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ABSTRACT. - We consider Brownian motion in a truncated Poissonian

potential conditioned to reach a remote location. If the Brownian motion
starts in 0 and ends in the closed ball with center y E R~ and radius 1,
then the transverse fluctuation is expected to be of order ~ ~ ~ ~ ~ . We prove
that ç  3 /4 and ~ > l/(d + 1), whereas for the lower bound we have to
assume that the dimension d > 3 or that we have a potential with lower
bound A > 0. As a second result we prove, in dimension d = 2, that

x > 1 /8, where ~ is the critical exponent for the fluctutation for certain
naturally defined random distance functions. @ Elsevier, Paris

RESUME. - Nous considérons un mouvement Brownien dans un potentiel
Poissonien tronqué atteignant un lieu éloigné. Si le mouvement Brownien
demarre en 0 et termine dans la boule de centre y E R~ et de rayon
1, alors on attend que la fluctuation transversale soit Nous

montrons que ~  3/4 et ~ > 1/(d + 1), of pour la borne inferieure nous
devons admettre que la dimension d soit supérieure ou égale a 3 ou que
le potentiel ait une borne inferieure A > 0. Comme deuxieme résultat nous
montrons, en dimension d = 2 que X > 1 /8, où X est l’exposant critique
pour la fluctuation pour certaines fonctions de distance aléatoires definies
naturellement. © Elsevier, Paris
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0. INTRODUCTION

The theme of random motions in random potentials has attracted much
interest recently. In the present work we want to consider Brownian motion
in a truncated Poissonian potential conditioned to reach a remote location.
Our purpose here is to study some fluctuation properties of certain distance
functions.

Description of the model. - Throughout this paper we look at Brownian
motion in a truncated Poissonian potential. Let P stand for the Poisson law
with fixed intensity v > 0 on the space n of simple pure point measures
03C9 on To the points Xi of the Poissonian cloud cv = Li 03B4xi ~ 03A9 we
want to attach soft obstacles: To model the soft obstacles we take a fixed

shape function W ( ~ ) > 0, which is assumed to be bounded, measurable,
compactly supported, not a.s. equal to 0 and

( 0 .1 ) . W ( ~ ) is rotationally invariant.

By a = a(W) > 0 we denote the smallest possible a E f~~ such that
supp(W) C B(o, a). For M > 0 (fixed truncation level), we define the
truncated potential as follows:

where x E ~d b~2 E S~ is a simple pure locally finite point
measure on IRd.

In this medium, we look at Brownian motion. For x E d > 2,
we denote by Px the Wiener measure on starting from x;
Z. = Z.(w), w E stands for the canonical process. For

x, y E (~d, ~ > we define the following random variable

L B ~ J

where H(y) = inf{s > 0,Zg e B(y, 1)} is the entrance time of Z. into

the closed ball 13 with center y and radius 1. We will call the

gauge function for (~, y, A), it plays the role of the normalizing constant
for the path measure of the conditioned process. So the measure of the
conditioned process is described by
/~ ~ B

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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We define

a~ (~, y, w) is a nonnegative random variable that satisfies the triangle
inequality. Thus,

is a nonnegative random function that is symmetric and satisfies the triangle
inequality [8]. We know that if d ~ 3 or 03BB > 0 or 03C9 ~ 0 (which is P-a.s.
the case) da(~,~,c.~) is a distance function on which induces the usual

topology.
From the results in [6], we know that there exist norms aa(~) on R~

for which

where in our case of rotationally invariant obstacles the quenched
Lyapounov coefficients o~a ( ~ ) are proportional to the Euclidean norm on

this will imply that considerations on the Euclidean norm allow us to
make statements on the quenched Lyapounov coefficients.

