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ABSTRACT. - We extend the forward-backward martingale decomposition
of Meyer-Zheng-Lyons’s type from the symmetric case to the general
stationary situation for the partial sum S. ( f ) with f satisfying a finite

energy condition. As corollaries we obtain easily a maximal inequality and
a tightness result related to Donsker’s invariance principle, and especially
a criterion of a.s. compactness related to Strassen’s strong invariance
principle. @ Elsevier, Paris

Key words: forward-backward martingale decomposition, the functional central limit
theorem or Donsker’s invariance principle, the functional law of iterated logarithm or
Strassen’s strong invariance principle.

On etend la decomposition de martingale progressive-
retrograde du type Meyer-Zheng-Lyons du cas symetrique au cas

stationnaire general pour des sommes partielles St ( f ~ avec f satisfaisant
une condition d’énergie finie. Comme corollaires, on obtient facilement une
inegalite maximale associee au principle d’ invariance de Donsker et un
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critere de compacité p. s. pour le principe d’ invariance forte de Strassen.
@ Elsevier, Paris

Mots clés : decomposition de martingale progressive-retrograde, le principe d’invariance
de Donsker, le principe d’invariance forte de Strassen.

1. INTRODUCTION

1.1. Consider a Markov process (0, .~’, (.~’t), (Xt), (Bt), valued

in a Polish space E, with transition probability semigroup (Pt) and with an
invariant and ergodic probability measure a on (E, B). Here,

. t E T, T = IN (discrete time) or 1R+ (continuous time); And (Xt)tElR+
is càdlàg in E in the continuous time case;

. := Xt(03B8x03C9) = Vs, t E E 0; B is the

Borel a-field of E;
. the past a-field 0t = s  t); ~t = s &#x3E; t) (the future

a-field); 0 = 9o;
. Fx(Xo = x) = 1, := = fE Pt(x, 
. = a.s. for any bound

go-measurable 7y;

. aPt(A) := fE a(dx)Pt(x, A) = a(A), VA E B (the invariance of
a w.r.t. (Pt));

. Vf EbB, the space of real bounded B-measurable functions,
Pt f = f , a - a.s. f is constant a - a.s.

The last two points together are equivalent to say that 1P = IP03B1 is 
invariant and ergodic on (0, F). In this paper we do not distinguish the
a-fields on H and their completions w.r.t. JP. Throughout this paper,
 ’, ’ &#x3E; denote respectively the inner product and norm in
L2(E, a), lE(’) the expectation w.r.t. F = ,

For any f E a) := {/ E L2(a);  f,1 &#x3E;= 0~, consider the partial
sum
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123FORWARD-BACKWARD MARTINGALE DECOMPOSITION AND COMPACTNESS

The main motivations of this paper are the Donsker (weak) invariance
principle or the functional central limit theorem (in abridge: FCLT), and
the Strassen strong invariance principle or the functional law of iterated
logarithm (in abridge: FLIL) for the partial sum St ( f ) as t - +0oo or more .

generally for an additive functional (in abridge: AF) (St) . By AF, we mean

The main purpose of this paper is to study consequences of the following
finite energy condition for f E 

in the Discrete time case and

in the Continuous time, where £ is the generator of L2 ( E, a ) ,
D is an appropriate domain to be specified later, C &#x3E; 0 is a constant.

1.2. In the reversible (or symmetric) case (i.e., Pt = Pt where Pt is the
adjoint operator of Pt in L2 (a)), Kipnis and Varadhan [KV, 1986] showed
that (1.2) is equivalent to the natural minimal condition

and established the FCLT of St( f ) under (1.2) or (1.3). Their main tool for
the passage from CLT to FCLT is the following maximal inequality ([KV,
Lemma 1.4 and Lemma 1.12]

where 117 is the set of all diadic points j /2~, A = I - Pl or -,C according
to T = IN or 

’

The further works extend their result in two directions:

1) the symmetry assumption is relaxed as the quasi-symmetry or strong
sector condition below:

where A = I - Pi or -£ according to T = IN or 1R+.

Vol. 35, n° 2-1999.



