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Strong approximations of bivariate
uniform empirical processes 

Nathalie CASTELLE and Françoise LAURENT-BONVALOT
URA 743 "Modelisation aleatoire et statistique"

Bat.425, Universite de Paris-Sud
91405 Orsay Cedex, France

Ann. Inst. Henri Poincaré,

Probabilités et Statistiques

ABSTRACT. - In 1975, Komlos, Major and Tusnady constructed a strong
approximation of the uniform empirical process ~~n (t), n > 1, t E [0, I]}
by a Gaussian Kiefer process. We show that the global error bound provided
by Komlos, Major and Tusnady may be improved by considering only local
approximation. Moreover we provide explicit constants. We also prove
a local refinement for Tusnady’s Gaussian strong approximation of the
bidimensional uniform empirical process. The main technical tool we use is
a non asymptotic normal approximation of the hypergeometric distribution.
© Elsevier, Paris

RESUME. - En 1975, Komlos, Major et Tusnady ont realise

l’approximation forte du processus empirique uniforme > 1, t E
~0, 1]) par un processus gaussien de Kiefer. Nous montrons que la borne
d’erreur globale donnee par Komlos, Major et Tusnady peut etre amelioree
si l’on ne considere que l’approximation locale. De plus nous donnons
des constantes explicites. Nous etablissons egalement une amelioration
locale de 1’ approximation forte gaussienne du processus empirique uniforme
bidimensionnel due a Tusnady. Le principal outil technique utilise est

l’approximation normale non asymptotique de la loi hypergeometrique.
© Elsevier, Paris
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426 N. CASTELLE AND F. LAURENT-BONVALOT

1. INTRODUCTION

Let be a sequence of i.i.d. random variables defined on

(f~.4,P) with uniform distribution on [0,1]. In this paper we say that
SZ is "rich enough" if there exists a variable on (S~, A, P), with uniform
distribution on [0,1] independent of the sequence Let us denote

by Fn the empirical distribution function associated with the n-sample
(~i ~ and by 0152n the centered and normalized empirical

process a~ (t) = t) associated to In 1975 Komlos, Major
and Tusnady (KMT) proved the following deep and striking approximation
theorem:

THEOREM 1.1. - Suppose Q rich enough. For any integer n there exists
a Brownian bridge such that, for some absolute positive constants
C, A, A, the following inequal ity holds:

P( sup B~n~ (t) ~ > x + C log n)  (1.1)

for all positive x.

This means that 0152n may be uniformly approximated by a Gaussian
process with rate n-l/2log n, substantially improving the previous
approximation rate provided by Brillinger
(1969). It turns out that the n-1/2logn-rate is optimal (Komlós, Major
and Tusnady (1975), see also Csorgo and Revesz (1981), page 140). By
following KMT’s ideas and by refining the Poissonization argument, Mason
and Van Zwet (1987) prove a local refinement of Theorem 1.1. More

precisely, they show that the log n factor in Inequality ( 1.1 ) may be replaced
by log(na) when the deviation between 0152n and the approximating Brownian
bridge is uniformly controled on [0, a] instead of [0,1]. Applications
of this local approximation theorem can be found in Mason and Van Zwet
(1987) and Mason (1988). Following the scheme suggested in Tusnady’s
dissertation (as described by Csorgo and Revesz (1981)), Bretagnolle and
Massart (1989) provided explicit constants C = 12, A = 2, A = 1/6
in Inequality (1.1). Although Theorem 1.1 or its refinements have many
applications (see Csorgo and Revesz (1981), Csorgo and Horvath (1993)),
Kiefer ( 1969) pointed out that in order to study almost sure properties of the
bivariate process ~c~n(t), t E [0, 1], n > 1~ one needs information on the
joint distribution of the approximating sequence {~~~(~), ~ E [0 , 1] , n > 1}.
As a matter of fact, KMT proved (Komlos, Major and Tusnady (1975),
Theorem 4) that this can be obtained with the cost of a possible loss of
a log n factor in the rate. In this case = where K

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques



427APPROXIMATIONS

is a bivariate Gaussian process: the so called Kiefer process. This means

that there exists a sequence t E > 1~ of i.i.d. Brownian
bridges such that K(n, t) ~ ¿7 1 Bj(t). The corresponding error bound
may be written as follows: 

The aim of this paper is on the one hand to provide explicit constants
in Inequality (1.2), on the other hand, to prove a local refinement of this
inequality which has the same flavour as Mason and Van Zwet’s above
mentioned Theorem. The construction of the approximating Kiefer process
involved in our results is the same as in Komlos, Major and Tusnady ( 1975).
This means that the key step of the proof is to control the difference between
the projection of the bivariate empirical process on the Haar basis and the
corresponding Gaussian quantile approximation. This control is obtained via
Lemma 2.5 below, which provides a non asymptotic normal approximation
of the hypergeometric distribution. Apart from this crucial Lemma, we
also use the theorems of Mason and Van Zwet (1987) and of Bretagnolle
and Massart ( 1989). Following Tusnady (1977), we also study the problem
of Gaussian strong approximation of the bidimensional uniform empirical
process for some fixed sample size. As pointed out by Tusnady, this process
is closely related to the bivariate process E ~0, 1~, n ~ 1} and
one expects analogous strong approximation theorems. More precisely
let Gn denote the empirical distribution function associated to a n

sample with uniform distribution on the unit cube [0,1] x [0,1] and let
!3n ( s, t) = t) - st) be the associated empirical bridge. Tusnady’s
theorem may be stated as follows: for all integer n there exists a continuous
Gaussian process on [0, 1] x [0, 1] with E(D~n) (s, ~)) = 0 and

t’)) == (s l~ s’) (t n t’) - ss’tt’, such that:

sup .~ ~,~n (s, t) - D~(~)~ = in probability.
V~

Our technique allows us to prove a local refinement of this error bound:

sup - (n) - 
log2 ( nab) 

in probability.sup |03B2n(s,t) - D (n) (s, t)| 1 = o m probability.
x [0,a] n

Organization of the paper. Theorems 2.2 and 2.3 are respectively proved
in Sections 3 and 4. The crucial Lemma 2.5 is proved in the appendix.
Another important lemma, Lemma 3.3, is proved in Section 3.4.

Vol. 34, n° 4-1998.



428 N. CASTELLE AND F. LAURENT-BONVALOT

2. RESULTS

Throughout the paper we denote by In the Neperian logarithm and by
log the function x ~ In(x V e). We recall the definition of a Brownian
bridge 

DEFINITION 2.1. - A Brownian bridge is a continuous Gaussian pro-
cess defined on [0, 1] such that = 0 and 

snt-st.

The following Theorem combines Theorem 1 of Bretagnolle and Massart
( 1989) and Theorem 1 of Mason and Van Zwet ( 1987).

THEOREM 2.1. - Suppose SZ rich enough. For any integer n there exists a
Brownian bridge such that for all positive x, the following inequalities
hold:

where C1, ^1,03BB1 are absolute positive constants,

Note that (i) is slightly different from Theorem 1 of Mason and Van

Zwet (1987) since we do not impose that a > Propositions 3.7 and
3.8 and our definition of log allows us to take c~ > 0. Before stating our
main results, it is useful to recall the definition of a Kiefer process.

DEFINITION. - A Kiefer process K is a continuous Gaussian process

defined on R+ x [0,1] such that E(K(s, t)) = 0 and E(K(s, t~.K(s’, t’ ) ) =
(~ A ~)(t A t’ - tt’) .
Remark. - If K is a Kiefer process, then K(n, t), n E N*, t E [0,1] has

the same distribution as Bk (t) , n G N* , t G [0,1] where is

a sequence of independent Brownian bridges.