In this work we want to describe, how the Brownian paths are behaving
when they feel the presence of the Poissonian distributed soft obstacles. As
a first critical exponent, we look at the transverse fluctuation:

If we take a cylinder with axis passing through the origin and through
our goal y E R~ and with radius -y > 3/4, then we will show in
Theorem 1.1 that P-a.s. the y0-probablity of the event A(y, 03B3), that the _
path does not leave this cylinder, tends to 1 as |y| ~ oo . On the other hand,
if we take 03B3  1/(d-f-1), we are able to show (see Theorem 1.3) that for any
sequence (Yn)n of goals tending to infinity, the E-expectation of the random
variable Po n ~)~ does not tend to 1. These two estimates give us a
lower bound and an upper bound on the critical exponent ç, standing for the
transverse fluctuation. Although this subdiffusive lower bound is far from
the expected behavior of the paths, the proof is already mathematically
involved. In dimension d = 2, we expect a superdiffusive behavior of
the motion, we guess that the critical exponent ~ should equal 2/3 (This
conjecture is based on the assumption that the behavior of this model
should essentially be the same as in the first-passage percolation model
(see below). We remark that in a closely related model, we have proved
that ç > 3/5 if d = 2 and A > 0 (see Theorem 0.2 of [10])). Whereas in

Vol. 34, n° 3-1998.
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higher dimensions, £ should be greater or equal to 1 /2 (see Theorem 0.1
of [10] for the related model). But there are no rigorous proofs for these
statements in the model considered here. In any case, the bounds which we

derive here are a first approach to the expected behavior of the paths.
We also look at a second critical exponent x, describing the asymptotic

behavior of the variance for Iyl --~ oo. The predicted
asymptotic behavior for is of the order |y|2~. We
are able to give a nontrivial lower bound on x (see Theorem 1.2). For

general d the following inequality is true:

This (together with Theorem 1.1) gives us a lower bound of 1/8 in

dimension d = 2, whereas in dimensions d > 3 (under the assumption
ç = 1/2), we do not get any new interesting features.

Physically, for fixed A, cv and y, the gauge function can

be interpreted as the A + V(., w)-equilibrium potential of which

formally satisfies

We will see, that the model we study here, has lots of common properties
with the models in first-passage percolation (see Kesten [2], [3], Newman-
Piza [5], Licea-Newman-Piza [4]). The critical exponents, x and ç, for the
longitudinal and the transverse fluctuation are expected to depend on d, but
nevertheless satisfy the scaling identity x = 2~ - 1 for all d. But there is
no proof for this scaling identity. In fact, loosely speaking, if x’ denotes
the critical exponent for the fluctuation of the random distance function

around the Lyapounov coefficient (x‘ is an exponent
closely related to x), Theorem 1.1 tells on a heuristic level that ~’ > 2g - 1
(In view of Corollary 3.5 of [8] we see that in any dimension d > 2,
x’  1/2). Heuristic arguments tell also that X  2~ - 1 should be true.

In the next section we give precise statements of all the results and
an overview on the results already known. In Sections 2, 3 and 4 all the
statements are proved: In Section 2 we will prove the upper bound on ç,
here we use essentially the fact, that we can compare our random distance
function da (-, ., cv) to the Euclidean distance. In Section 3 we will prove
the lower bound for X and finally in Section 4 we give the proof of the
subdiffusive lower bound for ç, the main tool for these two bounds will
be a martingale method similar to the methods used in the articles of

Newman-Piza [5] and Licea-Newman-Piza [4].

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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1. SETTINGS AND RESULTS

We want to recall that in the whole article we only consider models with
rotationally invariant obstacles. It follows that also our quenched Lyapounov
coefficients c~a (-) are rotationally invariant. This means that ~xa (-) is a norm
on which is proportional to the Euclidean norm.
We take x a non zero vector in IRd. We define the axis Lx to be the

line {ax E Rd ; a e (~~ through x and the origin. Take r > 0. We define
Z(x, r) == {z E IRd ; d(z, Lx)  r~ to be the cylinder with axis Lx and
radius r, where d(., .) is the Euclidean distance. For technical reasons we

cut off the ends of the cylinders. For x ~ 0 and 1 ~ 03B3 > 0, let 03B3)
be the following slab S(x, ~y) _ ~z E  (z,  ~xi + 
then we define 

’ 

For the boundary of Z(x, ~y) we use the notation ~Z(a,, ~y).
We are now able to define the event of our main interest. Let A(x, ~y)

be the event that the path of the Brownian motion starting in 0 with goal
does not leave the cylinder Z(x,-y): 0 and q > 0,

ç is then the following critical exponent:

We consider for d > 2 the model described in the introduction, where the

obstacles are rotationally invariant and the Poissonian potential is truncated
at the level M > 0.

THEOREM 1.1.

