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ABSTRACT. - We consider the hydrodynamic behavior of asymmetric
mean zero exclusion processes with speed change. The model discussed in
this paper is of non-gradient type and so is its associated symmetric process.
We derive a nonlinear diffusion equation for the macroscopic density field
obtained in the diffusive scaling limit by estimating the relative entropy with
respect to the local equilibrium state of second order approximation. The
estimation of the asymmetric part is carried out by using the strong sector
condition. The diffusion coefficient is bigger than that of the associated
symmetric process in the sense of matrix. © Elsevier, Paris

RESUME. - Nous considerons le comportement hydrodynamique des
processus d’exclusion asymetrique de moyenne nulle. Le modele discute
dans cet article est nongradient, de meme que le processus symetrique
associe. Nous obtenons une equation de diffusion non lineaire pour le

champ de densite macroscopique dans la limite de diffusion. La methode
repose sur 1’ estimation de l’entropie relative par rapport a Fetat d’ equilibre
local de l’approximation du deuxieme ordre. L’ estimation de la partie
asymetrique est obtenue a l’aide de la condition sectorielle forte. Le
coefficient de diffusion est plus grand au sens matriciel que celui du

processus symetrique associe. © Elsevier, Paris
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768 K. KOMORIYA

1. INTRODUCTION

We consider the asymmetric mean zero exclusion processes with speed
change whose invariant probability measures are Bernoulli measures. The
model we discuss in this paper is of so-called non-gradient type and so is
its associated symmetric process. We consider the hydrodynamic behavior
of this model and derive a nonlinear diffusion equation for the macroscopic
density by passing to the hydrodynamic limit. Strong sector condition (see
the condition (e) below), which we assume to control the asymmetric part,
will play a key role in our discussion.
Now we describe the model. Let rN be the d-dimensional periodic lattice

(Z/NZ)d whose points are represented by x = ... , ~d ) . The exclusion
process with speed change on FN is a Markov process with the state

space JVN = {17 = ~0,1~~ whose generator
is given by

where c : Zd x Zd [0,oo) satisfies c(x, ~, 17) = c(y, x, 17) and r~x~
is defined by

Here x = ~ 0, 1 ~ z d and 17 E JVN is identified with its periodic extention to
x. The domain of LN, denoted by 0N, is the set of all functions on xN.
We consider that the site x is occupied if r~~ = 1 and free if r~x = 0.
We also define L by

for f E and 17 where denotes the set of all local functions on

x, namely the set of all functions depending only on finite coordinates.

Throughout this paper, we assume the following conditions:

(a) Positive and local: c(x, 7/, 7y) > 0 if and only = 1 and ~x ~ 17y.
depends only on  r~ for some r > 0.

(b) Translation invariance: c(x, y, q) = c(0, ~ - x, for all x, y E Zd
and r~ 
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769HYDRODYNAMIC LIMIT

(c) Mean zero: (L c(0, y, = 0 for 0  p  l.

(d) Stationarity: Bernoulli measures with 0  p  1 are invariant

measures of the process associated with LN.

(e) Strong sector condition: There exists a constant Cs such that

for all f, 9 E and 0  p  1.

(f) Smoothness of diffusion coefficient:

(a(p) will be defined in Section 3.)
Here Tx, X E Zd, denote the shift operators acting on ~ defined by

r]y+x and (’)p stands for the expectation with respect to the
Bernoulli measure vp. Tx, x act also on x~ by = for

y ErN, with addition being modulo N. They also act on or by

In view of (a), we restrict ourselves to the nearest jumps. But the methods
used in this paper are valid for more general cases. The fifth condition (e)
is the key to control the asymmetric part. As for symmetric process, the
condition (e) is automatically satisfied with C’s = 1. An asymmetric example
which satisfies the conditions (a)-(e) will be given at the end of this section.
We will make some remarks about the condition (f) after Theorem 1.1.

Let = denote the Markov process on

~v governed by the generator N2 LN . Its macroscopic empirical-mass
distribution is the measure-valued process defined by

where Td = Rd /Zd is the d-dimensional torus identified with and

8 e is the delta measure at 8.

Now we consider the following nonlinear diffusion equation:

Vol. 34, n° 6-1998.



770 K. KOMORIYA

Here the diffusion coefficient given in the

condition (f).
We state the main result of the present paper.