Theorem 2.2 below provides a local refinement of Inequality (1.2) as
well as an evaluation of it’s constants.

THEOREM 2.2. - Suppose n rich enough. There exists a Kiefer process K
such that for all positive ~, the following inequalities hold:

Annales de l’Ijistitut Henri Poincaré - Probabilités et Statistiques



429APPROXIMATIONS

(i) For all a E [0,1]

where C’2, 1’12, ~2 are absolute positive constants,

The corresponding local refinement of Tusnády’s theorem for the

bidimensional uniform empirical process may be stated as follows:

THEOREM 2.3. - Suppose [2 rich enough. For all integer n there

exists a continuous Gaussian process defined on [0, 1] X [0, 1] with
t)) _ ~ and t’)) == (s n s’) (t n t’) - ss’tt’

such that for all positive x and for all a, b E [0, 1], the following inequality
holds:

where C3, A3, ’B3 are absolute positive constants.
To prove our results, we follow more or less the approach of Bretagnolle

and Massart (1989). So it is useful to recall the proof of Theorem 2.1
(ii). Let E N be a sequence of independent variables, uniformly
distributed on [0, 1]. The proof relies heavily on the following property:
let I’ be the left half of some given interval I, the conditional distribution
of the number of x/s belonging to I’ given that the number of ~i’s
belonging to I is equal to n, is the distribution ,t3 ~n,1 / 2 ) . Then the key
step of the proof is the following normal approximation of the symmetric
binomial distribution, stated in Tusnady’s dissertation and proved by
Bretagnolle and Massart (1989). In this lemma, and throughout this paper,
the generalized inverse of a cumulative distribution function F is defined
by F-1 (t) = inf ~x; > t~.
LEMMA 2.4. - Let Y be a standard normal random variable, let  be

the cumulative distribution function of Y and let ~n be the cumulative

Vol. 34, n° 4-1998.



430 N. CASTELLE AND F. LAURENT-BONVALOT

distribution function of the binomial distribution Z3(n,1/2). Then the

following inequalities hold:

For the bivariate empirical process n > 1, t E [0, I]}, or for
the bidimensional empirical process E [0, 1], t E [0, 1]), the
corresponding property can be described as follows. Let (xi), i E N, be a
sequence of independent variables uniformly distributed on [0,1] x [0,1].
Let R be a rectangle of [0,1] x [0,1]. Let us denote by X, ni , n2, n the
number of Xi’S belonging respectively to the north west quarter of R, to the
north half of R, to the west half of R and to R. Then given n, nl, n2, X
has hypergeometric distribution Lemma 2.5 below provides
a normal approximation result for the hypergeometric distribution. This
lemma will play the same role in the proof of Theorems 2.2 and 2.3, as
Lemma 2.4 plays in the proof of Theorem 2.2 (ii). Due to the skewness
of the hypergeometric distribution the statement of Lemma 2.5 involves a
corrective term which does not appear in Lemma 2.4. We will show that

this term can not be avoided (Section E in Appendix).

LEMMA 2.5. - Let Y be a standard normal random variable, let 03A6 be

the cumulative distribution function of Y and let be the cumulative

distribution function of the hypergeometric distribution H(n, nl, nz). We set
p = p’ = 1- p, q‘ == 1- p‘. We denote by m := npp’ the
mean of H(n, nl, and we denote by - npp’ qq’ the approximation
of the variance nl , nz). We define 8 = p - q and b’ = p’ - q‘. Then
for all 77 > 0 such that  1 - r~ the following inequalities hold:

where a, b, c and d are positive constants which depend only on q. Moreover
b > 1 / ~ as soon as 188’1 t > p > 0. Indeed, if b  I / 6, there exists some
values of Y such that Inequality 1. is violated.

To evaluate the constants in Theorem 2.2, one needs an evaluation
of constants a, b, c, d of Lemma 2.5 for 188’1  1 /8. We obtain the
following result:

A special case of Lemma 2.5. - (  1 /8 and npp’qq’ > 4.5, we get:

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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3. PROOF OF THEOREM 2.2

The proof of this theorem requires two steps: a construction of processes
and a control of the error approximation between the processes. In Section
3.1 we consider a sequence of independent Wiener processes 
defined on [0, 1] . (We recall that the Wiener process Wi is a continuous

Gaussian process such that E(W2 (t) ) = 0 and E(WZ (t)Wi (s) ) = s A t.) For
all integer N > 0, given 2N  i  2~+1; t E [0, I]}, we construct
a vector UN E IR2N 0 R2N with the same distribution as:

In Section 3.2 we establish inequalities (2.3) and (2.4) of Theorem 2.2 for
the sequence (~(.)~(m, .))~>i where K is the Kiefer process defined
below. By Skorohod’s Theorem (1976) there exists a sequence 
Wi : (0, A, P) - C ( ~0,1~ ), with the same distribution as ( Wi ) i > 1 and
such that 0) has the same distribution as

(UN, (W,)2N~~2~+i);~ ~ 0). Thus we define K on N* x [0,1] by:

where = tWi(l) is the Brownian bridge associated to 

3.1. Construction of UN

Distribution of AN. - We recall that a vector Z of IER has multinomial
distribution ... , n E N*, pi E ~o, l~, ~~ 1 p2 = 1 if

for all (n1, ... , nk) E with n2 = n. Clearly, the distribution of
the vector AN is characterized by the two points below:
1) Each line Xi = 1  k  2~) has multinomial
distribution A~(~2-~...,2-~).
2) The vectors ~2~+1?’ ..., 1 are mutually independent.

In order to construct U~ satisfying 1 ) and 2) above, first we find the

conditional distribution of AN given a filtration J’. Next we construct a
vector UN such that the conditional distributions of ~4~ and ~7~ are equal.

Vol. 34, n° 4-1998.
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Definition of the filtration F. - For m1, m2 E N n [0,2N] we
define the R2N vector as the vector with ml + 1-th to m2-

th coordinates equal to 1 and the rest of the coordinates equal to 0.

We denote by  I > the usual scalar product and by a 0 b the

vector We define the vectors

~e~~~) ~ 0  j  N ; 

The vector e2, may be interpreted as the indicator of the

rectangle ] 12 , (l-~1)2i~ (~+1)2~’] and the quantity  >

is equal to ~s-2N+l2i+1 In the sequel, we denote

~ := 0 >.

We define the 03C3-fields Fi-1,j, z = 0,..., N , j = 0,... N by:

These a-fields form a decreasing filtration with respect to the order -
defined by:

Conditional characterization of the distribution of AN. - We recall
that a variable X has binomial distribution B(n, p), n E N*, p E [0,1] if

We recall that a variable X has hypergeometric distribution 
n E N*, n1, n2 E N n [0, n] if

B ‘J /

The following proposition gives a conditional characterization of AN .

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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PROPOSITION 3.1. - 1) For j = l, ... , N the variables A~’°,2~ , k ==

0, ... , 2N-~’ - 1, are conditionally to independent and 

For j = N we have = 2N.

2) For i = l, ... , N and j = l, ... , N the variables A~-i’,2~ , l =

0, ..., 2N-i - 1, k = 0,..., 2N-~ - 1 are conditionally to Fi-l,j
independent and

For i = 0, ... , N - 1 and j = N we have = 22 , l =

0, ... , 2N-i - 1. 
’

Remark. - the relations A~’~ + 1,21~~-1 = and A~~~1,2l +
A 1 s 2l+ 1 = A J; ~ give the distribution of A°~.