124 L. WU

2) for more general AFs other than St ( f ), especially in the continuous
time case.

We present several of them up to the knowledge of the author.

Goldstein [G, 1995] obtained the FCLT for a general anti-symmetric
additive functional of a symmetric Markov process.

For the simple exclusion process with an asymmetric mean zero

probability kernel, Varadhan [Va, 1995] established the central limit theorem
(in abridge: CLT) of St ( f ) for all f E a) satisfying ( 1.2), and proved
even the FCLT for some special f related to the movement of a tagged
particle, by exploiting the quasi-symmetry of this process shown in L.

Xu [Xu, 1993].

More recently for general quasi-symmetric Markov processes, Osada and
Saitoh [OS, 1995] get the finite dimensional CLT for fairly general additive
functional ( St ) under a condition of type (1.2) (see [OS, (1.6)]). And they
obtained the corresponding FCLT for rather general additive functionals
related to reflected diffusions. In a non published preprint [W2, 1995],
Kipnis-Varadhan’s maximal inequality (1.4) is established with an extra

factor K in its RHS which is the constant in the quasi-symmetry condition
(1.5). The proof therein is parallel to the original one of Kipnis-Varadhan.
However whether the LIL and the FLIL hold under (1.2) or (1.3) in

the quasi-symmetric case is not treated in these quoted works, for lack of
an a. s. compactness result. In fact as well known, the maximal inequality
of type (1.4) gives (or can be used to give) an a priori estimation or

a criterion of tightness for the laws over

JD[0,1] (the space of real càdlàg functions on [0, 1] , equipped with Skorohod
topology). But it does not seem to furnish a priori estimations or (strong)
a.s. compactness about the a.s. behavior of 

2n log log n J
required by the LIL and FLIL.

For the symmetric Markov processes, it is noted in [W l, 1995] that the
ingenious forward-backward martingale decomposition of Meyer-Zheng-
Lyons (see [MZ, 1984], [LZ, 1988]) gives very directly not only a better
maximal inequality than (1.4), but also a strong a. s. compactness result

required for the LIL and FLIL.

Hence the idea of this paper can be abstracted as one simple point: to
extend the forward-backward martingale decomposition of Meyer-Zheng-
Lyons to the general stationary case for S. ( f ) for those f satisfying
( 1.2).

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



125FORWARD-BACKWARD MARTINGALE DECOMPOSITION AND COMPACTNESS

1.3. This paper is organized as follows. The next Section is devoted to
the discrete time case. In Section 3 we discuss their counterparts in the
continuous time case, which is a little more complicated because of the
unboundedness of A = 2014,C. Finally we furnish in the Appendix a semi-
FLIL for sums of backward martingale differences, required for the a.s.

compactness.

2. THE DISCRETE TIME CASE

2.1. Hilbert spaces induced from (1.2)

Let T = 1N and write P = Pl. Let P* be the adjoint operator of P in
a) and P" = (P + P* ) /2, the symmetrization of P.

LEMMA 2.1. - P~ = a - ergodic. In particular Vu E ~o ( E, a) :==
Ho,

Proof. - By the ergodicity of P w.r.t. a, for any A, B E B with
a(A) A a(B) &#x3E; 0, ~n ~ 0, fE 1APn1Bd03B1 &#x3E; 0. Then

where the ergodicity of P~ follows. 0

Let

be the spectral decomposition of I - P~ on Ho ( Eo = 0 by (2.1 )). By
(2.1), I - P~ : is injective. Then its inverse

is a well defined self-adjoint operator with domain ID(Ro ) = Ran(I - Pa)
(the range) and

Vol. 35, n° 2-1999.



126 L. WU

We introduce now two Hilbert spaces H1 and inherited from the

condition ( 1.2).

DEFINITION 2.2. - Let ~1 be the completion of the pre-Hilbert space
(Ho = Lo (E, a),  . , . &#x3E; 1 ) where the inner product is given by

We define II . as the dual Hilbert space of III) w. r. t. the

canonical dual relation ?~o = Ho.

LEMMA 2.3. - (a) C H0 and the imbedding is continuous.