THEOREM 1.1. - If the nonlinear diffusion equation (1.4) has a smooth
solution p(t, 8) with initial data (0,1) and = o(Nd)
as N --~ oo, then pN (t, d8~ converges in probability to p(t, for
every t. is the relative entropy defined by (2.3), f o denotes
the initial density, = exp~ ~ and ~(P) _

xEL’N

p) ~; see Section 2 for detail. )
Hydrodynamic behavior for exclusion processes has been studied by

many authors. It is well known that the entropy approach initiated by
Guo, Papanicolaou and Varadhan [3] is quite useful for analyzing the
hydrodynamic behavior of microscopic systems and the method has been
applied to various gradient type models. For non-gradient models, Varadhan
[10] proposed an effective approach and it also has been applied to various
non-gradient models. In fact, Funaki, Uchiyama and Yau [2] proved the
hydrodynamic limit for symmetric non-gradient exclusion processes with
speed change with the help of the arguments in [10]. Another method
used in [2] is the relative entropy method proposed by Yau [13]. They
modified it in order to treat the non-gradient models and introduced the
local equilibrium state of second order approximation. The framework of
our proof is essentially the same as that of [2]. But, since our model is
asymmetric, we have to modify them and some more estimates are needed.
For asymmetric models, main technical difficulty is how to control the

asymmetric part. For asymmetric mean zero simple exclusion process, Xu
[12] proposed "loop decomposition" method to control the asymmetric
part. The method, however, depends strongly on the property of the simple
exclusion. In this paper, we use the strong sector condition (see the condition
(e)) instead of loop decomposition method to control the asymmetric part
and we extend to general speed change processes. This condition is quite
essential to treat the asymmetric part and simplify the arguments caused
by the asymmetry of the process. In fact, the strong sector condition is

also used for proving central limit theorems for the tagged particles (cf.
[4],[8], or [11]). In addition our model is of non-gradient type and so is

its associated symmetric process. It also makes the arguments complicated.
For the condition (f), we can show that the diffusion coefficient is Lipschitz
continuous in (0, 1) in the same manner as in [6]. But the smoothness of
the diffusion coefficient has not been verified in any case of interest even

if the model is symmetric.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



771HYDRODYNAMIC LIMIT

In Section 2, we prove Theorem 1.1 by estimating the relative entropy.
Several results in Section 2 can be shown similarly to [2], so we outline
the arguments and refer to [2] for details. In Sections 3 and 4, we prove
Theorem 2.1 and Lemma 2.2 whose proofs are postponed in Section 2.

Theorem 2.1 is quite useful for non-gradient type models. This method,
often called "gradient replacement", was proposed by Varadhan [10]. We
can prove Theorem 2.1 by computing the central limit theorem variances
(see Lemma 3.1). In order to compute the variances of asymmetric terms,
we formulate a fundamental estimate on the variances of functions contained

in a suitable function space in Section 3 (see Theorem 3.1). We also define
the diffusion coefficient in Section 3. In Section 4, we prove Lemma 2.2

by using the strong sector condition. This lemma shows that, in particular,
we can take a function F which does not depend on local densities in the
local equilibrium state of second order approximation (see (2.5)).
To conclude this section, we explain the 2-dimensional discrete vortex

model given in [4] as one of the examples which satisfy the conditions
(a)-(e). We consider a discrete vortex model in terms of exclusion process
as follows. Each particle moves on Z2 like vortex with the same vorticity.
If two particles are at the neighboring sites, one particle is effected by other
particle’s presence and the jump rate to a special direction increases. They
thus effect each other. Mathematical description of this model is given by
the generator L, corresponding to (1.2),

Here the first term on the right-hand side stands for the motion of the
2-dimensional simple random walk with exclusion and the second term
is defined by

Here we label eight lattice points on the boundary of the square ~- l,1] 2
counterclockwise a1, a2, ~ ~ ~, a8, with ai = (1,0). We set a9 = We

refer to [4] for details.

We can easily check that the discrete vortex model satisfies the conditions
(a)-(d). For the condition (e), it suffices to check the strong sector

8

condition with respect to each L Ax,ai. But this is essentially the same
i=1

as Observation 2 in [11]. We can also check that the constant Cs does
not depend on p.