Instead of Proposition 3.1 we prove the following more general statement
which can be used for the both bidimensional constructions (Theorems 2.2
and 2.3).

PROPOSITION 3 .2. - Let n be an even integer. Let B : _ ~ 1, 2, ... , ~ B ~ ~-,
~ B ~ even and let B1, B2 be such that B = B1 U B2, ~ _ ~ B2 ~ _ ~ B ( /2.
Let A be a set of indices. Suppose that A = h U ... U Ib U ... U I |B| I
where _ |A|/|B| for all b E B. Let (R’, R") E x IR|A| be a
multinomial vector (R’, R") N M2|A pn,, 1/(2|a|), ... , 1/(2|A|)). We set
R ~ .- R’ + R". Let T’ and T" be independent vectors with the same
multinomial distribution M |A| (n/ 2,1 /| |A|, ... , 1/| |A| ). We set T : = 
(Clearly R and T are multinomial vector .~t ~ A ~ (n,1 / ~ A ~ , ... ,1 / ~ A ~ ). ) We
set DB1 = {03A3a~Ib R’a; b E "B1 = {~a~Ib R"a; b E ’B1 =

E B1~, E B1~ and 17B2, .17B~, C~~
ln the Same Way. We have:

Vol. 34, n° 4-1998.
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and

,,. , j

where u’c, uc, m’c, mc are respectively the c-th coordinates of the vectors
+ 2t" , B1 -+- 2t’ B2 , 2G’ y + ZL’ $2 + B1 + 2G" and with the notation

Pv (1~) .- P(X = 1~) when X has distribution v.
Proof of Propositian 3.2. - Let us denote respectively by va, va, va tne

a-th coordinate of v, v’, v’. Proof of (3.6):

Thus the variables R, a E A, are conditionally to R independent and
Ra, 1/2). We obtain:

Proof of (3.7):

Here we use a factorization to obtain:

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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(Since |B1| ] == |B2|, we can write u’c,m’c for c E B2 .)
We use:

and conclude as previously. D

Remark. - The construction used in the proof of Theorem 2.3 is justified
by (3.6). The construction used in the proof of Theorem 2.2 is justified by
(3.7) but this justification is not immediate. Therefore we detail the proof
of Proposition 3.1 below.

ProofofProposition 3.1. - Part 1 ) is the result used for the unidimensional
construction (Theorem 2.1). Let us notice that this result follows from (3.8)
by taking

To prove Part 2) we set

for l = 0,...,2~ - l. We get .~2_~7~ _ + l3i~ ~;1 =
0,..., 2N-i - 1). Since the 03C3-fields: 03C3(’l,"l), l = 0, ... , 2N-i - 1,
are mutually independent and since the variables l are

we have:

and we can apply (3.7). D

Construction of ~7~. - Given the 1  ~ 

2N; t E [0,1]} we have to construct a vector UN E ~2N ~ such that

/:(~7~) == .~(AN). As previously we denote := >.

Vol. 34, n° 4-1998.
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We construct ((~’{; ~ = 0,..., 2N - j - 1); l = 0,..., 2N-i - 1) following
the order defined previously. Thus, the pair (i, j) takes successive values:

Let cumulative distribution functions of the

distributions B(n, p) , nl, n2). Let and Z~-i;2~, i =

1,...,N, l = 0,..., 2~ - 1, ~ = 1,..., N, k = 0, ... , 2~~J - 1 be
some independent random variables with uniform distribution on [0,1].
From Proposition 3.1 we obtain that the vector UN defined by:

for j = N, ..., 1 (i.e. for the first line of the array (3.9)) and by:

when (i - 1, j - 1) describes the other lines of the array (3.9), has the same
distribution as AN . Then it is enough to construct the sequence (~). We
denote by W N the vector defined by:

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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Let be the 0 vectors defined by:

Then 13 == {ej,k ; 1  j  N ; 0  1~  2~-~ - 1~ U eN,o is an

orthogonal basis of and B 0 B is an orthogonal basis of R 2 N 0 
Thus the variables  >,  0 >, 1  i 

N, 0  l  2~-’ - 1, 1  j  N, 0  k  2N-~ - 1 are independent
Gaussian variables with expectation 0, Var(  > ) = 2j /4
and Var(  0 > ) = / 16. Hence we take:

Let us remark that for j = N, N -1, ... 0 successively, the construction
of = 0,..., 2N - j - 1) is the same as the construction made

by Komlos, Major and Tusnady (1975-Theorem 3), Mason and Van Zwet
(1987) and Bretagnolle and Massart (1989). The behaviour of the deviation
I  UN - 0 > I is explained by Lemma 3.3. The first part
gives a control of I  UN - 0 > I on an event which avoids
large deviations and allows to control the probability of such an event.
The second part gives an exponential bound of the error probability. This
lemma is proved in Section 3.4.

LEMMA 3.3. - Given W N, let constructed as in Section 3.1 and let

~3;~ be the standard normal variable defined by  ~ > :

1. Let E be a real number of 0, 1 [ and let ( E) be the event:

Vol. 34, n° 4-1998.
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We have

where h(t) _ ( 1 + t) + t) - t. Moreover,
(a~ For E  0.35 and i + j - N > 8 on the event e~:~(E) we have

(b) For each pair (i, l) there exists a sequence of independent standard
normal variables (03BE*i,lj,k),j = 1,..., N, k = 0,..., 2N-j - 1, suchJ, 

that we have 
’

For each pair ( j,1~) there exists a sequence of independent standard
normal variables ~~**~~~), 2 = l, ... , N, Z = ~, ... , 2~ 2 - 1 such
that, for 2 -E- j - N > 2 ~n(~/(1 - E))/ ln(2), we have

2. There exists universal positive constants D, M such that for all positive
real t we have:

Remark. - the joint distribution of these three sequences ~, ç*, ~** is

unavailable. Nevertheless it is obvious that they are not independent.

3.2. Proof of Inequalities (2.3) and (2.4)

We recall that log(x) = and == ~m 1 
B2(t) = Wi(t) - tWi(1), where ((AN, N > 0) has the
same distribution as 0). Let us denote by

the following probability:

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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To obtain Inequality (2.3) of Theorem 2.2 we have to prove the existence
of positive constants A2, A 2 such that

and to obtain Inequality (2.4) of Theorem 2.2 we have to prove that

This follows from Propositions 3.4, 3.5 and 3.6. Inequality of Proposition
3.4 is due to Kolmogorov (Brownian part) and to Dvoretzky, Kiefer and
Wolfowitz ( 1956). The constants for the empirical bridge are due to Massart
(1990). Propositions 3.5 and 3.6 are proved in Section 3.3. Proposition 3.6
is the key to Theorem 2.2, but with this proposition we can only control

when 2N a is large enough. When we can not apply Proposition 3.6, we
systematically use the following bound:

with 0  À  1, and we control suptt |Zm(t)| directly, where
E ¿::n 1 This is the subject of Propositions 3.4 and 3.5.

PROPOSITION 3.4. - Let Zm be one of the processes or ~m 1 Bi.

PROPOSITION 3.5. - For all a E [0,1] we have

Vol. 34, n ° 4-1998.
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Remark 1. - Propositions 3.4 and 3.5 hold for any sequence of

independent Brownian bridges (Bi )2> 1 (not only for Bi(t) = W2 (t) -
tWi(1)).