(b) For every f E Ho, the following properties are equivalent:
(b. i) f E 

(b. ii) f verifies (1.2D);
(b. iii)  Exf, f &#x3E; +oo;

(b. iv) £§J_~  f, f &#x3E; is convergent.

In that case,

= inf {C ~ 0; the condition ( 1.2D) holds with C ~

(c) 117 ( Ro ) is dense in I - P~ can be extended as

an isomorphism : Rg can be extended as an isomorphism
ilg : ~C-1 -; and ilg is the inverse of I - pu : 

Proof. - (a) Since Ho C ~L1 is a continuous and dense imbedding with

then = Hi = ~Co and this imbedding is dense with

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



127FORWARD-BACKWARD MARTINGALE DECOMPOSITION AND COMPACTNESS

(b) The equivalence between (b.i) and (b.ii) follows from the definition of
H-i . The all other equivalences as well as (2.5) follow from (2.2), (2.3a,b)
and the simple observation below .

(c) They are all obvious by (2.7) and ~g~1 = Vg E Ho . 0

Since I - P, I - P* are injective on Ho, we can define the potential
(or Poisson) operators

LEMMA 2.4. - a) C 7/-i and

b) It holds that

Proof. - Notice that

Let f E ID(Ro). For each u E 1io,

Vol. 35, n ° 2-1999.
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by (2.10b). Hence f E and the first inequality in (2.8) is shown. The
first inequality in (2.9) follows from

Similarly we get the other parts of (2.8), (2.9) for Ro . 0

2.2. Forward-backward martingale decomposition

We are now ready to show the key

THEOREM 2.5. - Let T = W. There exist three bounded linear mappings

such that the following forward-backward martingale decomposition holds
IP - a.s.

where

Proof. - Assume at first f E Let g = Ro f E Set

Obviously = 0, i.e., m(g) E e And

similarly 0, i.e., E ~) e 
We have by (2.10a) and Lemma 2.3

and similarly by (2.10b) and Lemma 2.3

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



129FORWARD-BACKWARD MARTINGALE DECOMPOSITION AND COMPACTNESS

Observe

and

Taking the sum of (2.15a) and (2.15b) and noting that f = (I -PU)g, we get

which is exactly our forward-backward martingale decomposition for

f E 
Remark by (2.10b) that

Hence the linear mappings defined by

for f E are bounded and all with norm  B/2.
Therefore they admit all the continuous extension to the whole space

f E denoted by the same notations. Hence the forward-backward
martingale decomposition (2.12) follows from (2.16) by continuous

extension. 0

Vol. 35, n° 2-1999.
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Remark 2.6. - The forward-backward martingale decomposition (2.12)
is the main new point that we incorporate into the studies of (1.2). The

decomposition of this type appeared at first in Meyer and Zheng [MZ,1985]
and it was developped systematically by Lyons and Zheng [LZ, 1988],
for the symmetric Markov processes in the continuous time. It should

be emphasized that (2.12) is not the exact counterpart of their original
decomposition which is done for g(Xt) - g (Xo ) instead of St ( f ) . This is
a key point and we find very difficult to extend their original version to
the actual non-symmetric case.

Notice also that this decomposition is not unique, because in general
there exists 0 # yy E L2, measurable w.r.t. such that

I Fo) = I gl) = o, and Mi ( f ) + ~Mr(/) - ~ satisfy
also (2.12).

2.3. Several corollaries

We present now several compactness results as direct corollaries of

(2.12). We begin by a maximal inequality and a criterion of tightness (for
laws only).

COROLLARY 2.7. - For each f E or satisfying (1.2D),

(a) the maximal inequality below holds:

(b) the family of the laws of

on 117 ( ~0,1~ ) under F is precompact for the weak convergence topology and
any limit probability measure of this sequence is supported by C( ~0,1~ ), the
space of continuous real functions on [0, 1]. Here ~x~ denotes the integer
part of x &#x3E; 0, ID ([0,1]) is the space of all càdlàg functions ~ : [0, 1] ~ 1R,
equipped with the Skorohod topology.

