
the process terminating if two particles collide. Given the starting positions,
we can use a reflection argument to calculate the density function for the
particles to be at specified positions at time t without having collided by time
t. Using this density function and the theory of Lie algebras, we can prove
the following results. Theorems 3 and 4 were proved by Dyson [10] for the
Brownian motion model, and by Biane [4] for the conditioned process.
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179BROWNIAN MOTION IN A WEYL CHAMBER

THEOREM 1. - For any starting positions, the probability that there will be
no collision up to time t is asymptotic to a constant multiple 
as t goes to infinity ; the constant is a known polynomial in the starting
positions.

THEOREM 2. - Given that there is no collision up to time t, the distribution

of the radius of the vector whose coordinates are the positions of the
particles, divided by the square root of t, converges in measure to the
distribution of the Bessel process with parameter n (n + 1) / 2 at time l,
which is the radial part of an n(n + 1)/2-dimensional standard normal.

THEOREM 3. - We can construct an n-dimensional Brownian motion which
is conditioned for no two particles ever to collide. If we take Brownian
motion on the space of Hermitian matrices, the induced process on the

eigenvalues is the same process. If the starting point is appropriately chosen
at the starting radius, the process given by the radial part of the conditioned
Brownian motion is the same process as the n2-dimensional Bessel process.

THEOREM 4. - This conditioned process is identical to the process
obtained by n particles moving in a one-dimensional diffusion with

constant infinitesimal variance, with a repelling force between two particles
proportional to the inverse of the distance between them; that is, its

infinitesimal generator t) = t) = 1/(xi - 

This is a specific case of Brownian motion in a Weyl chamber; the vector
whose coordinates are the locations of the n particles is constrained to stay
inside the chamber. The Weyl group is An_l, the symmetric group.
We have similar results for other Weyl groups; Theorems 1 and 2 have

analogues for the classical Weyl groups, and Theorems 3 and 4 have

analogues for all Weyl groups. For example, the Weyl group Bn models
n particles in independent Brownian motion with an absorbing wall at

x = 0. In this case, the asymptotic probability is (and the constant
is again known), with the radial part corresponding to the n(n + 1 ) -
dimensional Bessel process; the conditioned process has a radial part which
is the n(2n + 1)-dimensional Bessel process. This generalizes the results
of Pitman and Williams [24, 28] that one-dimensional Brownian motion
conditioned to stay positive is the same process as the three-dimensional
Bessel process.

Our reflection argument is a generalization of the reflection principle,
a standard argument in the analysis of both discrete random walks and
Brownian motion. In the discrete case, it is used in the classical formula

for the Catalan numbers, which enumerate the arrangements of n + 1 ’ sand
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n -1’s so that none of the partial sums are negative. Similarly, it can be

used to study Brownian motion in one dimension with an absorbing barrier
at x = 0 and a known starting point [14]. It has also been extended to

multiple reflections in one dimension to study Brownian motion with two
absorbing barriers [ 11 ] .
The reflection principle has been generalized to multiple dimensions. For

example, the ballot problem, a classical problem in random walks, asks
how many ways there are to walk from the origin to a point (Ai,..., An),
taking k unit-length steps in the positive coordinate directions while staying
in the region ~2 ~ ’’’ ~ Xn. The solution is known in terms of the

hook-length formula for Young tableaux; a combinatorial proof, using a
reflection argument, is given in [27, 29].
The same reflection argument has also been applied to the case of n

independent diffusions, or discrete processes which cannot pass each other
without first colliding. Using this method, Karlin and McGregor [17] give
a determinant formula for the probability or measure for the n particles,
starting at known positions, not to have collided up to time t and to be
in given positions. Hobson and Werner [16] generalize this argument to n
particles in an interval or circle, and use this to prove a result analogous
to Theorem 4 for n particles on the circle.

Gessel and Zeilberger [12], and independently Biane [3], give a further
generalization. For certain "reflectable" random walk-types, we can count
the number of k-step walks between two points of a lattice, staying within a
chamber of a Weyl group, in terms of numbers of unconstrained walks. The
steps must have certain allowable lengths and directions. In [13], all cases
in which this method applies are enumerated, and determinant formulas
are given for many important cases, including walks in the classical Weyl
chambers.

The argument of [ 12] can be generalized to Brownian motion in any Weyl
chamber or chamber of a Coxeter group, with either absorbing or reflecting
boundary conditions. We prove this generalization, and then use the result to
compute determinant formulas for Brownian motion in the Weyl chambers
of Bn = Cn, and Dn. The An-i and Bn cases are applicable to
the independent motion of n particles in one dimension. The An- i formula
appears in [17], using the model of n independent particles rather than
motion in a Weyl chamber. The cases of the affine Weyl groups 
and Bn are studied in [16], also as models of n independent particles, in
a circle or interval.

These determinants factor into forms which can be easily analyzed; this
allows us to find the asymptotic probability that there will be no collision

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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up to time t for these three cases, for any starting point. In the case of
A~ _ 1, we get a simple formula for the actual measure as well.
Weyl chambers arise in Lie theory as the set of orbits of the adjoint

action on a Lie algebra, or conjugation under the associated Lie group. We
can define a Brownian motion on the Lie algebra which is invariant under
the adjoint by using the Killing form to obtain a norm; for An-i, this
norm is the square root of the sums of the squares of the absolute values
of all the matrix entries. There is thus a natural correspondence between
standard Brownian motion on the Lie algebra and some diffusion on the
Weyl chamber. Dyson [ 10] shows that this diffusion has the same generator
as the physical model of Theorem 4 for An-i. Biane [4] describes the
correspondence with the conditioned motion, proving Theorem 3 for ~-i.
These results generalize naturally to other Lie algebras. We can thus use
the known properties of random matrices to study the distribution.