PROPOSITION 3.6. - Suppose SZ rich enough. For the sequence of
independent Brownian bridges defined by Bi (t) = Wi (t) - tWi ( 1 )
we have:

(i) There exists absolute positive constants Co, Ao, ’B0 such that:

for all positive ~, for all integers N and for all a E [0, 1] satisfying
x + Co  (2~~’a)/12.

(ii) For all positive ~ and for all integers N satisfying x + 42 log(2N ) 
(2~ ) ~ 12 the following inequality holds:

Control We choose C2 = Do + (D1/ ln 2), where Do = 42
and Di = 12 for a = 1, and Do = Co V 42 and Di = Ci V 12 in the
general case (Co is the constant of Proposition 3.6 (i), C1 is the constant of
Theorem 2.1 (i)). Throughout this proof, we systematically take A = 1/2
when we use Inequality (3.10). Propositions 3.4 and 3.5 give a control of
the right side of Inequality (3.10).

If x + Do log(na) > na/12, then x + C2 log(na) > na/12. When
a E [0,1[, Proposition 3.4 (for a > 1/2) and Proposition 3.5 (for
a  1/2) give the result. When a = 1 and n > 3, Proposition 3.4

gives  0 . 5 exp ( - x / 24 ) . When a = 1 and n  2 we remark that
I mam (t) I  2. Thus Proposition 3.4 gives the result.

If x + Do log(na)  na/ 12, we remark that na > 4206 (because
Do > 42), and in this case we have log na = Inna. Let No be the
integer such that  n  2~°+1 (No > 12). Let Ao be the integer such

(3  jo  No). Notice that in the case a = 1 we have Ao = No and jo = 3.

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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For all integers m > 2~° we define 7r(m) as the greatest integer of the grid
{2~ l > jo ~ with  m. Then we have

where

where 0  ~y2  1, + ~y2 = 1 and = 0 .

Control We write x + C2 log(na) with

y = x + We have y + > (2~° a)/12, because
 8. We apply Proposition 3.4 if a > 1 /2, and Proposition 3.5 if

a  1/2. We obtain:

where A and A are positive constants and

Control of Let us define Ql(a) by

Vol. 34, n° 4-1998.
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We have

For all l, we write 03B31x + Do log(na) = Yl + Do with yl =

+ Do If yl + Co log(2la) > (2la)/12, we use Proposition 3.4
for a > 1 / 2, Proposition 3.5 for a  1 / 2 (see Remark 1 ), as well as the

following stationarity property:

We obtain:

where A’ and A’ are positive constants and

If yl + Do log(2la)  (2Ia)/12, we use Proposition 3.6. Finally we obtain:

with 11" = ~" = (where Ao, are the constants
of Proposition 3.6 and

Control of 7~(~). - Let us define Tz(a), for l > jo, and by:
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We have

For l E {jo, ... , we write yl

with yl = (In We recall that the construction realized
at the first step (i = N) is the same as the construction used by Komlos,
Major and Tusnady (1975), Mason and Van Zwet (1987) and Bretagnolle
and Massart (1989). Thus Theorem 2.1 gives:

The control of is the same as the control of We obtain:

where A"’ and 03BB"’ are positive constants. Finally:
&#x26;

and

We choose 1’1 and 1’2 such that ~yi/21 = 2) /6, which completes the
proof of Theorem 2.2.

3.3. Proof of Propositions 3.5 and 3.6

3.3.1. Proof of Proposition 3.5

with
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Let us set Vm = Thus > 1) is a

submartingale and the Doob Inequality gives:

Since  t  a) is a martingale, is a

submartingale for p > 1. Using the second Doob Inequality (1953) (see
Shorack and Wellner (1986), page 871) we get:

Similarly we get:

1 ~ - AJ 1

Using 1))P = exp(l) and the Bernstein Inequality (see
Shorack and Wellner (1986), page 440, Inequality (4)) we obtain the first
inequality of Proposition 3.5.

Using that (~~ 1 Bi (t) / ( 1 - t), t E [0,a]) is a martingale the same
technique gives the second inequality of Proposition 3.5.

3.3.2. Proof of Proposition 3.6

We prove parts (i) and (ii) together. Therefore we set Co = 42 for
a = 1 and Co > 42 otherwise. Since x + 421og(2Na)  (2Na)/12, we
have N > 13. Let A be the integer such that  a  2~-~
(13  A  N). Now it is enough to prove Proposition 3.6 for a = 2~"~.
The constants would only be modified by a multiplicative factor, except
in the case a = 1.

We define by:

To obtain part (i) we have to prove the existence of positive constants
Ao, Ao such that:
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and to obtain part (ii) we have to prove that

In I) we bound IIA,x by a sum of probabilities:

In II) we control the terms of the right side defined in I).
I) Upper bound of IIA,x. - We choose a grid adapted to a (more

precisely to A) and x. Let Lo := be the integer such that:

Remark 2. - N - A + 9  Lo  N - 3.

For each m E {2N + 1,..., 2~+~} we define as the integer such
that

For each t E [0,2~ ~] we define 7r2(t) as the integer such that

We set ,~ = + 1 ; JC = [1; UL = L2L° and

sK = We have

with:

Study of set sK) :== 
>. By definition of (Bi)2>1 we get:

The expansion of the vector -2~] on the orthogonal basis of R2 B is:
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with J( i, L) :_ (~r(~L)) where f * (i, L) is the integer defined by

and where

It is clear that 0  cf  1. More precisely:

Proof. - Let d(a, b) := ~ - al. We have cf = N).
Moreover 2i N) + 2z-1 (2 N + 1) ) = 
Therefore 03A3Ni=L0+1 21-i(d(L2L0, 2z N) + 2z-I (2 N + 1)) ==’ ,

N - Lo.

Using N + 1)) > d(L2~° , 22-I N), we obtain :

By Remark 2 we get

It follows that

The same expansion for 1 leads to:

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



447APPROXIMATIONS

with g( j, K) := ( j, g* ( j, K) ) where g* ( j, K) is the integer defined by

and where

Now we denote by the current term:

Since SK  2A, we have 0  inf(l, 2~-~+~). This remark and
Inequality (3.11 ) yield:

where

Therefore we have:

Study of The behaviour of O9 ~~;K on 6~.~(0.35) is given
by Lemma 3.3. For 2?+J~°~ > 0.8636(~+Colog(2~)), we can control
(8~~(0.35))~ Thus for each z > Lo + 1 we define the integer M(z) by:
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Moreover we define the event e by:

We have

where

In the expression of we can replace ~N by because

j  M(N) is equivalent to j  Lo + A - N + 1. We bound using
(3.10). Finally we have 

’

with:

Study of 11~. - We set

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



449APPROXIMATIONS

We can apply lemma 3.3 (i.(a)), because by definition of M(i): j > M(i)
yields z + j - N > 10. On the event e we have

with

We prove below that

Proof - We set

It follows that: == + =

+ 2~~e~~~). a

In the case A = N, we have C~’~. = 0. In order to obtain a sood
evaluation of the constants, we treat the case A == N and the case A  N -1

separately. Using (~ ~ ~/)~  2(~2 + y2) and ~‘~ ~1 i ~1  2 we get:

By the Cauchy-Schwarz Inequality and by permuting the variables u and
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j we obtain:

Thus with (3.12), (3.13), (3.14) we get:

where

We have

where

II) Control of the bound. - We choose a = 0.14026, ( 1- cx) ( 1 - {3) =
0.04509, (1 -~)(1 -/3)(1 -~)~ = 0.03272, (1 -~)(1 -/?)(! -~)(1 --$) =
0.4374, and thus (1 - cx) ( 1 - {3)’)1 = 0.34453.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



451APPROXIMATIONS

Control of P(O~). - We remark that

Thus, by Lemma 3.3 and Remarks 2 and 3, we have for Co > 42:

Control of II1,x. We write:

Using:

and the fact that, for each m,

do not depend on to, and using moreover the bound (3.10), we obtain:
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where

By Remark 2 we have:

Proposition 3.5 provides the control of and in the case A  N -1:

for Co large enough, there exists positive constants Di, Ai such that:

To control and TJv,x we apply Proposition 3.4 and obtain:

The control of and follows from the maximal inequalities proved
by Shorack and Wellner (1986) and Csaki (1974) (see also Lemmas 2 and
3 of Bretagnolle and Massart (1989)):

PROPOSITION 3.7. - For all real b 1 we have:

where h(t) _ (1 + t) In(1 + t) - t.

