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ABSTRACT. - Given the maximum process (St) == Xr)
associated with a diffusion ((Xt),P,), and a continuous function g
satisfying g ( s )  s, we show how to compute the expectation of the
Azéma- Yor stopping time

as a function of x. The method of proof is based upon verifying that the
expectation solves a differential equation with two boundary conditions.
The third ’missing’ condition is formulated in the form of a minimality
principle which states that the expectation is the minimal non-negative
solution to this system. It enables us to express this solution in a closed
form. The result is applied in the case when (Xt) is a Bessel process and
g is a linear function. © Elsevier, Paris
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266 J. L. PEDERSEN AND G. PESKIR

RESUME. - Etant donnés une diffusion ((Xt),P,), son maximum

(St) = ~r). et une fonction continue g vérifiant g(s)  5, nous

montrons comment calculer explicitement 1’ esperance du temps d’ arret

d’Azema-Yor

en tant que fonction de x. La méthode de demonstration utilise le fait que
celle-ci est solution d’ une equation différentielle avec deux conditions « au
bord ». Une troisième condition sous-jacente est formulée en terme d’un
principe de minimalité, lequel énonce que cette esperance est la solution
minimale non negative du système. Ceci permet d’ expliciter cette solution
comme une forme fermee. Nous appliquons ce résultat au cas ou (Xt ) est
un processus de Bessel est g une fonction linéaire. (c) Elsevier, Paris

1. FORMULATION OF THE PROBLEM

Let be a non-negative canonical diffusion with the

infinitesimal operator on given by

where and f-L are continuous functions on (0, oc) and a2 is furthermore
strictly positive (see [6]). Assume there exists a standard Wiener process
( Bt ) such that for every x &#x3E; 0

The main purpose of this paper is to compute the expectation of the
Azéma-Yor stopping time (see [ 1 ] ). More precisely, for any continuous
function g on satisfying 0  g( x)  x for x &#x3E; 0, the Azema-Yor

stopping time is defined as follows

where (St) is the maximum process associated with (Xt)
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267COMPUTING THE EXPECTATION OF THE AZEMA-YOR STOPPING TIMES

started at s &#x3E; 0. The main aim of this paper is to present a method for

computing the function

for 0  x  s. Here the expectation is taken with respect to the probability
measure P~ := under which the process (Xt) starts at x and the

process (St) starts at s.

The motivation to compute the expectation of such stopping times comes
from some optimal stopping problems (see [2-4] and [7]). In these problems
it is of interest to know the expected waiting time for the optimal stopping
strategy which is of the form T9 for some g. In view of this application
we have assumed that the diffusion (Xt) and the function s ~ g(s) are
non-negative, but it will be clear from our considerations below that the

results obtained are generally valid.
The method of proof relies upon showing that the expectation of the

stopping time solves a differential equation with two boundary conditions.
The third ’missing’ condition is formulated in the form of a minimality
principle which states that the expectation is the minimal non-negative
solution to this system (see Fig. 1 below). It enables us to pick up the
expectation among all possible candidates in a unique way. The minimality
principle is the main novelty in this approach (compare with [2], [3] and [4]).

In Section 2 the minimality principle is formulated, and in Section 3
the existence and uniqueness of the minimal solution is proved. The main
theorem is proved in Section 4, and in Section 5 an application of the
theorem is given.

2. THE MINIMALITY PRINCIPLE

In the first part of this section we shall observe that the function

~ t-~ solves a differential equation with two boundary conditions.
In the remaining part of the section we will present the minimality principle
as the ’missing’ condition, which will enable us to select the expectation
of the stopping time in a unique way.

In the sequel we need the following definitions and results. The scale
function is for x &#x3E; 0 given by

Vol. 34, n° 2-1998.



268 J. L. PEDERSEN AND G. PESKIR

where

We define as usual the first exit time from an interval by

for 0  a  b, and the following formulas for 0  a  x  bare

well-known

Let g be a continuous function satisfying 0  g(x)  x for x &#x3E; 0 such

that = is finite for all 0  ~  s. We will now state the

first result. Whenever s &#x3E; 0 is given and fixed, the function x - m( x, s )
solves the differential equation

with the following two boundary conditions

A first step in the direction of verifying that (s, s) ~ satisfies
the system above is contained in the following result.