Proof. - (a) It consists to control the three terms appeared in (2.12). At
first for the (0n)-martingale My( f) :== by Doob’s
maximal inequality and (2.11 ),

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



131FORWARD-BACKWARD MARTINGALE DECOMPOSITION AND COMPACTNESS

For the sum of backward martingale differences :=

note that

is a Hence by Cauchy-Schwarz and by Doob’s
maximal inequality and (2.11 ) again,

Finally by Cauchy-Schwarz and (2.11 ),

By the three estimations above, we get by (2.12) that

where (2.18) follows.

(b) It follows from (2.12) by the following three facts: the classical FCLT
for the forward martingale M-’( f ); and

(by Birkhoff’s ergodic theorem); and finally Lemma A.I in Appendix for
M-(/). ~
Remark 2.8. - For each f E C ?Y-i, we have by (2.15a) with

~ - 
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132 L. WU

where we have used  Ro f , f &#x3E;= Rof, Rof &#x3E; 1 -  f, f &#x3E;-i (by
Lemma 2.4). Up to a numerical factor (2.20) implies, with g = Ro f , Kipnis
and Varadhan’s maximal inequality (1.4), and (2.20) does not contain the
explosing term  g, g &#x3E;= Ro f, Ro f &#x3E; as in (1.4) when one would

approach to some f E but f ~ 

As said in the introduction, (2.12) implies not only the maximal

inequalities (2.18) and (2.20), but also the a. s. compactness related to

FLIL, stated in

COROLLARY 2.9. - Let f E ~C-~. With IP-probability one, the sequence

is precompact in 1]) and all its limit points are contained in

where

is the ball of radius o- &#x3E; 0 in the usual Cameron-Martin subspace, and

h(t) .- log log(t V e2).

Proof. - It follows from (2.12) by the classical FLIL for the forward

martingale M~ ( f ) ([HH]), and (2.19) for G f (Xn) - G f (Xo), and finally
Lemma A.1 for M~ ( f ) . Q

3. CONTINUOUS TIME CASE

3.1. General situation

Let T = The situation is more delicate because of the

unboundedness of the generator £ of (Pt) in L2 ( E, a). Our first assumption
allows us to define the symmetrization £0" of the generator £.

(HI) D is a sub-algebra ofC(E) contained in .~(,C) n 117(,C*), so that
( ~ 2~~ , D) is essentially self-adjoint in 
Here C(E) is the space of real continuous functions on E, and £* is the

adjoint of £ in L 2 ( E , a ) (then the generator of ( Pt ) in L 2 ( c~ ) by [Ka]).
Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Let ,C~ be the closure of ( ~ 2~~ , D), which is self-adjoint by (Hl) and
definite nonpositive. Let (~~, ~ (~~ ) ) be the symmetric form associated
to -~. It is the closure of

We assume in further

(H2) for any u E n ~°~(u, u) = 0 ===} u = 0, a-a.s.

This condition means that -,C~ : ~Co ) -~ is injective. Then

is a well defined self-adjoint operator on Ho.

DEFINITION 3.1. - is defined as the completion of the pre-Hilbert
space w. r. t. the inner product  u, v &#x3E; 1: _ ~~ (u, v ) or the norm
~u~1 := ~03C3(u,u).

is defined as the completion of the pre-Hilbert space 
w. r. t. the inner product  f , g &#x3E; _ 1=  &#x3E; or w. r. t. the norm

~f~-1 == 

LEMMA 3.2. - (a) ,C~ can be extended as an isomorphism Hi - 
and Ro can be extended as an isomorphism Ro : - 

(b) is the dual Hilbert space of H1 and the dual bilinear relation
 ~, ~ &#x3E;_1,1 on x ~L1 is the continuous extension of  f, u &#x3E;, V( f, u) E

(c) For each f E ? Co, the following properties are equivalent
(c. i) f E 
(c. ii) f satisfies (1.2C) with D given in (Hl );
(c. iii) fo °°  f, Pt f &#x3E; dt  +oo, where = et~~ ) is the semigroup

generated by ,C~.