DeBlassie [8] uses a different approach to give a more general formula
for asymptotics and density functions for a general class of cones, which
include the cases discussed here. A cone is defined as the union of all rays
from the origin which intersect the unit sphere in a connected open set C.
The Laplace-Beltrami operator Lsn-l on the unit sphere is the non-radial
portion of the ordinary Laplacian. If Ai is the eigenvalue of Lsn-i with
smallest absolute value on the space of all L2 functions on C which vanish
continuously on the boundary of C, then the asymptotic probability is a
constant multiple of

This result gives asymptotics for a large class of cones. The coefficients
depend on the eigenvalues of the Laplace-Beltrami operator rather than on
explicit coefficients; these eigenvalues are known for Weyl chambers [2].
The asymptotics can thus be computed from these formulas; in theory, the
explicit density functions can also be computed, but as infinite series, This
formula also shows that the asymptotics for all such cones exist and are
powers of t, with no other terms such as logarithms.
The asymptotic probability is known to be a constant multiple of t-m/2

for a wedge of angle 7r/m in two dimensions [7]. The result holds in
general, although the region is only a chamber of a Coxeter group (the
dihedral group) if m is an integer.

O’ Connell and Unwin [23] compute an explicit formula for the collision
probability of three independent particles, the case n = 3 of Theorem 1.

They also study the opposite asymptotic problem to ours, computing an

Vol. 35, n° 2-1999.
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asymptotic for the probability that n particles in independent Brownian
motion will have a collision up to time t when t is small compared to the
initial separation of the particles.
Our results are organized as follows. Section 2 contains the basic

definitions. In section 3, we prove the basic reflection result, and in

section 4, we apply this result to get the determinant formulas. In section 5,
we prove Theorems 1 and 2, and their analogues for Bn and Dn. In

section 6, we construct the conditioned motion, both by Lie theory and by
h-transformation, proving Theorems 3 and 4 and their analogues, and use
the h-transformation to find a physical model for all finite Coxeter groups.

2. DEFINITIONS

We will study a process with continuous sample paths in R", either

unconstrained or constrained by a chamber. In the constrained case, we

may have either an absorbing boundary condition, causing the process
to terminate when it hits a wall, or a reflecting boundary condition. All
references to the analogous discrete problem are discussed in [13].
We require that our chamber C be a chamber of a finite or affine Coxeter

group. In the finite case, C is defined by a system of simple roots 0 C IRn as

and the orthogonal reflections r~ : 3i - 3i - generate a finite group
W of linear transformations, , the Coxeter group. In the affine case, the
hyperplanes of reflection which define C do not all pass through the origin,
and the group W is infinite, but if T is the subgroup of all translations,

W/T must be finite. In the analogous discrete problem, the steps of the the
random walk must generate a lattice L which is stable under the action of

W ; in this case, C is a Weyl chamber and W a Weyl group.
Let X (t) be a Markov process with continuous sample paths with values

in IRn; that is, the distribution of X (t2 ) given X (tl ) is independent of X (t)
at any t outside the interval [tl, t2]. We say that the constrained motion
is reflectable if the increments of the unconstrained motion are symmetric
under the Coxeter group; that is, the distribution of X(t2) given X(tl) is
the same as the distribution of w(X(t2)) given the w-image w(X(tl)) as
the starting point for any w E W.

Standard Brownian motion is reflectable for any Coxeter group. For a

finite Coxeter group, in which all planes of reflection pass through the
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origin, any diffusion with variance dependent only on time and the radius,
and drift dependent on time and symmetric with respect to rotations and
reflections about the origin, is reflectable; for example; there could be an
absorbing or reflecting barrier at = R.

As another example, consider the case in which each coordinate 
is an independent identical diffusion; this could model n independent
particles instead of one particle in n dimensions. If our Coxeter group is the
symmetric group An-i = Sn (giving the chamber x 1 &#x3E; x 2 &#x3E; ... &#x3E; xn ),
it permutes the particles, so the process is reflectable under this action;
this case is discussed in [17]. If the individual diffusions are symmetric
about Xi = 0, then the product process will also be reflectable under
the hyperoctahedral group Bn, which includes all permutations with any
number of sign changes.

In the discrete case, reflectability requires the additional condition that
the walk cannot go from inside the chamber to outside it without stopping
on a wall [12]; this is our condition of continuous sample paths, which is
satisfied by any diffusion.

For fixed t, this process defines a probability measure Pt (A) = P (X (t) E
~4} which represents the chance that this process, if started at 0, will be in
a set A at time t. We assume that this probability measure has a density
function ct(3i) with respect to Lebesgue measure on that is,

Now, we study the case in which the motion is constrained by a chamber,
with either absorbing or reflecting boundary conditions. We must now fix the
starting point ~, since the process now depends on it in a non-trivial way.
This generates new stochastic processes for absorbing boundary
conditions and Y’ (r~, t) for reflecting boundary conditions. These give
probability measures A) and A) which give the probability
that the process, if started at ~, will be in the set A at time t, and these
have density functions and ~(77, A). Note that the total measure

IRn) will be less than 1 because the process terminates when it reaches
a wall of the chamber. The total measure for reflecting boundary
conditions will still be 1.