Remark. - The above theorem gives us a superdiffusive upper bound
on the transverse fluctuation of our Brownian motion in a truncated
Poissonian potential. The proof of the theorem uses essentially the fact,
that the obstacles are rotationally invariant and that the Poissonian potential

W. 34, n° 3-t998.
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is truncated at a fixed level. In Lemma 2.1 we will show that the

random variable ~y)~ is continuous in y, and therefore we know

that is also a random variable. In the proof of

Theorem 1.1, we show the fact that if 03B3 ~ (3/4,1), then, P-a.s. for large
Po ~A(~, ~y)~ > for suitable c > 0 and c’ > 0,

which of course goes to 1 tends to infinity.
Once we know this statement, we are able to prove the divergence of the

variance in dimensions d = 2. We define the critical

exponent for longitudinal fluctuation

We have the following theorem:

THEOREM 1.2. - For d > 2,

In view of (1.4) for d = 2,

Our next aim is to find a lower bound on the transverse fluctuation. For

the start we get a subdiffusive lower bound on ~o defined as

Of course, ~o  ç. We want to mention that in the definition of ço we
could restrict ourselves to y E IRd of the form ~ _ ~ ~ ~ ~ , 0, ... , ~) . Indeed,
in the case of rotationally invariant obstacles, the above expectation does
not depend on the direction.

THEOREM 1.3. - Assume d > 3 or a > 0, then

Remark. - The first statement in Theorem 1.2 and the statement in

Theorem 1.3 are also valid in a more general context; in fact in the two

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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proofs we do not use that the shape function is rotationally invariant.

We only require this assumption in the proof of Theorem 1.1 and as a

consequence for the lower bound on x in dimension d = 2.

We sometimes use the terminology of first-passage percolation because
the situation in the case of Brownian motion in a truncated Poissonian

potential looks very similar. In first-passage percolation, to prove the

statements one has often (unverified) assumptions on the curvature of
the asymptotic shape, here we do not have these problems because in the
case of rotationally invariant obstacles one knows that the asymptotic shape
is a ball with positive radius. This fact indicates an advantage of our model.
To close this chapter we give some further general notations and state

some already known results we will need later on. We usually denote
positive constants by ci, c2 , ... and ~y2 , .... These constants will only
depend on the invariant parameters of our model, namely the dimension
d, the intensity v, the shape function W, the truncation level M and the
parameter A. The constants which are used in the whole article are denoted

by whereas Ci is only used for local calculations in the proofs.
If U is an open subset of we introduce the (A + V)-Green function

relative to U : Take 03C9 E H, x, Y E IRd then

where ru, for a non void U, is known to be the kernel of the self-adjoint
semigroup on generated + V with Dirichlet boundary
conditions; for 03C9 E H, x, y E Rd and t > 0 is.

with p(t, x, y) the Brownian transition density, E;,y the Brownian bridge
in time t from x to y and TU = inf~s > 0; Zs  U~ the exit time from U.
When U = Rd, we will drop the subscript U from the notation.
Next we recall some properties of and For

y, cv) we have by a tubular estimate for Brownian motion the following
nice lower bound (see for instance (1.35) in [8]):

with ~yl e (0,1) and ~y2 > 0.

Vol. 34, n° 3-1998.
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From [8] Proposition 1.3, we have a shape theorem: on a set of full
P-measure we know, for A > 0, that

the convergence also holds in L 1 ( (~’ ), and one can replace by
or 

Next we introduce a paving of For q e we consider the cubes

of size l and center q

with l (d, v, a) E (d(4 -I- 8c~~, oo) fixed, but large enough, see for instance [7]
or [8], and for z E Rd, zi denotes the i-th coordinate of z for z = 1, ... , d.
We also want to introduce a fixed ordering q1, q2, ... of all q E So we

get also a ordering of our cubes: We define Ck = C(qk) for all kEN.
For y and w E C(!R+, Rd) with H(y)  oo we introduce the random
lattice animal 

.

where Hk is the entrance time of Z. into the closed cube Ck. We know
from [8] formula (1.31) that there exists a -y3 (d, v, W, M) small enough
such that for x E C(0) and y e 

where is a random variable with ~, and 
denotes the (random) number of cubes visited by the path. With the help
of this exponential bound we get very important estimates on the expected
value of any power of the number of visited cubes.

Finally we quote the (for us) important part of Lemma 1.2 of Sznitman
[8]. For Ix - yl > 4 and 03C9 ~ 03A9

where for x E !R~ and w e H

provided denotes the support of cv.