Vol. 34, n° 6-1998.
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2. PROOF OF THEOREM 1.1

In this section, we prove our main theorem by computing the relative
entropy with respect to the local equilibrium state of second order

approximation. The computations are essentially the same as those of

[2]. But we have to modify some parts since our model is asymmetric.
Before proving our main theorem, we prepare some notations.

For A c FN or C Zd, (A)* denotes the set of all bonds b = {x, ?/} inside
A. Now we can rewrite the generator of our model as follows:

where = for b = ~x, ~~ and ~r~ _ is the operator
on defined by

With ~b == 

In the following, we will use the adjoint operator and the symmetrization
of LN. The adjoint operator with respect to v p is given by

where = c( x, y, The symmetrization of LN with respect
to vP is given by

where cs (~, y, q) = 2 ~c(x, y, q) + c* (x, y, r~) ~. We also define L* and Ls
acting on in the same manner as (1.2).
We also define the relative entropy and the local equilibrium state. Let vN

be the uniform probability measure on The relative entropy 
of two probability densities f and g relative to vN is defined by

The local equilibrium state is defined by

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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where Zt is the normalization constant. For the present model, we take

A(t, 0) = 8)). Here, a(p) = p)~ for p E (o,1) and p(t, 8)
is the smooth solution of the nonlinear diffusion equation (1.4).
We also define the local equilibrium state of second order

approximation by

Here Zt is the normalization constant, c~ ~ _ ~ a2 ~ ~ 1  i  d , a2 = 
F = ( Fl , - - - , Fd) E and (., .) stands for the inner product of R~.
We shall also write 03BB = ~03BB ~t and 82 À = = 

for ~ _ ~ (t, 8 ) . We remark that F, in the right-hand side of (2.5), does
not depend on local densities p(t, 8).
Now we prove Theorem 1.1. The proof is divided into three steps.

Step 1. - First we estimate the relative entropy with respect to the

local equilibrium state of second order approximation. Let hN (t) ==

where denotes the density of the distribution of

on xN with respect to vN .
Then by Lemma 3.1 in [13],

Now we compute the right-hand side of (2.6). We note that

Vol. 34, n° 6-1998.
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where

Set

Then we have

where

On the other hand,

The law of large numbers with respect to verifies

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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Summarizing (2.6)-(2.9), we have

Step 2. - We next estimate the right-hand side of (2.10). We first estimate
S~3 by using so-called one-block estimate (cf. [1]).

By the translation invariance of c and the mean zero assumption (see the
conditions (b) and (c) in Section 1, respectively), we have

for all ErN and 0  p  1.

So by one-block estimate (cf. [1]),

where fjx,K = (2K + 1)-d and c(/9; F) denotes the

symmetric d x d matrix corresponding to the quadratic form

For the flux term the next theorem plays an important role. The
proof will be given at the end of Section 3.

THEOREM 2.1. - There exists C > 0 such that

Vol. 34, n° 6-1998.
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for all ,Q > 0, where

The d x d matrix Z( p; F) will be defined in Section 3 (see (3.25)).
We can show in the same manner as in Lemma 3.4 in [2] that

where

We remark that the condition (f) (see Section 1) is used to show (2.13)
(cf. Lemma 3.4 in [2]). On the other hand, by the integration by parts,

Here Tr denotes the trace of a matrix and x(p) is the compressibility
defined by

Collecting these observations, we have shown that

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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as JV 2014~ oo and then J~C 2014~ oo, where

and )) . ~~ denotes the operator norm of matrix.

Step 3. Finally we estimate the first term on the right-hand side in (2.16)
and complete the proof of Theorem 1.1. By the entropy inequality, we have

Now we recall the large deviation type estimate of local Gibbs states (cf.
Theorem 3.3 in [2]). For A(.) E CI(Td) and F E we define the local

equilibrium state of second order approximation by

where Z = is the normalization constant. Then for every

where

Here we divide FN into disjoint boxes of size (2K + 1) and a index such
boxes or their center sites.

Vol. 34, n° 6-1998.
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Let h(t) = lim hN(t). Noting that = implies

h(0) = 0, the next lemma follows from (2.16)-(2.18).
LEMMA 2.1. - Under the assumptions in Theorem l.1, there exist 03B40, C > 0

such that for 0  b  bo and ,C3 > 0,

where

We will prove the next lemma in Section 4.