LEMMA 2.1. - The function s ~ m(s, s) - is C 1 and satisfies
the equation

Proof. - The proof is essentially contained in Lemma 1 and Lemma 2

in [3]. Alternatively, to obtain a better feeling why (2.6) holds, as well

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



269COMPUTING THE EXPECTATION OF THE AZEMA-YOR STOPPING TIMES

to derive it in another way, one could use (2.7) below with (2.1 )+(2.2)
above to verify that equals the right-hand side in (2.6),
thus showing that (2.5) is equivalent to (2.6), and then follow the second
part of the proof of Theorem 4.1 below..

Let g( s)  x  s be given and fixed. It is immediately seen that

and by applying strong Markov property we get

From (2.1) and (2.2) we see that G(~) - = s) and

H(x) = E~ solve the following well-known systems respectively

Consequently, by (2.6)-(2.9) we easily verify that x - m(x, s) solves the
system (2.3)-(2.5).
Note since Tg may be viewed as the exit time by diffusion from

an open set, the equation (2.3) is well-known and the condition (2.4) is

evident. The condition (2.5) is less evident but is known to be satisfied in
a similar context (see [6] p. 118-119).

Unfortunately (x, s) ~--~ m(x, s) is not uniquely determined by (2.3)
and the two boundary conditions (2.4) and (2.5). Thus we need another
condition to determine (x, s) ~ m( x, s) uniquely. We formulate the third
’missing’ condition in the form of a minimality principle (see Fig. 1 below):
The expectation m(x, s ) is the minimal non-negative solution to the system
(2.3)-(2.5).

3. EXISTENCE AND UNIQUENESS OF THE MINIMAL SOLUTION

Since s ) = 0 for 0  x  g ( s ) we only need to consider m on
9 ( s)  x ~ s. Throughout we shall consider the system

Vol. 34, n° 2-1998.



270 J. L. PEDERSEN AND G. PESKIR

Motivated by the minimality principle, in this section we shall prove the
existence (and uniqueness) of a minimal non-negative solution to (3.1 ). Let
us introduce the following notation:

where D = ~(~~, 6’) ~(~) ~ ~’  6’, s &#x3E; 0~ and D° is the interior of D. The
function m belongs to C2u (D°) ni(x, s) is (7~ and s - s)
is C’ on D° .

The main result of this section may be now formulated as follows. If Ji4

is non-empty then it contains a minimal element, i.e.

where the infimum is taken pointwise. Combined with the results in Section
2 this will be deduced in the proof of Theorem 4.1 I below by using It6
calculus. The proof we present here is based upon the uniqueness theorem
for the first and second-order differential equations.

For this note that the uniqueness theorem implies that if m1 and m2

belong to .I~ then either rnl &#x3E; rn2 or mi  rn2 on D°. Let (xo, so) E D
be given and be a sequence of functions from M such that

so) 1 so) . Due to the remark just mentioned, the sequence
is decreasing, and therefore the limit exists everywhere, i.e.

for all (~B s) E D. If we can show that

then using the uniqueness theorem it follows that m = 

In order to prove (3.3) we first show that x ~ (x, 8) solves the

differential equation in (3.1). By the instantaneous stopping condition, and
the uniqueness theorem, can be written as

where s ~ is a ~‘1-function. Since is a decreasing sequence
of functions, the sequence is also decreasing, and therefore it

converges pointwise to a function A, i. e.

for - Hence ~~ ~ .5) solves the differential equation in (3.1).

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Obviously ~ - satisfies the first boundary condition

(instantaneous stopping)

since each j- t2014~ s) satisfies this condition.

Finally, to verify the second boundary condition (normal reflection), note
that straightforward computations based on the normal reflection condition
and (2.1 )+(2.2) show that s - An (s) solves the following differential

equation

or equivalently

Applying the monotone convergence theorem, we find that s - A(s) also
solves the differential equation (3.4), and we can conclude that m E 

4. THE EXPECTATION OF THE AZÉMA-YOR STOPPING TIMES

The main result of the paper is contained in the following theorem.

THEOREM 4.1. - Let ((Xt) , Pr) be the non-negative diffusion defined in
( 1.1) and let (St) be the maximum process associated with (Xt ) defined in
(1.2). Let g be a continuous function on ~0, oc) satisfying 0  g(x)  ~ for
x &#x3E; 0, and let us define the stopping time

If M from (3.2) is non-empty, then is finite and is given by

Vol. 34, n° 2-1998.