If our process is a Brownian motion, it has drift f-ji and variance a; in
each coordinate direction. If the Coxeter group contains any reflection in the

xj -plane other than a sign change of Xi or the reflectability condition
requires that a = aj . Thus, for an irreducible Coxeter group, all of the a i
must be equal; for a reducible Coxeter group acting on (B-’ EÐ U-pnk ,

Vol. 35, n° 2-1999.
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we can multiply the coordinates in each IRnj by a constant factor so that
the a i are all equal. We can then re-scale time so that all a = 1.

Reflectability also requires the Coxeter group to fix the vector whose
coordinates are the drifts f-ji. In all non-trivial cases except for An-i on
R", this requires that all f-ji = 0, giving standard Brownian motion. For

it requires that the f-ji all be equal; we can then change coordinates
to x2 = ~2 - to get an equivalent process in which all of the are

zero. Thus, if the unconstrained process has stationary increments, and is
thus a Brownian motion [14], we may assume that it is standard Brownian

motion; however, we can state the theorems just as easily in terms of the
more general reflectable process.

3. THE REFLECTION ARGUMENT

THEOREM 5. - If ct is the density function for a reflectable continuous
stochastic process, then for absorbing boundary conditions, we have

and for reflecting boundary conditions,

If W is an affine group rather than a finite group, these may be infinite

sums. The integrals over the images of any region must converge absolutely,
since the measure of unconstrained motion over the whole space, the set of

all W-images of all points in the chamber, is 1.

Proof. - The discrete result analogous to (2) is proved in [12] and [3];
the proof which follows is essentially identical to that in [12] except that
the discrete terms "walk" and "step" are replaced by their continuous

analogues "path" and "time."

Every path from ~ to any which does touch at least one wall of

the chamber has some first time to at which it touches a wall; let the wall

be the hyperplane perpendicular to c~, choosing the largest i if there are

several choices [25]. Reflect the path after time to across that hyperplane;
the resulting path is a path from ~ to r03B1i03C9(03BB) which also first touches wall
i at time to. This clearly gives a measure-preserving bijection of paths, and
since rai has sign -1, all such paths cancel out in (2). The only paths
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185BROWNIAN MOTION IN A WEYL CHAMBER

which do not cancel in these pairs are the paths which stay within the
Weyl chamber, and since is inside the Weyl chamber only if w is the
identity, this is the desired measure. 

’

For (3), we note that the map on all paths starting which takes every

point to its unique image in the chamber C is measure-preserving, since we
have reflecting boundary conditions and increments which are stable under
the group W. This map takes all paths which end at any to paths
which end at A itself. If A is on a wall of the chamber, paths to A may be
counted multiple times, so we must divide by the size of its stabilizer in W.

In practice, we can ignore this constant factor; it is 1 except for A on
a wall, and this is a set of measure zero unless t = 0. Eliminating the
denominator thus changes the density function only on a set of measure
zero, and thus does not change the measure of any measurable set.

4. DETERMINANT FORMULAS FOR THE DENSITY FUNCTIONS

We can now apply this theorem to standard Brownian motion, in the Weyl
chambers of An-i, Bn = Cn, and Dn, with either absorbing or reflecting
boundary conditions. The measure for unconstrained standard Brownian
motion is Ct(~) = where Nt is the normal distribution

function with mean 0 and variance t. Since this factors into separate
terms for the individual coordinates, we can use the same techniques to
compute determinant formulas as in the discrete case [13].
The most interesting case is An-i = Sn, the symmetric group. The

Weyl chamber is xi &#x3E; x2 &#x3E; ... &#x3E; xn. This Brownian motion thus

models n independent particles in one dimension. With absorbing boundary
conditions, collisions are forbidden (the process terminates if one occurs);
with reflecting boundary conditions, particles collide elastically with one
another.

For absorbing boundary conditions, we write the sum (2) as

and use the value of ct to write this as

Vol. 35, n° 2-1999.
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This sum can be written as a determinant, which gives

This determinant gives the measure for n particles which start at positions
qz and are in independent Brownian motion to be at positions Ài at time
t without having collided.

For a more general product of n independent diffusions, with individual
density Pt (x - y) for the diffusion which started at point x to be at point
y at time t, we can apply the same argument. This gives the following
generalization of (6), which first appears in [17].

For reflecting boundary conditions, the calculations are the same except
that there is no term for sgn(a), and thus we get permanents rather than
determinants. This result can also be seen by observing that an elastic
collision between two identical particles is equivalent to the two particles
passing through each other with no collision, and thus the reflected particles
will be at the positions indicated by A if the unreflected particles are at any
permutation of the coordinates of A.

For Bn, the hyperoctahedral group, which includes permutations with any
number of sign changes, the Weyl chamber is x1 &#x3E; x2 &#x3E; ... &#x3E; Xn &#x3E; 0. This

also models n independent particles in one dimension, with an additional
wall at x = 0.

We write w E W as a product of an E which negates some coordinates
and a a in the symmetric group. We get

Using the multilinearity of the products in the determinant, we can again
write this sum as a determinant, with separate terms for Ei = 1 and Ei = 20141
in each entry. We use Nt (x) = Nt( -x) to keep the signs of A positive and
get a more elegant formula. This gives

This determinant gives the measure for n particles which start at qz to be
at Ài at time t, neither having collided nor having touched x = 0.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Again, the same argument applies if n particles are in general independent
diffusions, provided that the diffusions are symmetric about x = 0. The
more general formula is

For reflecting boundary conditions, we lose the sign of the a, which
makes the determinant into a permanent, and the sign of the which turns

the minus sign between the two Nt in (9) or pt in (10) into a plus sign.
Again, the resulting formula is the same as would be obtained by treating
elastic collisions as though the particles passed through each other, and
allowing particles to pass through the wall at x = 0 instead of bouncing.
(In the transformed model, particles at positions x and -x no longer
collide, but since they collided elastically in the original model and could
be considered to pass through each other instead, the effect is the same.)