PROPOSITION 3.8. - Let B be a Brownian bridge. For all real b 1 /2]
we have:
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Remark 4. - The function h satisfies h(t) > 3t2 / ~6 -~- 2t) (this is Bernstein
Inequality, see also Shorack and Wellner (1986), page 441.)
We apply Propositions 3.7 and 3.8 with b = By Remark 2

we have b  1/8. We obtain

Control of For simplification’s sake, we detail only the case
A = N. In the case A  N - 1 the method is the same but the constants
are modified. We denote with a star the constants which are different in

this case.

By Lemma 3.3 (l.b.) (recall that j > M ( 2 ) yields z + j - N > 10) and
using the relation ( x ~- ~ ) 2  (111/10)~ + ( 111 / 101 ) y2 we get:

Using Inequality (3.11), Remark 3 and ~~ L~,+1 
(N - + Co log(2~))) we get that:
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We have to control SUPL~ SUPK Notice that:

Thus using Remarks 2 and 3 and (3.15), (3.16) we get:

where Zi and Z2 are variables with chi-2 distribution with respectively
(A - 9)(A - 8)/2 and A - 9 degrees of freedom and where

We choose (1 - = 0.068 and we control the right side of (3.17) with
Cramer-Chernov result for a variable Z(d) with chi-2 distribution with d
degrees of freedom: 

’

After some calculations we obtain:

Control of Using (j - = 4 and Remark 2
we get:
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where z = (3/16)(1 - + Thus Lemma 3.3 (2)
gives the result for Co large enough.

Control of TA.~. - The first part of the construction is the same as

the construction of Komlós, Major and Tusnady (1975-Theorem 3), Mason
and Van Zwet (1987) or Bretagnolle and Massart (1989). Thus we apply
Theorem 2.1. Let  be defined by  = (1 - a)(1 - ,8) x 131n2. For
Co > we obtain:

where C1, A1,03BB1 are the constants of Theorem 2.1 (i). For Co > 42 we
obtain by Theorem 2.1 (ii):

Control Let us recall that  > are independent
Gaussian variables with expectation 0 and variance /16. The term

is a Gaussian variable with expectation 0 and variance:

This variance is bounded by 0.8636(A - 10)(x + Co log(2A)) / 4 (Remark
2). Using (3.15) it follows that:

Control of Tj x. - Let r be equal to (1 - 03B1)03B2(1 - 03B3)(1 - 6)(1 -
x (3/2)(ln 2)(x + We set Jo = Lo + A - N.

Using (3.11), (3.15) and (3.16) we have:
7B7’
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Let us denote by B, resp. C, the intervals ~g*(l~I~(z), I~~2~~i~; and

(9’~(M(2)~K~ + 1)2M~2~~. We have (B + (c = (( is

defined in Section 3.1 ). We prove below that: 

Proof - The expansion of (B on S is:

where

We conclude by expanding on S:

We set Ii = V (B, C) and I2 = A(B, C). (We denote by V (resp. A) the
interval with the largest (resp. smallest) length.) We have:

Using the definition of we have:

where ,~3(n, p) is the centered binomial B(n, p) -np. We apply the following
result due to Bennett ( 1962) and Wellner (1978):
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PROPOSITION 3.9. - Let Z be a binomial with mean m. Then, for any
positive x and any sign E, we have:

m

where the function h is the same as in Proposition 3. 7.
Since the function is increasing in t it follows that, according

to remark 4:

with m = 2~~"~2~~. Remark 3 implies that  6 x (2 - x

0.8636/((1 - ~)(1 - 6)(ln2)). Thus we get:

Control of T~ . - Let us remark that B(2i, 2~-~) - 
Thus by Remark 2, Inequality (3.11 ) and Proposition 3.9 we get:

where z = (1 - x (3/2)(ln 2)(x + Colog(2~))/(16 x 0.032332).
Using h(t) > (3/8)inf(~~) (Remark 4) and 2~i+~-N > 2 x 0.8636(x +
Co log(2~ ) ) we obtain the result for Co large enough.

3.4. Proof of Lemma 3.3

Proposition 3.9 directly provides the control of (9~(~))~.
Proof of part (I,a.). - By Proposition 3.1, given (U~;~U~,1132~~ U~j~l,2l)~

the law of is the law ~(~;L~~i,2~~~~)- The conditional
expectation is: 

~ ~’ ~ ~ "

and the approximation of Lemma 2.5 of the conditional variance is:
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We set

It is easy to verify that for 6  0.35:

Moreover for E  0.35 and i + j - N > 8 we get:

Thus we can apply the hypergeometric lemma (special case of Lemma 2.5).
On the event 6~(6), E  0.35, we have:

By definition of and of we have:

We set:

We have:

where E is the following error term:
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Since > ( 1 - we get:

Control of E - Using relation (3.18) we get:

with T = 1 + (1 + E)(1 - E)3/2. Using the inequality  0.5((A.r)~ +
(y/~)2) we obtain finally:

We choose a2 = 163.5, b2 = 19.9874, c2 = 3.0163 and the proof of part
(7.~.) is complete.

Proof of part ( 1.b.). - Conditionally J > j; 0  k 

2~-~ -1 ~, the variables 0,..., 2~’~ -1 are independent with
distribution 1/2). Tusnady’s Lemma (Lemma 2.4) and Skorohod’s
Theorem (1976) provide the existence of a sequence of independent standard
normal variables (~~), j = 1,... , N, k = 0,..., 2~"~ - 1 such that:

Since  ( 1 + E)2i+j-N the first inequality of part (7.~.) holds.

Conditionally to I > i; 0  l  2~-I - 1~, the variables 
are independent with distribution 7~(2~L~,2~). The hypergometric
lemma, and more precisely the special case i. of Lemma 2.5, and

Skorohod’s Theorem (1976) provide the existence of a sequence of

independent standard normal variables (~*~), ~ = 1,...,A~ ~ ==

0, ... , 2~ - 1 such that for E) 2 /8 > 4.5 we get:

where s §’) is the approximation of Lemma 2.5 of the conditional variance:
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Indeed if j = N then  0 ej,k > = 0 and if j  N - 1 and

22+~ -N { 1 - E) 2 /8 > 4.5 then > U2’~ ( 1 - E) /8 > 4. 5.
As  ( 1 + the second inequality of part (l. b. ) holds.