In that case,

Proof. - Its proof is the same as in the discrete time case, so omitted. !)

Vol. 35, n° 2-1999.



134 L. WU

We turn now to check the forward-backward martingale decomposition.
At first for each test-function u E D c jE3(.C) n ID(G*) n C(E),

is an additive (0t)-forward càdlàg martingale; reversing the time,

is additive and càdlàg, such that (M*T(u) - M*T-t(u), 0  t  T) is a

backward (GT-t)-martingale. By Ito’s formula,

By Doob’s maximal inequality, for any T &#x3E; 0 fixed,

and

Taking the sum of (3.4a) and (3.4b), we get

Let IBT be the Banach space of all real (Ft)-adapted càdlàg processes
X = defined on (03A9,F,IP) equipped with norm ~X~T =

IE supt~[0,T] |Xt|2. As D is dense in H1, the linear mappings u -

M. (u) E IBT and u - M* (u) E 18 T can be extended to u E and

(3.4a,b), (3.5), (3.6a,b) still hold.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Now by (HI), for any f e = Ro f there are

uk E ~D, &#x26; ~ 1 so that uk - u, in Ho. By (3.7), we get for
any f and for any T &#x3E; 0,

The two sides of (3.8), as element in are both continuous w.r.t.

the norm Consequently by continuous extension we get

THEOREM 3.3. - Assume (Hl) and (H2). Let f E a) satisfy (1.2C).
Then the forward-backward martingale decomposition below holds:

where M~ ( f ) := M. (Ra f ) and M~ ( f ) :== M* (Ro f ) are additive and
càdlàg in time t, linear and bounded in f E H0 n verifying

In particular we have

(a) The maximal inequality below holds

(b) The family of the laws of E C( ~0,1~ ), n &#x3E; 1 under IP is
precompact.

(c) With F-probabiliny one, the sequence

is precompact in C( ~0,1~ ) and all its limit points are contained in

Proof. - The maximal inequality (3.11 ) follows from (3.6a,b) and (3.9).
The compactness criteria (b), (c) follow from (3.9), the discrete time’s
FCLT and FLIL for forward or backward martingale (Lemma A.1 ) and the
following estimation

both in and IP - a..5. (by Birkhoff ergodic theorem). 0

Vol. 35, n° 2-1999.
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Remark 3.4. - Several simple but key properties in the discrete time case
do no longer hold automatically in the continuous time case:

1 ) The assumption (H2) is not always valid in the continuous time case,
contrary to (2.1 ) in the discrete time situation.

2) Lemma 2.3.(a) and (2.6a,b) are no longer valid in general. For example,
contains much more elements than those Ho (such as Revuz

measures).

3) Lemma 2.4.(a) does not hold in general.

Remark 3.5. - Let § E and define

where fk E nHo and fk -~ ~ in 7-L_1. This is well defined by
(3.11). By continuous extension satisfies still the forward-backward

martingale decomposition (3.9) and consequently all claims in Th.3.3.

3.2. The quasi-symmetric case

In this paragraph we assume the sector condition (1.5) and our Markov
process is Hunt. We show now that (1.5) can be used to substitute the
assumptions (HI) and (H2) above for Theorem 3.3. We begin by the
construction of .Ca.

Let (E, be the closure of the sectorial form (~(u,, v) = 2014/~ ~ &#x3E;,

Vu, v E Let be the closure of = ~ 
&#x3E; +  u, 2014~ &#x3E; , Vu, v E and 2014~ be the corresponding

definite nonnegative self-adjoint operator. It is known that and

are form core of ID(Ea)) and = ID(E) (see [Ka,
Ch. VI]).

Secondary let us verify (H2). In fact for any f E n Ho with
Ea( f, f ) = 0, then f E ID(E) and by (1.5),

It follows that f E D~(,C) and £f = 0. By the assumed ergodicity of
(Pt), f = 0, a - a.s.
Hence Ro = ( -,C~ ) -1 is well defined on Ho. Define the Hilbert spaces

 . , . &#x3E;1, ~) ’ and (?-~_1,  ’, ’ &#x3E;-l, 11.11-1) as in Definition 3.1.