For Dn, the even hyperoctahedral group, which includes permutations
with an even number of sign changes, the Weyl chamber is Xl &#x3E; x2 &#x3E;

... &#x3E; xn, &#x3E; -xn . This does not give a natural model for n particles
in one dimension.

Again, we can write w = Ea. We take our sum over all possible E, and
then add an additional factor of (1 + Ei)/2 to annihilate those E which
are not allowed in Dn.

We now take the ~ and the Ei ) /2 terms separately. The (I1~=1 Ei)/2
term is half the sum we had in (9); the ~ term gives half of (9), but with
a plus sign between the terms. Thus we get

If we let A’ be obtained from A by changing the sign of An, this will
change the sign of the first term but preserve the second term. Thus the
first term alone, with no factor of 1/2, is ~) (x) - ~’) (~), and the
second term alone is ~) (x) -I- bt (r~, ~’) (x) . If An = 0 or qn = 0, the first
term is zero, so ~) (x) is the second term alone, with the factor of 1 /2.

For reflecting boundary conditions, we ignore the sign of a. Thus the
determinants become permanents, but we keep the minus signs because
they came from the factor ( 1 + I1~=1 Ei ) / 2, which was not from sgn ( w ) .
Vol. 35, n° 2-1999.
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5. ASYMPTOTICS

We can use these formulas to find asymptotics for the probability that the
motion will not hit a wall of the chamber by time t, and for its distribution
at time t given that it has not hit a wall.

5.1. Calculating the individual values for An-i

We can eliminate the determinant to get a more explicit formula for (6)
at a single point A if all the coordinates of our starting point 7y are rational.
Re-scaling by Xi - cxi, t - c2t will make all the coordinates integers, and
we can then translate all coordinates by so that we have T/n = 0. (Both
of these transformations leave the Weyl chamber xi &#x3E; x2 &#x3E; ... &#x3E; ~

unchanged. ) .

We now write out the normal distributions in (6) explicitly as

exponentials, and expand (A~ 2014 r~~ ) 2 as A~ 2014 2ÀiT/j + 7]J:

Row i of this matrix contains a constant factor and column

j a constant factor so we can take these out, and put them in a
constant term, which simplifies further because = ~ ~2 . This gives us

Since the % are all integers, we can write the determinant as the

generalized Vandermonde determinant

If % = n - j, this is the standard Vandermonde determinant, equal to

And for any non-negative integers %, it is the product of this Vandermonde
determinant and the Schur function [19]

The Schur function can also be defined combinatorially [19], with the
coefficient the number of ways to fill in the partition

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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diagram of f-j, using the number i exactly ni times, such that the entries are
non-decreasing in each row and strictly increasing in each column.

In particular, we can let C~ = 5~(1,1,.... 1) be the total number of such
tableaux; this is important because it is the approximate value of the Schur
function when the ~i are much less than t. (This holds because the Schur
function is a homogeneous polynomial of degree 7yi+’’ ’+~2014(~(~20141))/2,
with positive coefficients.) This will show the dependence of the asymptotics
on the starting point.

This constant is known [19]; it is

This allows us to compute the constant term in the asymptotics.
For any ~ with the same sum of the coordinates, all multiples of 1 I c,

our rescaling gives a Schur function whose index is the transformed vector
Rescaling to restore the old time values gives a Schur function which

is a homogeneous polynomial in the whose degree in the
is 7~1 -I- - - - -~ r~~ - ( n ( n -1 ) ) / 2 c. Thus, for any point ~, even one

with fractional coordinates, the degree will be bounded by the sum of its
coordinates. Thus the determinants, and therefore the ~). for different
starting points ~ and 7/ both of radius less than a known 8, will be in
the approximate ratio of C1] to C1]I, with an error of 0(8 It). If 8 is fixed,
then when we calculate the asymptotics as t - oo, the Schur function will
converge to C~ at a rate of 

5.2. Asymptotic probability of no collisions

The integral of the value in (14) over the whole Weyl chamber is the
probability that n particles starting at the positions ~j will have no collisions
up to time t. We can use this formula to show that the asymptotic probability
as t - oo is a constant multiple of ~-~-i)/4 with the constant depending
on 7~. We will also show that, given that the n-dimensional Brownian
motion has not hit a wall, its radial distribution, rescaled by multiplying the
radius by converges to the distribution of the Bessel process with

parameter n ( n + 1)/2 at time 1.

Fix t very large compared with 1r12. is much larger than t, then the
exponential in ( 14) will decay exponentially fast. In particular,

can be assumed to be 0(~’~), so we only need to look at the
leading nonzero terms in ( 15); the error will be a factor of this order when
compared with the value of the determinant. In (16), the first nonzero term
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of the factor is (A, - we can then take out

the factor of and leave only a term involving the A. Likewise,
in the Schur function from (15), we need only keep the constant term C~ .
Thus our probability is asymptotic to the integral over the Weyl chamber

of

And this integral can be computed by using Selberg’s integral [20, 22];
we have

This corresponds to our desired integral when we set x = À10, and
divide by n! because we are taking our integral over only one of the n!
different Weyl chambers. Dropping the (which goes to 1

as t - oo and thus doesn’t affect the leading term), and writing out C~
explicitly again gives our full asymptotic:

We can also note that the exponential in (18) is spherically symmetric,
while Àj) is homogeneous of degree n (n - 1) /2. Thus the
density, integrated over the sphere of radius r at a fixed t, is a constant

multiple of

and thus a constant multiple of the radial distribution of (n(n + 1)/2)-
dimensional Brownian motion at time t. Thus the radial distribution is

exactly the same for the distribution of (18) renormalized so that the

integral over the Weyl chamber is 1 (i.e., given that no two particles
have collided) as for the distribution obtained from standard Brownian

motion in n(n + 1)/2 dimensions. This proves Theorem 2; if we restrict
to IÀI  ct1/2+E, the Ài/t terms are all 0(~’~). Thus, in this region,
the ratio of the radial distribution for the constrained motion to the radial

distribution for unconstrained motion in n(n + 1)/2 dimensions converges
uniformly to 1 at a rate of 
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Equivalently, we could fix time and A, and for a scalar 8, take 7) 
as our starting point. By the scaling properties of Brownian motion, this
is equivalent to keeping 7/ fixed, taking A = and i = t/b2. Thus, as
6 - 0, the ratio of the radial distributions converges uniformly to 1 within
the region IÀI  at a rate of O(6~ ~~ ), and the probability that either
distribution is outside that region goes to 0 exponentially fast.

5.3. Asymptotics for Bn : no collisions and a wall

We can use the same technique to get asymptotics for Bn as for 
The analogue of Theorem 1 now gives a constant multiple of t-’~2 ~2 as

the asymptotic probability of no collision, and the analogue of Theorem 2
says that the distribution of the radius converges to the n2 + n-dimensional
Bessel process.

Here, we require that the coordinates all be odd integers. Again, we write
out the determinant (9) explicitly:

As before, we remove the constant factors to get

The determinant here is not an actual Vandermonde determinant.

However, in the specific case % = 2n + 1 - 2j, we can make

it a Vandermonde determinant by elementary operations. Adding
( -1 )’~ ( 2n+~ -2’ ) times column j + k to column j does not change the
determinant, but it changes the entries in column j to
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This is a generalized Vandermonde determinant; we can make it an actual
Vandermonde determinant by dividing row i by 
The resulting determinant is

and its value is

Putting this together with the constants we have taken out, we get

For a more general starting point, with all coordinates odd integers, we
note that is a polynomial in 

with no constant term. We can break these polynomials into
their individual terms, giving a large number of determinants, each one a
generalized Vandermonde determinant in the Each

individual determinant is thus the product of (24) and a Schur function; it
also contains the product of the exp(Àilt) - exp( -Àilt) as a factor, since
these are constant factors in row i. Thus each determinant is a product of
these factors with some symmetric function in the 
As with the error we get in approximating the Schur functions by
their constant term C~ is a factor of 
And as with An-i , we can get asymptotics by integrating this over the

Weyl chamber. For large t, the radial exponential will be exponentially
small if IÀI &#x3E; tl/2+E, so we can assume that all of the Àilt are very small.
Thus exp( -Ài/t) can be approximated by its leading nonzero
term, Thus, as with (18), we get
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This integral can also be computed by using Selberg’s integral [20, 22];
we have

This corresponds to our desired integral when we set x = and
divide by 2nn! because that is the number of Weyl chambers. Dropping
the because it goes to 1 as 1/t, we get our asymptotic
probability that Brownian motion started at the specific point 77 will not
hit a wall up to time t:

For a more general starting point, each individual determinant in the
sum gives an integral of a homogeneous polynomial in the 

which is of degree at least n2, since it contains the previous
determinant as a factor. The same technique as above gives an asymptotic
which is thus at most t-n2 ~2. Thus the asymptotic is at most a constant
multiple of t-’~2 ~~, and is less if and only if the coefficient of t-n2/2 is
zero. But the coefficient cannot be zero. Let m = r~i+1/2), 
and r~i = (2n + 1 - 2i)m. Then we know that Brownian motion starting
at 7/ decays asymptotically as t-n 2 ~2, but Brownian motion starting at q
will always hit a wall if it is translated to start at 7/, because y/ is at least
as far as ?? from every wall. Thus the asymptotic probability will be some
constant C~ times the formula (26); we will compute C~ in Section 5.5.
A result analogous to Theorem 2 also holds for Bn, using the same

argument as for An-i . The exponential in (25) is spherically symmetric,
while the product 03A0(03BBi)03A0i&#x3E;i(03BB2i - 03BB2j) is homogeneous of degree n2 . The
radial distribution for (25), renormalized so that the integral over the Weyl
chamber is 1, is thus the same as the radial distribution for unconstrained
Brownian motion in dimensions. As with the ratio between the
radial distribution for the B~ constrained motion and the radial distribution
for the unconstrained motion in n2 dimensions converges uniformly to 1 at
a rate of inside the region  and the probability that
either distribution is outside that region goes to 0 exponentially fast. Again,
we can rescale by multiplying the radius by 1 I Vi to get convergence to
a fixed distribution.
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5.4. Asymptotics for Dn

The process for Dn is almost the same as for Bn, so we won’t work
it out in full detail; we get a similar result with the same error terms and

convergence properties. The analogue of Theorem 1 now gives a constant
multiple of tt-n2+’~»2 as the asymptotic probability of no collision, and the
analogue of Theorem 2 says that the distribution of the radius converges
to the n2-dimensional Bessel process.