Proof of part (2). - Let P2a :==  0 > I > t).
Suppose t > to (otherwise take (D, == (exp(to), 1)). If t  we

use part (1.). We obtain:

where c~ and j3 are positive constants, ~ ~ and where Z is a

binomial with mean 2i+j-N-l. Using Cramer-Chernov’s result for normal
and binomial distribution (Proposition 3.9) and Remark 4 we obtain the
result. If t > we use the bound (3.10) and relations (3.19). It

follows that:

where 0/ and {3’ are positive constants, ~ ~ and where Z is a

binomial with mean 2~’~’~. We conclude as previously.

4. PROOF OF THEOREM 2.3

The proof of this theorem is analogous to the proof of Theorem 2.2.
Thus we only give the general scheme.

4.1. Identification of D(n)

We suppose 2~ + 1  n  2~~. The Gaussian process used in the
construction is now a bidimensional Wiener process ~W (s, t); 0  s 
1,0  t  1}. (Recall that W is a continuous Gaussian process such that
E(W(s, t)) = 0 and E(W (s, t)W (s’, t’)) == For all functions

f (s , t) , we set f (] a, b] x]c, d~) _ f(a, c) - f (a, d) - f (b, c) + f (b, d). We
define the R~ 0 vector by:

Using we can construct a vector E R2N with the same
distribution as where is defined by:
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i.e. with the multinomial distribution (~~ 2’~ x 2- ,..., - x
2-N). We set :==  0 ej,k >. The variables used for

the construction are  0 eN,o >,  >, 
0 ej,k > which are Gaussian variables with mean 0 and

respective variance ~2i-2, ~2~-2 and ~22~.~-N-4, where ~ = 
As 13 (x) 13 is an orthogonal basis of IR2N IR2N, all these variables

(1   N, 0  l  2N-i - 1, 0  1~  2N-~ - 1) are independent.
The construction of the vector is not fully the same as the construction
of the vector UN in Section 3.1 (~1~~ and AN do not have the same
distribution). However, the description of the first step i = N (first line of
the array (3.9)) remains the same:

but for z - 1 ~ {TV - 1, N - 2,..., 0} the description of the steps j = N
(first column of the array (3.9)) becomes: -

and remains the same for j - 1 e {-/V - 1, N - 2,... ,0} (array (3.9)
without the first line and the first column):
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The vector 0  k  2N -1 ) ; 0  l  2N -1) has the same
distribution as the vector (see Proposition 3.2). The construction of

for j # N remains the same as in Section 3.1. Thus, Inequalities (l. a. )
and (2. ) of Lemma 3.3 (about the behaviour of  ej,k »
still hold. The first inequality of part (7.~J remains the same and the second
inequality of part f7.~ becomes of the same type as the first inequality.
Indeed, conditionally I > i, 0  l  2N-I - 1}, the variables

are independent with distribution B(~~l/2).
By Skohorod’s Theorem (1976) there exists a bidimensional Wiener

process {W~M(~, t), 0  s  1, 0  t  1} such that 
has the same distribution as (U(n)N , W). We set = W(n)(s,t) -

4.2. Proof of Inequality (2.5)

To obtain Inequality (2.5) of Theorem 2.3 we have to prove the existence
of positive constants A3, A3 such that

where P n ( a, b) is the following probability:

If x + C3log(nab) > (nab)/12, then the bound (3.10) and Propositions
4.1, 4.2 below give Inequality (2.5) for C3 large enough.

PROPOSITION 4.1. - a) For all E [0,1] such that 0  ab  1/2 we have:

where the function h is defined in Proposition 3. 7.

b) There exists an universal positive constant C such that:

PROPOSITION 4.2. - Let D(s, t) = W (s, t) - stW(l, 1) where W is a
bidimensional Wiener process.
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a) For all a, b E [0,1] such that 0  ab  1/2 we have:

b) There exists an universal positive constant C such that:

The proof of the part a) of these propositions is the same as the proof of
Proposition 3.5. The part b) of Proposition 4.1 is due to Talagrand (1994)
and the part b) of Proposition 4.2 is due to Adler and Brown (1986).
If x +  (nab)/12, we impose C3 > 42 and we have

nab > 4206. There exists A, B E N, 12  A, B  N such that

 a  2A-N and  b  2~’~. Remark that

A + B - N > 12. So it is enough to prove the existence of positive
constants such that

where

We set:

Let Li := and L2 := L2(A, B, x) be the integers such that:

Remark 5. - N - A + 8  B - 3 and N - B + 8  L2  A - 3

We set £ = ~l, 2B-L1 ~ ] and J’C = [1, 2A-L2 j . Let us denote by the

left projection of s E 12} and ~2 ( t) the left projection of
t on E We write:
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Using the stationarity of the increments of the unidimensional processes
n(Gn(.,t) - .t), n (Gn(s,.) - s.), t), and part a) of
Propositions 4.1 and 4.2 (see also Section 3.3.2 II: Control of we

obtain for C3 large enough:

where

By definition of D(n) we get:

where

The term may be written:

The expansion of and on B gives:

where
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_ ~2
The terms and are analogous to the term T~,~ in the proof
of Proposition 3.6. By construction, the processes n(Gn ( l, t) - t) and
n ( Gn ( s, 1 ) - s ) are such that Theorem 2.1 holds. Using the inequality

~2
2~-B > and the analogous for we

obtain: 
’ ’

Moreover

where I = ~L1 + 1, ... , ,.6;}, J = {L2 + 1,..., A~, where

and where the others terms are defined in the same way. We treat the
term in the same way as the term 03A03A,x in the proof of Proposition
3.6. The terms and R(I,JC)A,B,x are anllogous to the term T 1 in

the proof of Proposition 3 .6. The term is ver similar: using
4 (and the same j) we obtain:

We conclude using Lemma 3.3 (2. ) for C3 large enough.

Appendix : proof of Lemma 2.5

A. PRELIMINARIES

We recall the definition and some properties of hypergeometric
distributions. Let E be a set with cardinality n and let A and B be
two independent subsets of £, with respectively the uniform distribution
on the subsets with cardinality nl and n2. The hypergeometric variable
X ~ H( n, nl, n2) is the number of elements of ~ which belongs to
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A n B. We define the variables U, V,W as the number of elements of
A AC n B, ~ n sc:

The conditions 0  x  n~ A n2, 0  u  nl n (n - n2), 0  ~ 

(n - n1) n n2, 0  w  (n - nl ) n (n - n2) give for x:

We recall the notations of Lemma 2.5: p = p’ = r~2 /n, p + q =
1, p’ + q’ = 1, ~ = p 2014 q, and 8’ = p’ - q’. We suppose ( 
1 - ?7, where 77 > 0. We have E(X) = npp’, V(X) == (n/(n - 1))a2
where a2 = npp’qq’. The hypergeometric variable of Lemma 2.5 is defined,
using a standard normal variable Y, by

where and 03A6 are the cumulative distribution functions of the

hypergeometric distribution np, np’) and of the standard normal

distribution. We study the centered variable X ° = X - npp’ which takes
its values on [(-npp’) V (-nqq’); np’q n npq’] n N - npp’. We have to
prove the two inequalities below

and need to obtain explicit constants when 188’1  1 /8. First we remark that
np’ q A npq’, npp’ n nqq’  4~2 / ( 1 - 188’1). Then, if o-2  ~o , Inequalities
(A.2) and (A.3) hold with a = = 0, c = (40-0 /r~) + 0.5, and d =
0.5. Then, to prove Lemma 2.5, it is enough to establish (A.2) and (A.3)
for 0-2 > ~o and obtain explicit constants a, b, c, d when 0-5 = 4.5 and

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



467APPROXIMATIONS

 1/8. Properties of X (see (A.I)) involve X ° + U° = 0. Since
U = o we have to prove only that

for X° > 0. It is clear that the second part of (A.5) follows from (A.4)
with (c, d) = (a, b). We do not prove (A.4) directly. First, we choose a
constant 0152 such that:

with cx = 1.835 when ( ~b’ ~  1 /8 and 7~ = 4.5. Below, we prove that
(A.4) can be deduced from (A.6).