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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2. PROOF OF THE SUPERDIFFUSIVE UPPER BOUND ON 03BE

First we start with a continuity result. We want to show that the limit in
the definition of 03BE is a well-defined random variable. Therefore we have to
show that is continuous in ?/.

LEMMA 2.1. - For a > 0 and 03B3 > 0, the functions (y,03C9) ~e03BB(0,y,03C9) and
~ y0[A(y, 03B3)] are measurable in 03C9 and for all |y| > 1 continuous

in ~.

We give the proof of this lemma in the appendix. Next we state a

geometric lemma. If 0 and y G R~ are on the axis of the cylinder with
radius ~ ~ ~ ~ we want to measure the cost of a detour to the boundary of the
cylinder, as compared to the "direct way" from 0 to ?/.

LEMMA 2.2. - We take q E (0,1]. There exists 03B37 E ( 0, oo ) such that for
6 R~ with ~y~ > 1 and z G ~Z(~, ~y) the following is true:

Remark. - The lemma will be important for us, because in the case of
rotationally invariant obstacles, our quenched Lyapounov coefficients are
proportional to the Euclidean norm, so in fact the above lemma is a claim
for our quenched Lyapounov coefficients.

Proof. - Take’y E R~ fixed. Without loss of generality we may assume
that y has the same direction as the first unit vector in By zi we denote
the first coordinate of the vector z E o~Z(~, ~y).

If z1 = - ~ ~ j’~ or if zi + then 
-

If zi E (- fyi, Iyl + then we see, that if we embed an ellipsoid
into the cylinder with focal points 0 and y and tangent to the cylinder, that
10 - zl is minimal for zi = Therefore

Now there exists a ci > 0 with

Vol. 34, n° 3-1998.
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So we see that

which completes the proof, if we take ~y7 E (0, oo) suitable. D

We recall the following result from [8]: Corollary 3.5 tells us that under
assumption (0.1) in dimensions d > 2, P-a.s., for large,

Our aim is to formulate a similar result for the random distances da (o, z)
and if z is on the boundary of the cylinder 

LEMMA 2.3. - Assume (0.1). When d > 2, ~y E (o, l~, then P-a.s., for large
and z E the following holds

and

Remark. - If d > 3 or A > 0, one can improve the bounds of the above
inequalities. But for our purposes we will not need any better bounds. The
important thing in the proof will be that the distance of the two points is
growing faster than the big holes in the Poissonian cloud.

Proof. - First we want to prove (2.3) in the case d > 3 or A > 0.

We pick a fixed y E such that |y - z] > 4 for all z E Take

z E ~y), then Theorem 2.1 from [8] tells us, that for 0  u  

where Da (0, x) = IE ~da (0, ~)~ .
The first step is to verify the lemma for a countable set of points because

we want to use the Borel-Cantelli lemma. For every n E N, we take a finite
covering of n) with balls B (y, 1 ) such that = n. We denote the

set of the centers of these balls by Cn. We may and will choose Cn such

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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that (  (By ~A~ we denote the number of points in A). For
~y) we do exactly the same and we denote the set of centers by C~.

We choose Cy such that For a fixed n E N, y E Cn
and z E Cy we define the following event

We will choose a suitable but fixed c6 which is determined in (2.7) below.
From Corollary 3.4 of [8] we know that, for |y| > 1,

So the triangle inequality and (2.6) imply for n E E Cn and z E Cy

~ 

Now we choose ce. Let ce be large enough such that

Then we choose no such that (C6 - c7 ) log Iy - z ~  clly - zl for all n > no,
y E Cn and z E Cy. In view of (2.7), we get

Therefore, the following sum is finite

The proof of (2.3) in the case d > 3 or A > 0 follows with a Borel-
Cantelli argument and the observation that da (~, y) is uniformly
bounded by (1.12).
The proof of (2.3) in the case d = 2 and A = 0 is almost the same,

the only difference is that one has to use Theorem 2.5 of [8] instead of
Theorem 2.1. It is at this point where the upper bound is weakened, i.e.,
here the power two in the logarithm is coming into the calculations. The
proof of (2.4) goes analogously.. D

At this stage we can combine Lemma 2.1, Lemma 2.2 and Lemma 2.3
to find the upper bound on ~. The idea is that with the help of the strong

Vol. 34, n° 3-1998.