Here, it is most natural to let qz = n - i. For this value of 7~ we have only
the second determinant in ( 12), with a plus sign between the terms; the last
row of the other determinant is zero. For general q, the first determinant is
the Bn determinant, which we know is O (t-n2 ~2 ), and we will show that
the second determinant is asymptotically larger.
The determinant that we get is

Again, this isn’t a Vandermonde determinant, but +

is equal to + plus a sum of
lower order terms, so elementary operations which do not change the
determinant give us the Vandermonde determinant

and its value is

The leading nonzero term is

and the full integral is

Again, we get a result which can be obtained from Selberg’s integral
[20, 22]; we have
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Here, there are 2n-ln! Weyl chambers, which gives the asymptotic

For a general starting point whose coordinates are all integers, we use the
same technique as for Bn . The terms in the determinant are all polynomials
in + so we can again split the sum into individual
determinants, each of which is the product of (29) and a Schur function of
the + Since 03BBi/t is small, these are all close to 2,
so the full asymptotic is a sum of terms of order t~-n2+n)/2. As with Bn,
we can translate to ?/ which is further from any wall than yy to show that

the coefficient of ~(-~+~)/2 cannot be zero.
The result analogous to Theorem 2 follows by the same argument as for

the other Weyl groups. The exponential in (30) is spherically symmetric
in and the product ~~ ) is homogeneous of degree n2 - n.
Our argument thus shows that the radial distribution converges to the

n2-dimensional Bessel process.

5.5. The constant factor for a general starting point

Since we know the constant factor in the asymptotic probability of no
collision up to time t for one specific starting point 7~ and the asymptotic
distribution for an arbitrary starting point, we can use the time-reversibility
of Brownian motion to compute the asymptotic probability of no collisions
for an arbitrary starting point. The argument is the same for all of the

Weyl groups.
In each case, the density bt ( TJ, A) for Brownian motion starting at TJ to be

at A at time t, not having collided with a wall up to time t, is asymptotic
for large t to a product of the form

in which C~ and f (t) are known. Since Brownian motion is symmetric in
time, the density must be equal to As long as t is large
enough compared to 1r1 and IÀI for the formula (33) to be valid (which it
will be for large t because of the exponentials), we can reverse the roles
of q and A. Thus we have CTJe = and since the formula for C’
is known, we see that C~ must be a constant multiple of C~; it is thus

a constant multiple of %) for An, of B~,
D~.
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We know the value of the constant from the formulas (20), (26), and (32).
For An, we already have the value for a general starting point because we
used the Schur functions to compute C~ in (20); we could have instead
used this technique. For Bn, we get

as the asymptotic probability of no collision; for Dn, we get

6. RANDOM MATRICES AND

CONDITIONED BROWNIAN MOTION

6.1. Brownian motion on a Lie algebra

Instead of viewing our Weyl chamber as the chamber of a Weyl group,
we can view it as the space of orbits under the adjoint action of the Lie

algebra corresponding to that Weyl group, and then use the theory of Lie

algebras to study it. For the Lie algebras Un (C) and corresponding
to Weyl groups An-i , Bn, and Dn, the Weyl chamber corresponds to the

eigenvalues of the matrices in the algebra. The following construction was
first developed by Dyson [ 10] for he computed the properties of the
Brownian motion from the specific data rather than using the general Lie

theory. The results we use from Lie theory are given in [1, 15].
Given a finite-dimensional semisimple Lie algebra g, we can define a

normal distribution or Brownian motion on g by viewing it as a vector

space and using its Killing form, which is non-degenerate and invariant
under the action of the adjoint, as the inner product. If the Lie algebra
corresponds to a compact semisimple Lie group G, the inner product is
invariant under conjugation by G. For any semisimple Lie algebra, the
Brownian motion at time t will have a Gaussian distribution on the Lie
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algebra, with the Killing form. If the Lie algebra is an algebra of matrices,
we have a Gaussian distribution on the matrices on that Lie algebra. This
allows us to use all of the known results about random matrices [22] to
study the motion, and its eigenvalues in particular.

In particular, on un (C), the Lie algebra of skew-Hermitian matrices, we
can take standard Brownian motion on the imaginary part of each diagonal
entry Mzz , and times standard Brownian motion on each matrix entry
Mij with i  j, with M~ i this is Dyson’s model [10]. For a
skew-Hermitian matrix, the Hilbert-Schmidt norm is the sum of the squares
of the absolute values of the matrix entries, which is equal to the norm
obtained from the Killing form. This makes the Hilbert-Schmidt norm of
M equivalent to the radius of a Brownian motion in n2 dimensions.

Likewise, on son(R), the Lie algebra of skew-symmetric matrices, we
can take standard Brownian motion on each matrix entry Mij with i  j,
and take Mji = This makes times the Hilbert-Schmidt norm

of M equivalent to the radius of a Brownian motion in n2 - n dimensions.
(This is actually 1 I V2 times the Killing form; we use this normalization
because the eigenvalues come in pairs 1:iÀj, and we want to count only
one of each pair, rather than both as in the standard Hilbert-Schmidt norm.)

Since this Brownian motion is invariant under the adjoint in g or G,
it induces a diffusion on the Weyl chamber. For the Weyl groups 
Bn = Cn, and Dn with Lie algebras un(C), and

the Weyl chamber is in a natural correspondence with the space
of eigenvalues, obtained by dividing the independent eigenvalues by z and
arranging them in decreasing order; for other Lie algebras, we can study the
Weyl chamber, but cannot place coordinates on it which directly correspond
to the eigenvalues of random matrices. We can use the Lie algebra analogue
of the Weyl Integration formula for Lie groups to study the process in the
Weyl chamber in terms of the corresponding process on g.