All claims in Lemma 3.2 remain valid with D = ~7 (,C) in (1.2C).
We can now state the following result whose proof is given in Appendix.

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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THEOREM 3.6. - Let T = 1R+, assume (1.5) and (Xt ) is a Hunt process.
For f E ~Ca n (or equivalently (1.2C) with D = D~(,C) ), the forward-
backward martingale decomposition [(3.9) + (3.10)] still holds. In particular
all claims in Theorem 3.3. remain valid.

Remark 3.7. - Under the sector condition (1 .5), we can prove (the detail
is left to the reader) in the discrete and continuous time cases both,

(i) is a dense subset in and Ro := A-1 : (ID(Ro),
- 1í1 is a contraction, where A = I - P or -£.

(ii) equivalence between

(a) f E or equivalently (1.2D or C);
(b) lim supt~~ 1 tIE(St(f))2  +00;

(c) ~2 ( f ) = exists;

(d) lim infEo  REf, f &#x3E; where l~E = (E + 

Remark 3.8. - By (3.12) in Remark 3.5, Th.3.6 remain valid for S. 
for any 03C6 E 1í-I. Hence the general finite dimensional CLT in [Va, 1995]
and 1995] for becomes the FCLT.

Moreover by the a. s. compactness in Corollary 2.9 and Th.3 . 3 . (c) and
the property (i) above in Remark 3.7, and by an approximation of f by
(fk) c ID ( Po ) w.r.t. the norm" . 11-1, we get the FLIL below:

THEOREM 3.9. - In the discrete and continuous time cases both,
assume (1.5). For every f E with probability one the sequence
~,S’’n. ( f ~/h(n); n &#x3E; 1 ~ is precompact in l~ ) and the set of its limit
points is exactly K ( ~ ( f ) ) where a( f) is given in Remark 3. 7. (i i. c).

APPENDIX

A.1. Semi-FLIL for sums of backward martingale differences

The following lemma were used in Corollary 2.7 and 2.8. and Th. 3.3.

LEMMA A.1. - Let

Then Mn :== satisfies the FCLT, and F - a.s.
, ~ ,

is precompact and the set of its limit points C K(a)
where 03C32 = and K(a) is given in Corollary 2.9.

Vol. 35, n° 2-1999.
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Proof. - For a : R, the notation aC with an added exposant C is
used to denote the polygone function defined on R+, connecting (n, an),
i.e., af = an + (t - an) , Vt E [n, n + 1], n E IN.
The FCLT is easy: note that (Mkn) = Mn - Mn-k , k = 0,... n) is a

By the classical FCLT for martingales (see [HH]),

in law on Consequently

in law on C ~0,1~ . But (Wl - is still a Brownian Motion, the
FCLT follows.

We translate the semi-FLIL in (A.1 ) (the full FLIL is an equality instead
of C ) as

Unlike the FCLT, (A.2) is far from to be a direct consequence of the

classical FLIL for martingale and it is relied on two results.
At first we have proved in [WI] ] by means of a variant of Skorohod’s

representation that

Having this a priori estimation and using an approximation procedure if
necessary, we can assume that ml is bounded.

In that bounded case, Dembo [De, 1996] proves that IP h n M~~~’C E .)
satisfies the large deviation principle with speed h2(n) n = 2 log log n and
with rate function

if ~y E the Cameron-Martin space and + oo otherwise

on C[0,1] w.r.t. the uniform convergence topology. Then by contraction
principle,

satisfies the same large deviation principle.

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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Finally as well explained in [DS], this large deviation principle implies
(A.2). 0 -

A.2. Proof of Theorem 3.6

We prove the forward-backward decomposition (3.9) in the actual context,
which without (HI) requires Fukushima’s decomposition from the Dirichlet
form theory under (1.5) (see [MR, p. 180, Th. 2.5]):

for every ~-quasi continuous g E 0,

where (Mt(9)) (resp. (MT(g) - is a (resp. (gT-t))
martingale with

and N(g), N*(g) are continuous additive functional of zero enery so that

By (A.4), we get Vt &#x3E; 0, 1P - a.s.