290 M. V. WUTHRICH

Markov property and the above lemmas one sees that the detour over the

boundary of the cylinder costs too much.

Proof of Theorem 1. I . - Take ~y E ( 3 / 4, 1) fixed. We want to show that
P-a.s., for large (~~,

From Lemma 2.2 we know that for Iyl > 1 and z E the following
holds

We multiply the above inequality by ax(ei). Thanks to the rotationally
invariant obstacles, we get the following inequality for our quenched
Lyapounov coefficents 

Notice that if our path from 0 to y runs over the boundary of the cylinder
Z(y, ~y), we are allowed to add an extra term of order 2~y - 1 to the right-
hand side of the above triangle inequality. In view of Lemma 2.3, (2.2)
and (2.10), we get P-a.s., for |y| large enough and any z E 

for a suitable ci. Here we see the importance of the order of the added
term in (2.10). We want to have 03B3 such that the correction term on the
right-hand side of the above inequality stays positive. We see that ~ ~ ~ 2‘~-1
tends faster to infinity than ( whenever 03B3 > 3 /4. Thus, P-a.s.,
for large Iyl and z E ~y), ,

As in the proof of Lemma 2.3 we take a finite covering of aZ(y, ~y) with
balls We denote by Cy the set of the centers of these balls. We
are able to choose Cy such that ICy [  c3 ~~) 1+~d-1)~r. With the help of the
strong Markov property we find

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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First we want to treat the case d > 3 or A > 0: We find with the help’
of (1.17) and (2.11 ), that P-a.s., for large ~ ~ ~,

That proves the theorem in the first case.

Now, the case when d = 2 and A = 0 is a little bit more difficult, because
(1.17) does not have that easy form as in the first case. If the Brownian
motion is recurrent, we have to be sure, that there are obstacles in our space
to get good results: As in (1.23) of [8] we see that P-a.s., for large,

This follows from standard estimates on the Poissonian distributed cloud
in Therefore we have P-a.s., for all large an upper bound on the

function Fa (see (1.17))

So we find using (2.11) and (2.12) that P-a.s., for large ~y~,

This completes the proof of our theorem also in the second case. D

3. PROOF OF THE DIVERGENCE OF THE VARIANCE

We want to derive now the proof of Theorem 1.2. The proof has a very
similar structure as an analogous power law result on the divergence of shape
fluctuations in first-passage percolation. Our main tool will be the martingale
technique used in the spirit of Wehr-Aizenman [9], Aizenman-Wehr [I],
Newman-Piza [5] and many other authors.

Vol. 34, n° 3-1998.
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Proof of Theorem 1.2. - Take U a subset of we define the following
a-algebra,

We introduce then the following filtration on (52,.~’, 

with i > 1, the cubes defined in Chapter 1. For a fixed y E introduce

the following non-negative martingale

In view of { 1.12) - log ea (o, ~) is bounded above and Mk converges
P-a.s. and in E to - log ea (0, y). By standard martingale
identities we get

where AMk = Mk - 
We denote by 9k == So _ ~1 V ~2 V ... V with ~1 V ~2 the

smallest a-algebra containing 91 and ~2 . Because 9k C Fk and 9k JL Fk-1,
we find

Our next purpose is to apply similar considerations as Lemma 3 of [5]: If
is a cloud configuration, we denote by Wk the restriction of 03C9 to Ck

and by cJk the restriction of 03C9 to Ck, so we can write 03C9 == We
consider the following two disjoint events on Ck:

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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this is the event that the cube Ck receives no point of the cloud. Whereas

is the event that we have at least one point of the Poissonian cloud in the
center (i.e., in the closed ball with center lqk and radius 1) of the cube C~.
We then define, for 8 = 0 or 1,

Of course, D~ and Dl are disjoint and Qk measurable. We denote by
p = ~~Dk~ > 0 and by q = > 0.

analogously one gets the following lower bound

We remark that

are measurable. This can be seen by using an approximation of the cloud

configuration by cloud configurations with rational coordinates. We define

Xo and xi as follows,

Vol. 34, n° 3-1998.