LEMMA 1 [6, IX 6.3.2 (11)]. - Let g be a finite-dimensional Lie algebra
with m roots. Let 8 be (27r)m times the product of all the positive roots of
g. The Jacobian of the adjoint map on g at a point x is &#x26; (x) b (x).
COROLLARY 6 [6, IX 6.3.4 (13)]. - If f is a function on g which is invariant

under the adjoint map, the integral of f over the Lie algebra g is equal to
the integral of 88 f over the Weyl chamber.

This shows that the measure induced from g at a point in the Weyl
chamber is proportional to 88. The distribution in the Weyl chamber of the
induced diffusion started at the origin is thus proportional to 88 times the
distribution in g of standard Brownian motion started at the origin.
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In particular, we note that 6 is positive real on the interior of the Weyl
chamber, and zero on the walls. This suggests that we have a process which
can never touch a wall of the Weyl chamber; we will prove this later by
showing that 11 {) is a martingale for the process on the Weyl chamber.

6.2. Construction by h-transformation

We can also use Doob’s h-transformation [9] to construct a process which
always stays in the Weyl chamber. We will first construct the conditioned
Brownian motion in this way, and then show that the two processes are

actually identical; this allows us to prove Theorem 3 and develop the
physical model of Theorem 4. This method was developed by Biane [4] on
An-i, and generalizes naturally to other Lie groups.

6.2.1. General properties. - Given standard Brownian motion in any
number of dimensions, we can use the process of h-transformation to

construct a Brownian motion satisfying certain conditions. For any non-
negative harmonic function h, the measure for the transformed Brownian
motion to go to A at time t after starting at ~ is h(A) times the measure for
untransformed Brownian motion with the same starting point, renormalized
by an appropriate constant so that the total measure on all paths is 1.

In particular, suppose that we have an open connected region D and
a harmonic function h which is zero on the boundary of the region and
positive on the interior. Then the function 11 h (taken to have value +00 on
the boundary of D) is a martingale for h-transformed Brownian motion [9,
2.X.1 ] . If our starting point is inside D and we take as a stopping time
either a fixed t or the time that the process reaches the boundary, the
expectation must be finite, and thus the probability that Brownian motion
reaches the boundary before time t must be zero. Thus the h-transformed
Brownian motion will be conditioned to stay in the interior of the region.
The density function for this transformed motion will be h times

the density function for the untransformed motion on the same region,
normalized appropriately. That is, its value at a point A and time t will be
h(A) times the value ~) which gives the measure for unconstrained
motion to go from ~ to A in time t while staying within the region, since
the transformation puts a new measure on the same set of paths.
The same technique can also be applied to a discrete random walk with

a set S of steps, provided that h is harmonic in the discrete lattice; that
is, we need
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The transformed discrete walk now has probability h(x + 
instead of 1/181 ( of going from x to x + s in a given step. Thus, given
a starting point ri, the probability of going to A in a given number of
steps of the transformed random walk is times the probability
for the untransformed walk to go to A while staying within the region in
which h is positive.

In order to make it impossible for the walk to leave the region D, we
need h to be zero on all points which can be reached from the interior of
D in a single step. Thus, only if the discrete walk is reflectable (as defined
above) is it sufficient for h to be zero on the continuous boundary of D.

6.2.2. Finding the function. - The properties of conditioning, as well as
our asymptotics, suggest that 8 itself should be our h. It can be checked

algebraically that h is harmonic for each group; however, it can also be

proved naturally.

THEOREM 7. - For any finite Coxeter group W, the product of all the
positive roots is a harmonic function, both for the continuous Laplacian and
for the discrete Laplacian

for any set S which is symmetric under the group W.

Proof. - This result in the continuous case is due to [2]; the discrete
argument is a simple generalization which is mentioned in [4].
By the properties of root systems, a reflection in any simple root changes

the sign of only that root, while permuting the other positive roots. Thus
the product h of all m roots is antisymmetric in all the simple roots, and
by applying repeated reflections, we see that it is antisymmetric in every
root. It is also of degree m. 
The continuous Laplacian is spherically symmetric, and thus symmetric

under W. The discrete Laplacian is symmetric under W because the set
S is. Applying the continuous Laplacian to a polynomial decreases the
degree by 2, while applying the discrete Laplacian decreases the degree
by at least 1 since h(x + S) - is of lower degree than h. Thus the
application of the Laplacian to h gives a polynomial which is of degree
less than m which is still antisymmetric in W.

Now, any polynomial which is antisymmetric in W must be zero on
every one of the hyperplanes of reflection. If it is not identically zero, it

must have all m roots as factors, so it must be of degree at least m. Thus
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the Laplacian must annihilate our polynomial h, so h is harmonic for either
the discrete or continuous walk.

It follows that the transformation by this h gives the same process as the
process generated by Lie theory. We have already computed the asymptotic
density that Brownian motion started at a fixed ~ will remain in the Weyl
chamber for time t and be at A at that time. Transforming by h has the
effect of multiplying the measure of all paths from a fixed ~ to an arbitrary
A which stay within the chamber by a factor of h(A) (and a normalizing
constant). Thus the density function for the transformed Brownian motion
which starts at ri to be at A at time t is proportional to A), and
this converges to a constant multiple of h(À)2 as t becomes large. This is
the same factor 88 which we obtained from the Weyl Integration Formula.
In particular, this now shows that the Lie theory process also stays within
the Weyl chamber almost surely.