LEMMA 2.2.

We can show that g8(t)  0 by choosing 8 > 0 suitably (cf. Corollary
2.1 in [2]). So the next corollary is deduced from Lemmas 2.1 and 2.2 with
the help of Gronwall’s inequality.
COROLLARY 2.1. - There exists a function F E such that for every

6; > 0. 0 ~ e [0,T]. .
Now we return to the proof of Theorem 1.1. For J E > 0

and t > 0, set

By the large deviation estimate on we have

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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On the other hand, by the entropy inequality (cf. [3]),

So by Corollary 2.1, we have lim = 0, completing the proof of

Theorem 1.1. D

3. THE DIFFUSION COEFFICIENT

In this section, we prove Theorem 2.1 whose proof was postponed in
the previous section. The proof will be given at the end of this section.
We use the method called "gradient replacement" proposed by Varadhan
[10] and compute the central limit theorem variances. To compute those of

asymmetric process, we prepare some notations and lemmas. The most part
of the arguments in this section rely on the strong sector condition (e) (see
Section 1). We also define the diffusion coefficient a(p) in this section.

denote the operator acting on functions f = f ( ~ ~ on

~o~ l~~(x> by

Here ~ ~ ~ is decomposed into ~ = 03BE . 03B6 where £ = 
and ( = E ~0, l~‘~~~>c . We define the linear space of
local functions 9 by

Here (’)A(~)~ stands for the expectation with respect to the uniform

probability measure on = ~} and s (g)
~ 

denotes the size of the support of g, namely

Here denotes the set of all E 039B(K)}-measurable functions

on x. We remark that if C, then = 0 for all K > s(g) and

m E {(), 1, - - -, We also remark that if g E 6?, then (g)p = 0 for

p c p  1. For g, h n we define

Vol. 34, n° 6-1998.
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The next lemma is the key to prove Theorem 2.1. It shows that Theorem
2.1 is proved by computing the central limit theorem variances of functions

Proof. - The proof is based on Lemma 6.1 in [2]. Put

By the entropy inequality,

where vN is the uniform probability measure on xN. Set

Here E’~ stands for the expectation with respect to the probability measure
on the path space corresponding to r~~ (t) starting from r~. By Kac formula
we have

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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where stands for the largest eigenvalue of the symmetric operator
+ So we have

The rest can be shown in the same manner as in Lemma 6.1 in [2]. 0

Now we compute the central limit theorem variance The next

lemma, the integration by parts formula for functions in ~, is useful in

computing the variances. It is essentially the same as Lemma 4.1 in [6]
and therefore the proof is omitted.

where

We consider the following R~-valued functions and

where ei E Zd denotes the unit vector to the i-th direction. We remark that
all these functions belong to ~d.

Vol. 34, n° 6-1998.
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and

We remark that the numerator of Vp (g) is well defined for g E C. 
’

The next theorem essentially follows from the arguments in [10]. We
remark that the computations of the central limit theorem variances depend
only on the symmetric part of the underlying dynamics.

THEOREM

uniformly in p E ~0, 1~ and ~ E x.

Proof - We first prove the lower bound. By Schwarz inequality,

We note that

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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and

uniformly in p E [0,1] and ( (cf. [2]). So we have

For the proof of upper bound, assume

Set

Then we have

By using this relation, for .K > s(g), one can arrange and find a

function UK E such that

Vol. 34, n° 6-1998.
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(cf. [5] or [10]). Here o(l) terms come from the contributions near the
boundary and one can arrange that they are negligible. Set 

~ ~ BY using Lemma 3.2, we have

where

We easily see is bounded in L2(vp). So it has a

subsequence converging weakly to ~i E L2(vp). Letting K - oo, we have

From the way of construction, § = is the germ of a closed form

(see Section 4 in [2]). So cPi is well approximated by functions of the form
+ L Txf. However, since

x

we have v  which combined with (3.4) yields the upper bound.
(The uniformity of the convergence automatically follows from the manner
the limit is taken.) 0

For g, h E ~, we define the inner product « g, h » p by

Set ( g g, g » p~2. Let - be the equivalence relation such that
h if and only if g - 0. The completion of 9 / rv with the inner

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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product C ~ , ~ » P is denoted by H, where ~ / N is the quotient space. In
the following, g E Q is identified with the element of H.