294 M. V. WUTHRICH

and

To simplify the notation we introduce:

In view of the above bounds on Xo and x1, we see that x 1- xo > 0

and therefore

Using Lemma 3 of [5], we have the following estimate

Therefore, together with (3.3) and (3.4), this is yielding a lower bound for
the variance 

Take ~y > ~ and define ~y = ~ 1~ e N with C~ n Z ( ~, ~y ) ~ ~ ~, to be all
the cubes, that intersect the cylinder with radius ~ ~ (’~. We know
that for a suitable ci E (0, oo ) . With the help of
Cauchy-Schwarz inequality, we get

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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If we are able to prove that there exists a c3 E (0, oo) with

then X > (1 - ( d - 1 ) ~y ) / 2 for all ’r > ~, so the claim of Theorem 1.2
follows for d > 2, whereas for the bound 1/8 for d = 2 one simply inserts
the bound for £ given in Theorem 1.1. It remains to prove (3.6).
We will therefore prove two technical lemmas, the proof of the two

lemmas will essentially be the same as the proof of formulas (2.10), (2.11 )
and (2.13) of [8]: For k > 1, take o-~ E D5,k, with 6 = 0 or E 0

and x E We define the potential .

(3.7)

If Ok is the closed a-neighborhood of Ck, then notice that

and there exists a c4 > 0 and a domain G C ~’~ (depending on a-~ E 
such that G has positive Lebesgue measure and the difference > c4

on G. Define Hk = He to be the entrance time of Z. into Ck, and
to be the entrance time of Z. into the closed cube Ck. So

we denote the path measure on generated by ~~ with start in
x E (~~ and goal IRd as follows

to ’ avoid overloaded notations we will drop the brackets for the cloud
configuration in the gauge function.

LEMMA 3.1. - With the above notations the following statements are true:

and

Vol. 34, n° 3-1998.
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Proof of the lemma. - With the help of the strong Markov property follows

Whereas for the second claim of the lemma one has to exchange the role
of aZ and ~~ . This finishes the proof of Lemma 3.1. D

The second lemma tells us, how to handle the fraction on the right-hand
side of the equation in the above lemma. For k > 1, take aZ E D8,k, with
6 = 0 or 1, cv E nand y E IRd, we denote by gy,03B403BB,03BA(.,.) the (A + V03B4k)-Green
function on U = that is, for E IRd,

see also formula (1.10).

LEMMA 3.2. - With the above notations the following two statements are
true: 

~ _

and

Proof of the lemma. - By a classical differentiation and integration
argument one has for w E with H(y)  oo,

To prove the first claim, we multiply both sides by

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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and take the integration with respect to Whereas for the

second claim one has to exchange the role of ~r~ and at. This finishes the
proof of Lemma 3.2. D

Now we are able to prove (3.6). Take o-~ E Do,k. (In fact Do,k contains
only one element.) Then

We want to find a good lower bound on the term on the right-hand side
of the above equation. We take a fixed ~~ E Then by Lemma 3.1
and Lemma 3.2 we find

Now, we have to distinguish whether Ck is a neighboring box of our goal
or not: Choose R minimal, such that Ck C B(lqk, R). We say Ck is a

neighboring box of y E IRd if y is contained in the closure of B(lqk, R + 2).
Define

Of course the number of points contained in Ny is bounded by a constant
only depending on a, I and d.

Second Ny. From Harnack’s inequality (see for instance [6]
after (1.28)), we get, for k > 1,
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Thus, because (Vl - > 0 we see that

On k ~ Ny, there exists a c6 > 0, independent of k, such that

for all x E and all cr~ E D1,k,

Therefore, we find

If we insert this result into formula (3.10), we get

where we have used Lemma 3.3 which follows below. Thus, we find the

following lower bound

If again denotes the event that the path of the Brownian motion
starting in 0 with goal B (~,1 ) does not leave the cylinder Z ( y, 1’), we know,
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because w.e have taken 03B3 > 03BE, that P-a.s. lim inf|y|~~ 0[A(y, 03B3)] = l.
Therefore,

So the claim (3.6) follows by the lemma of Fatou, this completes the proof
of our theorem. D

LEMMA 3.3. - Take y E k > 1, a; E H, ~~ E Do,k and cr~ E D1,k.
Then we have

and

Proof. - We know by (3.8) that  and also 

V (cv ) . Therefore it suffices to prove the first claim, the second one then

follows analogously. Let us define for 8 = 0, l, w E 

and observe that

and
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Therefore by (3.15) and (3.16) we get