Proof - When aY + a  aY + cx + (66’ /2)(X° la)~ and 88’ > 0 we
obtain: 

~

In the case 0  88’  1/8 the relation X°  4~/(1 - gives
7Y + a > 5X°/7 and (A.6) becomes:

Notice that a = 3, 0152 = 1.835 and o-o = 4.5 give the good constants.
In the case 88’ > 1 /8 we apply the same method when X°  a2/2

(we impose 03C320 large enough). For X ° > 03C32/2 we remark that Y is an
increasing function of Xo. Then (A.6) gives Y > Acr where A is a constant.
Using XO  4~/(1 - 88’), we have (X°/rr)2 ~ 4A~V~/~. 0

We still have to prove that

for X° > 0. We refer to the quantile transformation method (Csorgo and
Revesz (1981), pages 133-134). With this method we obtain the inequalities
we need from the probability inequalities. Then it is enough to show the
following lemma:
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LEMMA A.1. - We suppose |03B403B4’ (  1 - ~ for some positive ~. Let 03BE be
in {ç = k - npp’; k E 1N; 0 C ~  npq’) ~. There exists a value

> 0 and some positive constants a, 0152, c, d which depend only on r~
such that for cr2 > ~~ (r~) we have:

Moreover, one can take a = c = 3, d = 0.41, a = 1.835 when 188’/  1/8
and a2 > 4.5.

Remark. - Inequality (A.3) is sufficient to prove Theorems 2.2 and 2.3.
The proof of Inequality (A.2) may be simplier in the case 88’ = 0. But
the proof of Inequality (A.3) (more precisely the "the right side" of (A.5))
needs "the right side" (A.4) of Inequality (A.2). Thus Lemma 2.5 cannot
be deduced from Lemma 2.4.

B. SOME TECHNICAL LEMMAS AND THEIR COROLLARIES

LEMMA B.l. - (Bounds for ~).) Let :== +

with

where ~’~ = + q’~ )~ 8 = p - q and 8’ = p’ - q’. Moreover we
have 1/4  ,5’2  (1 + (~)~)/2 and 1/16  S’3  (1 + 3(~)~/4.
Proof - Set cxi = p’q, Q;2 = pp’, ~3 = q 01524 = qq’ and, for

k E N*,
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Our conditions 0  ~   1, and a2 > 0 yield that

+ (-1)~ E N* for i = 1,..., 4. Then, we use Stirling’s formula,
and we obtain:

where

Using the fact that ~y~ is decreasing in k, that 1  1 + (2 /12k) and
using inequalities: np  n, npp’ + ç  np’, nqq’ + ç  nq’, np’ q - ç 
nq, and  np, we get:

Using inequalities for all x > 0, na2 + ( -1 )iç > ~~2 >

A) and 2:i = 1~~2, we get:

We now expand and ,~(~) using Taylor’s formula of the fourth order
and of the second order respectively:

with 0  0  1. We obtain the result by using the following formulas:
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and that, for 0  0  1, 0  ~  Aa2,

LEMMA B.2. - (Upper bound of = P(X° _ ~ + 1)/P(X° _ ~).)
For > 0 we have:

Proof -

where A =ln(l - + In(l - ln(1 + ln(1 +
Using inequalities In(l - x)  -x - ~2~2 and -In(l + x) 

-x + x2/2 for all x > 0 we obtain the first and the third inequalities of
Lemma B.2. Moreover A  In(l - + In(l - Since

p’q + pq’ = (1 - 88’) /2, we obtain the second inequality of Lemma B.2.
Corollaries of Lemmas B.l and B.2.

. Corollary 1: For all a2 > 4 and 0  ~  1, we have:

. Corollary 2: For all ç > 1, we have:

. Corollary 3: Let cp(y) = exp(-~/2). For all ç > 0 and for all

strictly positive real A, we define 11(~) by:

Then, we have:
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Proof - For Corollary 1 we use Lemma B.I with A = 1 /4:

Since f " (~)  0 for d2 > 4 and 0  ~  1, the function g defined by
= + is concave. Moreover g(0) = g’(0) = 0, thus 0.

Using the first and second inequalities of Lemma B.2, we obtain Corollary 2.
Using the first inequality of Lemma B.2, in the case where 88’  0, and
the third inequality of Lemma B.2, in the case where 88’ > 0, we obtain
Corollary 3.

LEMMA B.3. - (Lower bound for = P(X° _ ~ + 1)/P(X° _ ~).) If
188’1  1 - ?7 = 0 + 1  Àa2 with A  1, then we have:

Proof. -

We set ~’ == ç + 1, u = ~/(~P~)~ ~ ~ ~V(~P~)~ ~ = =

~’/(nqq’) and we get: > ln(1-~c)(1-v) - In(1-~w)(1-~-s). Using
In(l + u)  u and using the fact that for all u satisfying 0  u  1,
we have In(l- u) > -u - with a = (-In(l - ic) - we obtain:

-(ç’/a2) - + V2) with 0152 = (-ln(l - A) - ~)/~~ and
U2 + v2 = (~‘2/ ff4>((~’q)2 + (~q’)2). Since 188’1  1 - q = 0, we have

( p’ q) 2 + ( pq’ ) 2  ( 1 + 0)2/4 and we get the result.

C. PROOF OF INEQUALITY (A.8) OF LEMMA A.I

We define by:

Let ~t3~ be a value to be defined later, and let ç(2) = A{~ 2014 npp’; k - npp’ >
(~/2)-1}. Then (~/2)-1  ç(2)  (~/2). Since a2 > 4.5, the function
~ - is increasing on [0; ç(2) + 1]. Remark that ~ 2014 is increasing
for all ç if 88’  1 /8 (we recall that ~  4c~/(l - 188’1)).
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Scheme of the proof

1) For 0  ~  ~ > we prove that

2) For ç(l)  ç  ç(2) we prove that

and verify that

Let exp(-~/2). Using P(Y 6 l~’ b~)) > (b - 
we see that (C.10) is fulfilled as soon as D(~) > 0, with:

where

and f defined in Lemma B.1.
3) For ç > ç(2) we prove that D(~) > 0 when  1/8. When

88’ > 1/8 we prove that

The function ~ - 0(~) is concave and larger than 3a at ç(2) for a2 > 50.
Let ç(3) = V{k - npp’; k - npp’ - npp’)) > 3cr}. Since we have

> ~)  P(XO > ç(3»)  P(aY > ç(3) - Ll(ç(3»))  P(aY >
ç - 0(~)) for ç > ç(3), it is enough to prove (C.12) for ç(2)  ç  ç(3).
The Gaussian inequality:

implies, with ç - 0 (~) > 3a, that
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Corollary 2, with w = (1 - M’)/2, yields:

Moreover, the function Q defined by Q(t) = 1)/(9t) is

increasing. Thus Inequality (C.12) is verified as soon as D’(03BE) :=

End of the proof.
1 ) Case 0  ~  ~ ~ 1 ~ . First, we define £(1) :

Inequality (C.9) follows from:

From Corollary 1, we get:

Since o-2 > aõ, (C.13) is verified as soon as:

If 88’  1 / 8, + 1 e {1,2} and this inequality is true for

o-o = 4.5. If > 1 / 8, then ~ ~ 1 ~ - ~ + 1 e {1,2,3} and this inequality
is true for aõ = 11.