6.3. The radial process

Since the h-transformed process is identical to the process generated by
Lie theory, we can prove Theorem 3 and the analogous theorem for any
finite Weyl group, generalizing the argument of Biane [4] for An-i. We
again use the Killing form to obtain a norm on g as a vector space. If there
are m positive roots, then g has dimension n + 2m [15]. The norm is thus
given by the Bessel process in n + 2m dimensions. The Killing form is
invariant under the adjoint, so the diffusion in the Weyl chamber has its
radius given by the same process.
To properly state this result for Brownian motion conditioned never to

leave the Weyl chamber, we cannot allow the process to start at the origin,
which is not a point in the chamber. However, the square of the product of
the roots is a homogeneous function of degree 2m; it thus gives an identical
distribution on any fixed radius. Thus, if we start the motion on the Lie

algebra at 0, then at any later time, given the fixed radius, the distribution
on the sphere will be given by the square of the product of the roots, and
the process can be continued from that time on as a Bessel process. This

allows us to state the general theorem, formalizing Theorem 3.

THEOREM 8. - For any Weyl group W acting on IRn with m roots, consider
the process which starts at a fixed radius ro, with the starting point chosen
on the sphere of radius ro by a distribution with density proportional to
the square of the product of the roots. Then the radius of the position of
transformed motion at time t gives a Bessel process with parameter n + 2m.
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The simplest case of this theorem is for Bi, which is one-dimensional
motion with an absorbing boundary at x = 0. In this case, the only root
is x, so m = 1, and we have the result of [24] and [28] that Brownian
motion conditioned never to hit 0 is the same as the three-dimensional
Bessel process. In our more general cases, the number of dimensions for
the Bessel process is n + 2m = n2 for An-l (acting in n dimensions
because the Lie algebra is un(C); it acts in n - 1 dimensions for the Lie
algebra sun(C), giving a Bessel process in n2 - 1 dimensions), n(2n + 1)
for Bn, and n ( 2 n - 1) for Dn .

6.4. The infinitesimal generator and physical models

We have constructed the conditioned process as a transformation of
Brownian motion. We can also construct it as a diffusion with its known
infinitesimal generator. In this form, both the multidimensional models and
the models of n independent particles lead to natural physical models.
We will use the notation of [ 18] for infinitesimal generators of diffusions.

The drift vector f.j is defined by

and the infinitesimal variance matrix is defined by

We will omit the variable t in the infinitesimal generators of our diffusions,
because they are independent of time.

It can easily be checked that Brownian motion transformed by a

harmonic (and thus necessarily C~) function h has infinitesimal drift

 = i7h/h = ~(log h) and infinitesimal variance a ij = [4]
This makes the computation easy, because our h is the product 

of all the roots, viewed as linear functions of the Xi. If we write as

the dot-product ( a, ~ ) . then we have

Since (a, x) / ( a ~ I is the distance from x to the hyperplane orthogonal to
a, while is the unit vector in the direction of a, this term in the drift
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is the inverse of the distance between £ and the hyperplane, directed away
from the hyperplane. We thus have the following physical model.

THEOREM 9. - For any finite Coxeter group, Brownian motion conditioned
to stay within a chamber is equivalent to the motion of a particle in a

diffusion with constant infinitesimal velocity, and a repulsive force from
every hyperplane of reflection (not merely the walls of the chamber) inversely
proportional to the distance from that hyperplane.

We can also look at the n coordinates as individual motions in one

dimension. If the root a contains cxi, we get a term c/(a, x) in the sum.
In particular, for An, the drift is 1/(xi - xj ). Thus each particle

is subject to a repelling force from every other particle (not merely its

neighbors), inversely proportional to the distance between them. This proves
Theorem 4; this result is originally due to Dyson [10].
The model for Bn is not as natural as a model of particles. The drift is

That is, each particle is repelled by every other particle, and by the wall at
0 (the term), but also by the mirror image of every other particle (the
1/(~, + xj ) term), as if the wall at x = 0 was also a mirror reflecting all
forces. For Dn, we have only the terms of 1 / (xi - Xj) and 1/(xi + 
this means that the mirror reflects forces but is itself permeable to particles.

These models are more natural as models of the eigenvalues. For Dn,
a matrix in the Lie algebra has eigenvalues this model

thus says that the eigenvalues in different pairs ::!:iÀj and ::!:iÀk for j ~ k
repel one another other, although the pair ~ 2 ~~ do not repel each other.
For Bn, a matrix in the Lie algebra (R) has eigenvalues and

0; this model thus says that the unconnected eigenvalues ::!:iÀj and 
repel each other, and each eigenvalue is also repelled by the

fixed eigenvalue at 0.

7. OPEN PROBLEMS

The discussion of Brownian motion on a Lie algebra is valid for the

exceptional Lie groups as well, but the techniques for computing the

specific asymptotics do not appear to work. For a chamber of a general
Coxeter group, the Lie algebra technique is not meaningful. In either case,
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is it possible to get the same type of asymptotics, with constant terms
in particular?
We have shown that the same harmonic functions which we used to

transform Brownian motion can be used to transform discrete random

walks. Is it possible to use these results to compute asymptotics for the
discrete walks, including the constants on leading terms?
Brownian motion can be defined on a general manifold [21 ] . This allows

us to apply the argument of Theorem 5 whenever we have a suitable
chamber. As before, the Brownian motion must be symmetric under the
reflections in any wall of the chamber, and the reflections in the walls must
generate a discrete group which partitions the manifold into chambers. For
example, since 2-dimensional Brownian motion is conformally invariant,
we can define a Brownian motion on the modular surface [21 ] . Our chamber
can be the standard fundamental domain; if we use the standard map of
the modular surface to the upper half-plane, our chamber is bounded by
x &#x3E; -1/2, x  1/2, and x2 + y2 &#x3E; 1. Can the resulting formulas be used
to compute properties of this Brownian motion, such as asymptotic survival
probabilities, hitting times, and physical models?
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