This completes the proof of the lemma. D

4. PROOF OF THE SUBDIFFUSIVE LOWER BOUND OF ço

The strategy of the proof of Theorem 1.3 is an extention of the

arguments used in the proof of Theorem 1.2. For a similar result in

first-passage percolation we want to refer to Section 3 of [4]. The idea
of the proof is to for the two different starting
points 0 and m and the two different endpoints y and y + m. One
easily gets an upper bound on the variance of the difference of these
two "passage times": If the distance between 0 and m is of order ~ ~ ~ ~’ then
Var( -log ex (0 , y) + log + m)) _ On the other hand we

will get, by the methods presented in the preceding chapter, a lower bound
of the form So if we choose ~y, the power of the cylinder
radius, smaller than 1 / ( d + 1) we get a contradiction, to the two bounds
mentioned above, this leads us to the claim of Theorem 1.3.

Proof of Theorem 1.3. - Assume that for a fixed ~y E ~0,1~, there exists
a sequence C IRd with --~ oo such that

In fact, by rotation invariance of the obstacles, we can and will choose the
sequence such that ~n = 0, ... , ~) for all n. We want to show
that under these assumptions q > 1 / ( d -~-- 1).

Define, for cJ e 1, the difference of an "upper" and a "lower"
passage time as follows
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where we choose mn E R~ as follows: mn = (0, 0,..., 0) points
into the direction of the second coordinate axis, and |mn| is minimal such
that the two cylinders + Vdl) and + U2l) + mn
are disjoint. We remark that |mn (  for all large n because of our
choice of the sequence Using the strong Markov property, we see that

By Harnack’s inequality (see (3.11)), one gets

analogously, by exchanging the role of the passage times,

Therefore the following estimate on |03B4 log en|[ holds,

In view of (1.12), we find a suitable constant c3 E ( 0, oo ) such that for
all large n

Hence, we have found the desired upper bound on the variance of the

difference of these two passage times. During the rest of the proof we try
to show that one gets the following lower bound on the same variance:

If we have verified those two bounds, we see that 2~y > 1 - (d - 
from which our claim, ~y > 1/(d + 1), follows. It remains to find the lower
bound (4.3) on the variance of the difference of the two passage times.

With the same notations as in the previous chapters, we get by martingale
identities as before

So we are again interested in a lower bound for 
We introduce the same events DO,k, Di,k, D2 and Dl on our cubes Ck
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as in Chapter 3. We also keep the notation for the decomposition of
cv = ~ 03A9 on the cube Ck and on its complement. In view of
Lemma 3 in [5], we find

where p = ~~D°~ > 0, q = P[Dk] > 0 and

We have to find a "good" lower bound on xi - xo . For w E H, we define
the random variable

As in the preceding chapter, wee see that thus

Further, we define Sn = ~ I~ E N, Ck n ~ ~ ~ to be the cubes that
intersect our cylinder Therefore, we find with the Cauchy-Schwarz
inequality

To prove (4.3) it remains to show that
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We denote the only element in D0,k by 03C30k. For cv ~ 03A9 is

Thus, it suffices to prove

and

The proof of claim (4.7) follows exactly in the same way as the proof
of (3.6). So we want to show (4.8): By Lemma 3.1 and Lemma 3.2 follows,
for ~~ E Di,k,

for all k ~ ~n, Ck is not a neighboring box of our goal Yn + mn, so
we can use Harnack’s inequality. Therefore the last member of the above
equality is smaller than

In the case d > 3 or A > 0, is smaller than ( ~, ~, cv = 0)
the A-Green function for Brownian motion, so the last expression is smaller
than
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For k ~ ~n, we get with the above considerations, using the independence
of the Poissonian process and Lemma 3.3

Therefore to prove claim (4.8) it suffices to show that

We consider now the random lattice animal A _ ~ 1~ EN; Hk 
+ By the Cauchy-Schwarz inequality and the fact that the

distance between the two disjoint cylinders ~y) and ~y) + mn
is we find

where ~y) denotes the event that the paths of Brownian motion
starting in mn with goal B(Yn + mn , 1) do not leave the cylinder

q) + mn. By translation invariance is E[ynmn[Amn (yn,03B3)c]] =
which tends to 0 as n goes to infinity. Therefore it

remains to show that the first term on the right-hand side of inequality (4.10)
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stays bounded for all large n. By Jensen’s inequality, Cauchy-Schwarz
inequality and with the estimates (1.12) and (1.16) (using translation
invariance), we see that for a suitable constant eg:

The above expression is bounded, this completes the proof. D

APPENDIX A. MEASURABILITY

In this appendix we prove Lemma 2.1:

LEMMA 2.1. - For A > 0 and q > 0, the functions (y, cv) ~ e03BB(0, ?/, cv) and
~ y0[A(y,03B3)] are measurable in 03C9 and for ( > 1 continuous

lYl ?/.