Let us introduce four subspaces of H:

The subscripts of ~~ and 9g indicate "current" and "gradient", respectively.
The next lemma is easily obtained from the definition of the inner

product of H.

LEMMA 3.3.

Proof - We first note that

Since g E ~, letting K, m -~ oo, I 
--~ p, we have (3.8).

For (3.9),

Vol. 34, n° 6-1998.
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Here we can replace by

-L~(~),~.( ~ (l, x)~x), since the contribution near the boundary
~ 

goes to zero as K, oo and --~ p. So we have (3.9).
The following relations, which we will use later, can be shown in the same

manner as in Lemma 3.3. These relations are valid for every 1  i  d,
I e Rd and jf e :Fo.

Here 03B4ij stands for the delta of Kronecker. Note fd03BD03C1 =
fdvp. This implies

COROLLARY

Proof - Let Pr denote the orthogonal projection to ~~ + Then

by Theorem 3.1 and Lemma 3.3,

This completes the proof.

Proof - The assertion obviously holds for p = 0,1. So suppose
0  p  1. First we prove H = Note that 

(see (3.11)). So by corollary 3.1, if H ~ Gg + LsF0 then there exists
c~ E Rd B ~ Q ~ such that

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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for all 03B2 ~ Rd. Hence by taking /3 = 03B1, we have

By (3.10),

Combining last two equalities yields c~ = 0. Hence we have 1-i =

99 + 
______ ______

We next show 99 + LsF0 = Gg + L*F0. This holds if we check that

the orthogonal projection from L* Fo to is onto. Here we have to

modify above argument since the dimension of LsF0 is infinite (This fact
was pointed out in [7].). Suppose that there exists an element g E LsF0
such that « g, h »P= 0 for all h E By the definition of 
there exists a local function fE: such that

for E > 0. By taking h = L * fe and by (3.13),

In Lemma 3.5, we will prove

Combining this with (3.15), we obtain

Combining (3.16) and (3.17) yields

Consequently, by (3.15), (3.18) and the triangle inequality, we have

Since c is arbitrary, ~g~03C1= 0 and this proves the onto-property of the
projection. D

Vol. 34, n° 6-1998.
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Now we are at the position to define the diffusion coefficient a( p) of
the nonlinear diffusion equation (1.4) for the limiting macroscopic density
field. Since W * E ?-~ for 1  i  d, from Lemma 3.4, there exists a matrix

a(p) = such that

for 0  p  1. We next show the uniqueness of a(p). We first remark that

for 0  p  1 (cf. Theorem 5.1 in [2]).

We will use the next lemma not only for showing the uniqueness of a(p),
but also for proving Lemma 2.2 (see Section 4). It gives a bound to control
the asymmetric part in terms of the symmetric part.

Here the constant Cs is given in the condition (e) in Section l.

Proof - (3.22) obviously holds for p = 0,1. So suppose 0  p  1. We

first remark that if II 0 then ]) L* f 0, since 0 if

and only if f =const. by (3.13). So we also suppose )] 0. Then

as in (3.5), for each we can find a function UK E f)~
such that

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



789HYDRODYNAMIC LIMIT

By the strong sector condition and the third relation in (3.23),

Noting (3.23) and the relation

as K ~ oo, we have ~ L* f ~03C1~ Cs ~ LS f ~03C1 as desired. 0

In order to prove the uniqueness of a(p), we prepare the next lemma.

Proof. - The assertion obviously holds for p = 0,1. So suppose
0  p  1. Suppose for each c > 0, there exists a function f ~ E 00
so that

By using (3.11) and (3.13),

So we have II e. By Lemma 3.5, we also have II 
Since 6- is arbitrary, (l, = 0 in ?nC by (3.24). Therefore lemma follows
from (3.21). D

The uniqueness of a(p) for 0  p  1 follows from (3.20), (3.21) and
Lemma 3.6. The continuity of a(p) (see the condition (f) in Section 1)
implies the uniqueness of a( p) for p = 0,1.

Vol. 34, n° 6-1998.
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Now we prove Lemma 2.2 except for the uniformity with respect to
p. Let Z(p; F) denote the symmetric d x d matrix corresponding to the
quadratic form

for l E R d and F E In the next lemma, as in Section 2, (~ ~ ~~ denotes
the operator norm of matrix.