Now we prove that Vg E IP - a. s .,

for each t &#x3E; 0 fixed (then for all t &#x3E; 0 by the continuity of the two
sides of (A.8)). Note that [(A.7) + (A.8)] gives (3.8) which leads easily
to (3.9) by (A.5).
To prove (A.8) for t &#x3E; 0 fixed, we take gk E ID(G), g~ E ID(G*) such

that gk - in as k - oo (possible as ID(G),117(G*) are
form core of It is well known that

(A.9)

Notice also Vu E 
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Now for (A.8), it remains to show for ~~ _ ,Cg~ ~ ,C*g~,

as k - oo, where 0 = to  ti  ... are arbitrary. This
can be done by recurrence on 0 and here we treat only the case m = 1.

For any 0  s  t, (a consequence of ( 1.5)) and

they are bounded, then their product ~ ( ~ ~ ) . Therefore
by (A.10) and the dominated convergence, we get (A.ll) for m = 1. ~

ACKNOWLEDGEMENTS

I am grateful to the anonymous referee for his careful reading and
comments on the first and second versions. His suggestions have largely
contributed to simplify and clarify the presentation of this work.

REFERENCES

[De] A. DEMBO, Moderate deviations for martingales with bounded jumps, Elect. Comm. in
Proba., Vol. 1, 1996, pp. 11-17.

[DS] J. D. DEUSCHEL and D. W. STROOCK, Large deviations, Pure and Appl. Math., Vol. 137,
1989, Academic Press.

[G] S. GOLDSTEIN, Anti-symmetric functionals of reversible Markov processes, Annales
d’Inst. H. Poincaré probabilités, Vol. 31, 1 (in Memoriam C. Kipnis), 1995,

pp. 177-190.

[HH] P. HALL and C. C. HEYDE, Martingale Limit Theory and Its Application, Academic Press,
1980.

[Ka] T. KATO, Perturbation Theory For Linear Operators, 2nd ed. (2nd corrected printing),
Springer-Berlin, 1984.

[KV] C. KIPNIS and S. R. S. VARADHAN, Central limit theorem for additive functionals of

reversible Markov processes and applications to simple exclusions, Comm. Math.

Phys., Vol. 104, 1986, pp. 1-19.

[LZ] T. J. LYONS and W. A. ZHENG, A crossing estimate for the canonical process on a
Dirichlet space and a tightness result, Astérique, Vol. 157-158 (Colloque P. Lévy)
1988, pp. 249-271.

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques



141FORWARD-BACKWARD MARTINGALE DECOMPOSITION AND COMPACTNESS

[MR] Z. M. MA and M. RÖCKNER, An Introduction to the Theory of (Non-Symmetric) Dirichlet
Forms, Springer-Verlag, 1992.

[MZ] P. A. MEYER and W. A. ZHENG, Construction du processus de Nelson reversible, Sém.
Probab. XIX, Lect. Notes in Math., No 1123, 1984, pp. 12-26.

[OS] H. OSADA and T. SAITOH, An invariance principle for non-symmetric Markov processes
and reflecting diffusions in random domains, Proba. Theory and R.F., Vol. 101,
1995, pp. 45-63. 

[Va] S. R. S. VARADHAN, Self diffusion of a tagged particle in equilibrium for asymmetric
mean zero random walk with simple exclusion, Annals de l’I.H.P., Série Probab.
and Stat., Vol. 31, 1 (in Memoriam C. Kipnis), 1995, pp. 273-285.

[WI] L. Wu, Functional limit theorems for additive functionals of reversible Markov processes,
Pré-publication du Laboratoire de Mathématiques Appliquées, Université Blaise

Pascal, 1995.

[W2] L. Wu, Some notes on CLT for additive functionals of Markov processes, Prépublication
du Laboratoire de Mathématiques Appliquées, Université Blaise Pascal, 1995.

[Xu] L. XU, Ph.D. dissertation, New York University, 1993.

(Manuscript received February 10, 1997;
revised April 7, 1998.)

Vol. 35, n° 2-1999.