272 J. L. PEDERSEN AND G. PESKIR

where (x, s) 1-----+ s) is the minimal element in Jlit . The converse is

also true, and we have the following explicit formula and a criterion for
verifying that M is non-empty

for g(s)  ~  s with = 0 for 0  ~  g(s), which is valid

in the usual sense (if the right-hand side in (4.1 ) is finite, then so is the
left-hand side, and vice versa).

Proof. - For (xo, so) E D given and fixed, consider the set

Choose bounded open sets Gi C G2 C ... such that

Define the exit time of the two-dimensional diffusion (Xt, St) from Gn by

Note that Exo,so  00 and an r T~ as n ~ oo.

Let rn be any function in M. Note that m E C2 ~’- and (St ) is of bounded
variation so that Ito’s formula can be applied (see Remark 1 in [5] p. 139).
In this way we get 

Due to the normal reflection condition the last integral is identically
zero. Since the set of those u &#x3E; 0 for which = Su is of Lebesgue

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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measure zero, and = -1 for g(s)  x  s, we can conclude

that 

Let be a localization for the local martingale

Then by Fatou’s lemma and the optional sampling theorem we get
Ex0,s0[m(X03C3n,S03C3n)] ~ lim inf Ex0,s0[m(X03C3n039BTk,S03C3n039BTk)] = m(x0,s0)

Thus we have the inequality

for all n &#x3E; 1, and by monotone convergence it follows

From this we see that is finite. By the results in Section 2 we
know that the function (x, s) - 1 satisfies the system (3.1 ), and
since m is arbitrary, hence we obtain

This completes the first part of the proof.
To derive (4.1 ) note that (2.6) is a first-order linear differential equation

whose general solution is easily found to be given by the formula

Vol. 34, n° 2-1998.
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whenever the last integral is finite, where C is a real constant. Letting
s - oo we find that C = 0 corresponds to the minimal non-negative
solution. Combining this with (2.7) and (2.1 )+(2.2), we obtain the explicit
formula (4.1 ). The proof of the theorem is complete..

5. AN EXAMPLE

Let ( (Xt ) , P~ ) denote the Bessel process of dimension 0152, where for

simplicity we assume that 0152 &#x3E; 1 but 0152 # 2. (The other cases of 0152

could be treated similarly.) Thus (Xt) is a non-negative diffusion with the
infinitesimal operator on (0, oo) given by

(For more information about Bessel processes see [5].) Let g be a linear
function given by

where 0  A  1. Denote the stopping time g by

It is our aim in this section to present a closed formula for the expectation
of the stopping time More precisely, denote the function

for 0  x  s. Then our main task is to compute explicitly the function 
Instead of using (4.1 ) directly, we shall rather make use of the minimality
principle within the system (3.1 ).

According to Theorem 4.1 we shall consider the system

Annales de l’Institut Hesiri Poincaré - Probabilités et Statistiques
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Let As  x  s be given and fixed. The general solution to (5.2) is given by

where s - A ( s ) and s - B ( s ) are unknown functions. By (5.3) and
(5.4) we find

whenever (2 1a)~/(°~~)  A  1 , where

and C is an unknown constant.

In order to determine the constant C we shall use the minimality principle.
It is easily verified that the minimal non-negative solution corresponds to
C == O. Thus by (5.5)-(5.7) with C = 0 we have the following candidate
for 

when As  x  s. Hence by applying Theorem 4.1 we obtain the following
result. Observe that this example is also studied in [2] and [3].

PROPOSITION 5.1. - Let ((Xt), Px) be a Bessel process of dimension a
started at x &#x3E; 0 under P~ , where a &#x3E; 1 but c~ ~ 2. Then for the stopping
time Ta defined in (5.1 ) we have

Vol. 34, n° 2-1998.



276 J. L. PEDERSEN AND G. PESKIR

Fig. 1. - A computer drawing of solutions of the differential equation (2.6) in the case when
a = 4 and A = 4/5. The bold line is the minimal non-negative solution (which never hits
zero). By the minimality principle proved above, this solution equals ma (8, s) = ]
for all s &#x3E; 0.
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