2) Case ç-(1)  ~  ç(2). Inequalities (C.ll) are satisfied with aõ = 4.5
if 88’ e]0,1/8], and aõ = 80 if 88’ > 1/8. To prove that D(~) > 0, we use
the upper bound of P(X° = ~). given by Lemma B.1.

If 88’  0 we get:

This function is concave in ç/ a2, positive at 2/ a2 and at 1/2 as soon
as ~2 > 4/(3 + bs’ ( 2 - 88’)) (in particular, one can take a2 > 4.5 for
188’1  1/8).
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If 88’ > 0 we get:

Moreover, with ~2 > 4.5 (if bb’  1 /8), or with a2 > 80 (if 88’ > 1 /8),
we have ~ - 0(~) > 0 for ~~1~  ~ ~ (,(2). Thus:

It follows:

with a = 0.835 if b6’  1/8, and with a = 1.9 if b6’ > 1/8. Recall that
D(~) = + In(l - + 1) + 0(~)). We have:

with ~ = 5/2 if 8b’  1/8 and with ~ = 7/3 if 88’ > 1/8. Let h denote
the function h(x) = 1 +~’~ln(l 2014 ~). We get:

The function h is decreasing. If b6’  1/8, then (6f~’~)/(2Q2)  1 /32 and
we obtain D(~) > 0. If 66’ > 1/8, we have to distinguish two cases. For
~2 ~ (6Q2 ) > 1.126, we get:

For ç2/(6a2)  1.126, then ç/a2  0.214 as soon as a2 > 150. Hence:

3) Case ç > ç(2). From Corollary 3, we have:

with A = 1 if ~~’  0, A = 0.835 if 0  ~~’  1/8, and A = 1.9
if 88’ > 1/8. We have for all ç > ç(2) if 88’  1/8, and for

~(2)  ç  88’ > 1 /8: 0  ~ - + 1 )  ~ - 0 (~) ~ Thus
9’~~) ~ (2A - 1)/(2~) + 9(I - 1).
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In the case 88’  1/8 we obtain:

Since In(l - + 1) + 0(~)) + (2A - 1)(~ - ç(2»)/(2a2) is increasing
in ~ (because a2 > 4.5) we get D(~) > D(~~2~) > 0.

In the case > 1/8 we obtain:

We have supposed a2 > 150. Thus 0.49  ç-(2)  0.5. Using the lower
bound of g~~{2~ ) given by (C.14) we obtain:

The right side is an increasing function of 88’ if a2 > 102 / ( 1 - 88’) and
is positive at 88’ = 1 /8 if a2 > 379.

D. PROOF OF INEQUALITY (A.7) OF LEMMA A.I

Let 6* = 1 - r~. On the set X ° > (a~ /(4d)) - c’ , where c’ = c - 1, it

is clear that Inequality (A.7) holds because

We suppose now 0  X°  (a2/(4d)) - c. Since P(aY - dY~ - c >
ç - 1)  P(aY > (a2/2d)(1 - 1 - w)), where x := (4d(~ + c’))~~2, it
suffices to prove that for all ç E [0, (r~/(4d)) 2014 c] :

If x is large, we will prove Inequality (D.15), and if x is small we will

prove the following inequality step by step:

where x and x’ are defined by: x = 4d(~ + and x’ = + 
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Relation between P(X° > ç) and P(X° = ~). - With the notation of
Lemma B.3: r(~) = P(X° = ~ + 1)/P(X° _ ~), we have:

Since + c  cr~/(4d), we can apply Lemma B.3 when A = 1/(4~)  1:

. ~  1

with

Inequality (D.15) is replaced by:
- I "I

Uppers bounds for the Gaussian probabilities. - Using P(Y > y) 
(y 2~r)-1 we have:

Moreover,

where ~)~(l-~)-~exp(-(~/(8~))(l-~T~~)~). The study of h
shows that ~~ ~(~) d!~  (x - as soon as o~2 > 16~, c ~> (d!+ 1)~
and x  xo, where:

With these conditions we have:
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The conditions on the constants are:

End of the proof. Let us denote by g the function which appears in both
Inequalities (D.19) and (D.18):

Using (D.17) and (D.18), we see that Inequality (D.15) is satisfied as soon
as:

Using (D.19), we see that Inequality (D.16) is satisfied as soon as x  xo

and: 
-

Thus we need a lower bound for ln(P(X° _ ç)) + g(x). We have
(1 - 1 - x~2 > (~2~4~ + (~:3~8) + (5:c4~64~ with :z == 4d( + c~)~~2.
Using Lemma B.1, we get:

with:

Since A  1 /4d, a4 is positive when d = 0.51 (if 0 = 1) or d = 0.41 (if
9 = 1/8). Then, with a2 > 4.5, c = 4 in the general case 9 = 1 or c = 3 in
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the case 0 = 1/8, the three conditions of (C) are satisfied. We now detail
the case 8 = 1 /8, a5 = 4.5, c = 3, and d = 0.41 (the general case 9 = 1
is analogous). We replace the constants by their value, but keep A = 1 /4d
in the coefficient ao. We will later give a lower bound for this coefficient.
We get a  0.4895, xo > 0.602 and:

with:

Case ~  0.602. In this case (ln(1-~))/2 ~ -(.r,~2)-(x2~4)-0.317:~3.
We replace x by + and obtain:

A 3

where c2, c3 > 0 and:

The right side is not really polynomial: co is a function of A where A is

such (Lemma B .1 ) . If ç  0.3cr~ then A  0 . 3, and all

the coefficients ci, i = 0,1, 2, 3 are positive. If 0.3a2  ~  0.61~2

(since  1/(4d)), then ~  0.61 and we get co + ClÇ >

(~(1.1175~ - 0.0674) + 4.87~ /~6. Using ~ > 0.3a-2 > 1.35, we obtain
the positivity.
Case x > 0.602. In this case we have:

° 
= x 1 

1 2014 ac+1 
ln 

1 2014 1 2014 x 
>= 03BE))+g(x)+ln(1=ac+ 1-a b0+b103BE-0.1852.°

Now A  0.61 (since ç/a2  1 / (4d) ). 10.5, we obtain bo > 0.1852.
10.5, we use ç/a2 = x/ ~4d) - c’/ff2 > 0.17, and obtain > 0.32.
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E. BOUND OF (X~ I CAN NOT BE IMPROVED

We show that the term of Inequality (A.2) cannot be avoided.
Using properties of H( n, np, np’), it is sufficient to prove this result for
X ° > 0 and 88’ > p > 0. In Section C we have obtained the existence
of constants 0152 and b such that:

Let us suppose ~ of order a4/3 In a, more precisely a4/3 In a - I 
ç  (we recall that $ = k - Using the lower
bound of == ç) (Lemma B.I) and inequality P ( Y > ~ ) 

exp(-~2/2), we obtain:

where y =03BE--a-- b03B403B4’03BE2-3 and lim = 0.
a a a3 

Using the definition of ç, we get:

2 
+uu -- 6 

nO" 
3 3 

+nna,

where E’(o-) = 0. This leads to b > 1/6 as soon as 88’ > p > O.
Nous adressons nos plus vifs remerciements au Professeur J. Bretagnolle

sans qui ce travail n’aurait pu aboutir.
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