(ii) There exists a constant C, which does not depend on p, such that

Proof. - The first assertion follows from (3.20). Hence we only have
to prove (ii). From (3.20), there exists a function F~ = .~o
such that

for c > 0 and 1  z  d. By Schwarz inequality,

We note that

Since a(p) are continuous in [0,1] ] (see the condition (f) in

Section 1 and Section 4, respectively), the right-hand side of (3.27) is
bounded above by Cie with some constant CI, which does not depend on
p, for 1  z  d and 0  ~  1.

On the other hand, by Schwarz inequality and the continuity 

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Using the relations (3.8)-(3.13), for I E Rd, we obtain from (3.27) and
(3.28) that

for 0  p  1. This completes the proof. D

Now we recall the definition of the diffusion coefficient of the associated

symmetric process (cf. [9]). The diffusion coefficient of the associated

symmetric process, denoted by as ( p), is given by

On the other hand, we have

with a sequence F~ E defined in the proof of Lemma 3.7. So the
following assertion follows from (3.30) and (3.31).

COROLLARY 3.2. - (I, as(p)l)  (l, a(p)l) for all l ~ Rd and 0  p  1.

To conclude this section, we give the proof of Theorem 2.1.

Proof of Theorem 2. l. - Apply Lemma 3.1 with J(t, 8) = c~~(t, 8),
M(p) = F) and

Vol. 34, n° 6-1998.
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Then Theorem 2.1 follows from above arguments. -

4. PROOF OF LEMMA 2.2

Finally we prove Lemma 2.2 which was proved in Lemma 3.7 except for
the uniformity with respect to the density p. The key idea is that, though
our model is asymmetric, the uniformity follows from the arguments of the
symmetric case by using the strong sector condition (e) (see Section 1).
We need the continuity with respect to p for the proof of

Lemma 2.2.

LEMMA 4.1. - For g E ç and 03B4 > 0, ~ g ~203C1= V03C1(g) is Lipschitz
continuous in ~S, 1 - ~~. 

Proof - We modify the proof of Lemma 4.2 in [6], so we refer to it for
details. From the variational principle and Lemma 3.2, we have

Here ~ E x~~K~, ~ E and c~,y,~ is a function on defined by
= ~, ~ ~ (). We define the operators and acting

on by 
’ ’

for U E where

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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We can easily see that o = o and

for u, h G So by using Schwarz inequality, we have

Therefore

Since is a local function,

We also have

Since we may restrict the supremum on the right-hand side of (4.1) to
functions satisfying

Vol. 34, n° 6-1998.
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we have

We also see that

By collecting above arguments, we have

We can show in the same manner that

This completes the proof. D

Proof - From the arguments in Theorem 3.1, we have

By Schwarz inequality and the condition (a) (see Section 1), the right-

hand side is bounded above by with some constant Co.
_ 

i=1 
_ _

Since are local functions and = ~ ~i ~g) 2 ~ 1 = 0, the

proof is completed. D

Under these preparations, we complete the proof of Lemma 2.2.

Proof of Lemma 2.2. - By Lemma 3.7, it suffices to show that
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From Lemma 3.4, for e > 0 and po E ~b,1 - f ~ , there exists a function
Fpfl = 6 .~o such that

for 1  z ~ d. Then for p E [0,1],

From Lemma 4.1 and the continuity of a(p), there exists a neighborhood
NPo of po such that above expression is bounded by 3~ for all p E Npo. The
family {N03C10, po E [8, 1- 03B4]} constitutes an open covering of [03B4,1- 8]. So we
have a finite subcovering such that ~~, 1 - 8].
To include 0 and 1, by using Lemma 4.2 and the continuity of a(p), we
observe that

for every p E [0, b~ U [1 - b, 1] by choosing b > 0 suitably. Therefore by
interpolation, for large n, we can find FP such that

FP ~r~) is continuously differentiable with respect to p E [0, 1] for each r~ and

for p E [0,1] and 1  i  d.
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In order to remove the dependence on p, we define F by =

= with sufficiently large m. In fact we have

By Lemma 3.5 and (3.13),

Now the estimate required for F follows from computing the symmetric
term and it is essentially the same as the arguments in Lemma 2.1 in [2]. D
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