Proof. - For the measurability see Lemma 1.1 of [6]. Let us prove the
continuity of in y. Define for ~, ~’ E ~d, w E 
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First we choose w E {H(y’)  H(i~)}:

Therefore, if we take the expectation with respect to the Brownian path
measure Po, we get the following upper estimate

The second term on the right-hand side of (A.3) is zero for d = 2 and it
tends to zero as 2014~ 0 in dimensions d > 3. So we want to focus

on the first term on the right-hand side of (A.3).
For all E > 0 there exists a small b = > 0 such that

+ M~b~ > 1 - ~/8. Thus, by the strong Markov property, there
exists a 81 > 0 such that

Of course, we have symmetry in y and y’, so the same estimates hold in
the case w  H ( ~’ ) ~ . The continuity of ex(0, ., cJ) now easily
follows. _

To see the continuity of in y, define for y e !R~,
w E 
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and

Using the continuity of e a ( 0, ~ , c.~ ) and the tubular estimate (1.12), we see
that it suffices to show that )~ is continuous. IRd,

we have, using the triangle inequality,

The first term on the right-hand side of (A.7) tends to zero --+ 0,
using the same observations as done in the proof of the continuity of
ea(o, ~, w) . So we want to focus on the second term on the right-hand side
of (A.7). First we choose w E {H(y’)  H(y)), then we have

For the second term on the right-hand side of (A.8) we use the same remark
as after (A.3), whereas for the first term we see, using the strong Markov
property, that it tends to zero -~ 0. This finishes the proof of the
lemma. D

ACKNOWLEDGEMENT

Let me thank Professor A. S. Sznitman for giving me very helpful
suggestions.

REFERENCES

[1] M. AIZENMAN and J. WEHR, Rounding effects of first order phase transition. Commun.
Math. Phys., Vol. 130, 1990, pp. 489-528.

[2] H. KESTEN, Aspects of first-passage percolation. In Ecole d’été de Probabilités de St. Flour,
Lect. Notes in Math., Vol. 1180. Springer-Verlag, 1985, pp. 125-264.

[3] H. KESTEN, On the speed of convergence in first-passage percolation. Ann. Appl. Prob.,
Vol. 3, 1993, pp. 296-338.

[4] C. LICEA, C. M. NEWMAN and M. S. T. PIZA, Superdiffusivity in first-passage percolation.
Prob. Theory Rel. Fields, Vol. 106, 1996, pp. 559-591.

Vol. 34, n° 3-1998.



308 M. V. WUTHRICH

[5] C. M. NEWMAN and M. S. T. PIZA, Divergence of shape fluctuations in two dimensions.
Ann. Prob., Vol. 23, 1995, pp. 977-1005.

[6] A. S. SZNITMAN, Shape theorem, Lyapounov exponents and large deviations for Brownian
motion in a Poissonian potential. Comm. Pure Appl. Math., Vol. 47, 12, 1994,
pp. 1655-1688.

[7] A. S. SZNITMAN, Crossing velocities and random lattice animals. Ann. Prob., Vol. 23, 1995,
pp. 1006-1023.

[8] A. S. SZNITMAN, Distance fluctuations and Lyapounov exponents. Ann. Prob., Vol. 24,
1996, pp. 1507-1530.

[9] J. WEHR and M. AIZENMAN, Fluctuations of extensive functions of quenched random
couplings. J. Stat. Phys., Vol. 60, 1990, pp. 287-306.

[10] M. V. WÜTHRICH, Superdiffusive behaviour of two dimensional Brownian motion in a
Poissonian potential. To appear in The Annals of Probability.

(Manuscript received on December 9, 1996;
Revised on November 7, 1997.)

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques


