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ABSTRACT. - We prove an invariance principle for functionals

of Markov processes. As an application we prove an invariance

principle for tagged particles of Brownian particles with non-symmetric
interactions. © Elsevier, Paris

Key words : An invariance principle for Markov processes

RESUME. - Nous prouvons un principe d’invariance pour des

fonctionnelles additives de processus de Markov. En application, nous
démontrons un principe d’invariance pour une particule marquee dans
un systeme de particules browniennes avec interactions non-symétriques.
© Elsevier, Paris

0. INTRODUCTION

An invariance principle for Markov processes is a theorem to claim
a diffusive scaling limit of a functional X = Xt of Markov processes
(Y, {P03B8}) converges to (a constant multiplication of) Brownian motion;

* HO was supported in parts by Japan Society for Promotion of Science (JSPS).
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218 H. OSADA

This has been studied by [8], [1] for the reversible case, and by [21], [29]
for the non reversible case under the strong sector condition.

Some of main assumptions in these works are the following; (1) X
is an additive functional of Y, and (2) the mean forward velocity of X
exists. Here the mean forward velocity cp of X means, roughly speaking,
the following quantity;

- 

- v -- -- 

J U

Here Es is the expectation with respect to In continuous models, it is

often difficult to check these assumptions; even in the simple case such as
homogenization of reflecting diffusions in random domains we need a long
argument to prove (2) (see [21, Sect. 3]). One of our purpose is to improve
such a situation by assuming the condition-(A.4) and (A.5) defined later-
on associated Dirichlet forms; under this condition, ( 1 ) is unnecessary and

(2) is automatically satisfied. This condition is not restrictive. It is still a

very mild assumption satisfied by many models (see Sect. 1 ).
Our second purpose is to obtain an explicit expression of the limit matrix,

that is, the average By product we give a universal inequality
of limit matrices, which says limit matrices are always greater than or
equal to that of the symmetrized process, or in other words, if we add a
skew symmetric part to a reversible Dirichlet form, then the limit matrix
always increases.
Our work is motivated by the following problem: Consider infinitely

many hard core Brownian balls (Xi)iEN in IRd and tag one particle, say
Xio. Then the problem is to prove (0.1) for For this the previous results
are not sufficient. Indeed, X2° has very singular drifts caused by collisions
to other infinitely many Brownian balls. So its mean forward velocity has an
extreme roughness. To prove the existence of such a singular mean forward
velocity in infinitely dimensional situation, we develop a new technique
in a general context.

Let 0 be a Hausdorff topological space denote its Borel

a-algebra. We assume B(0) == ~[C(0)], where C(0) is the set of all
continuous functions. Let  be a probability measure and DY
a dense subspace in L2 (Q, ~c~ . x D~.- - R be a bilinear form.
We assume:

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



219AN INVARIANCE PRINCIPLE FOR MARKOV PROCESSES

By (A.I) and Ma-Rockner’s result [ 12, Ch. IV Theorem 3.5] there exists
a special standard process == associated with

(~~r, D~T) on L2(O, I~).
When 8 is a Polish or, more generally, metrizable Lusin space, then

Hy becomes a Hunt process. By (A.2) and (A.3) is conservative with

invariant probability measure This statement is clear if 8 is a metrizable

Lusin space. Otherwise, we can prove this by using the transfer method
in [ 12], [3].

In previous works X has been an additive functional of Y. One of our
key idea is to extend Y to be a Markov process (X, Y) on IRdx8 in

such a way that Xt = Xt - Xo. For this we assume (~~T, has the

following structure.

(A.4) There exists a positive closed form (~~T, on L2(O, p)
satisfying:

(0.2) ~ := with V17 is a positive closed form on L2(O, 

Here v is a probability measure on (9,~(0)), (1 
z  d) are linear operators satisfying D i 1 = 0 and aij : 0 -~ [R are uniformly
elliptic, bounded measurable functions; there exist positive constants C2 and
C3 such that C2 ~~~2 ~ and I L1,j=1 I  for

all ~ = _ G 

Let 9 _ where 8i = ~-. We regard D, and 8i as operators on
by Dih = ~~ and ~Zh = where

h = ~~, :== ~~ and is the algebraic
tensor product of and D~r . and S(~,, be bilinear forms
on Co ( (~ d ) ~ D~T given by

Here hi = ~rn Let £-Y1’~ be the bilinear form on 
given by

Vol. 34, n° 2-1998.



220 H. OSADA

We assume:

(A.5) is closable on 

and its closure is a quasi-regular Dirichlet form on

L 2 (IR d X 8, 
(A.6) is strong local (see [3]).
By (A.5) there exists a special standard process =

associated with on

x 8, dx x Here .~t is the natural filtration. We prove in Lemma
2.3 that is conservative with invariant measure dx . We also prove
in Lemma 5.3 that Xt is a continuous process by (A.6); we note here
(Xt, %) is not necessarily continuous.
We recall systems of Markovian measures and in and

are unique up to quasi everywhere. We will prove in Lemma 2.3 that
there exist versions of and satisfying the following

So we will take these versions. We are interested in asymptotic behavior
of X. Let

By the reason above P8 is independent of x.

THEOREM 1. - Assume that (A.1)-(A.6) hold. Then there exist e -+ IR
such that

Here Pe is the distribution of d-dimensional continuous martingale Xt such
that

In addition, when the matrix a == and the bilinear form ~~ are
symmetric, the convergence in (0.7) is strengthened to be weakly in

in p-measure.

Remark 0.1. - (1 ) If (Y, ~~) is ergodic under the time shift, then (8)
are constant.

(2) By definition Pe = Px03B8 o (X.E - So (0.7) implies

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



221AN INVARIANCE PRINCIPLE FOR MARKOV PROCESSES

We next proceed with the identification of the limit matrix. Let

We call a = (aij) the limit matrix. It is determined by aij and D2. We
write a = ] when we emphasize the dependence on Let

Here is the quotient space of Dy with the equivalence relation ""
such that f - g if and only if ~(jf - g, f - g) = 0. Let D x 
such that

Here f = ( f 1, ... , fd, f) E D, and f E is the element whose

representative is f E We set g similarly. Let be the inner

product on D given by 
"

Then D is a Hilbert space with inner product Let Doo be a subset
of D given by

Let Do denote the closure of Doo with respect to Let ei E D

( z = l,’2014,d) such that ei = where bij is the Kronecker

delta. We consider the equation on 03C8i E Do for each 1  z  d given by:

It is easy to see that (0.9) has a unique solution 1jJi (see [21, Lemma 2.1 ] ).
We now state the expression of the limit matrix.

THEOREM 2. - Under the same assumptions in Theorem 1 the following
hold:

Remark 0.2. - ( 1 ) If ei E Do, then = e2 . By (0.10) 0152ii &#x3E; 0 if

and only if e~ ~ Do.
Vol. 34, n° 2-1998.



222 H. OSADA

(2) Positivity of limit matrix 0152 depends on individual structures of each
models. We will prove it in [20] for tagged particles of infinitely many hard
core Brownian balls (see Remark 1.3 below). We refer to [ 1 ], [ 13] for the
case of soft core, and [8], [26] in case of exclusion processes on See

[17], [27] for reflecting barrier Brownian motions in random domains.

(3) 0152 is called effective constants in homogenization problem, and
self-diffusion constants for tagged particles of infinitely many particle
systems.

(4) Suppose X is the additive functional of Hy and Dirichlet forms are
symmetric. If the mean forward velocity cp is in L~(0, and in the domain

of the generator of Hy, then a is given by the following (see [1], [26]);

The second term is called the integral of velocity autocorrelation function.
This expression does not make sense when 03C6 ~ L2(0398, ). One of

advantages of (0.10) is that (0.10) holds even if the mean forward velocity
cp is a distribution, which is the case of hard core Brownian motions.

As an application of Theorem 2, we obtain a universal inequality on
limit matrices: Let f, g) == {£( f, g) + S ( g , f)} /2 and ( f, g) ==
~~1 ( f , g) + £l(g, f)}/2. Then 8) also satisfies the

assumptions (A.1 )-(A.6).

THEOREM 3. - Under the same assumptions in Theorem 1 the following
hold:

( 1 ) and be the limit matrices associated with 

and respectively. Then

Here the inequality means a is a positive definite matrix.

(2) We have a variational formula of the limit matrix for the symmetric
case;

f~d.

Remark 0.3. - When c~ is in L2(~, ~c~, inequality (0.11) was known
for specific models (see [29], [13]). Our contribution here is to prove

inequality (0.11) with a great generality.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



223AN INVARIANCE PRINCIPLE FOR MARKOV PROCESSES

We now explain some idea of the proof. In previous works [8], [ 1 ], [21 ],
[29], X was assumed to be an additive functional of and have a mean

forward velocity. It is difficult to prove the existence of the mean forward
velocity for general additive functionals even if Hy is symmetric. However,
if X is an additive functional of the form

for some f E D~r (/ is the quasi continuous modification of f, see [3],
[12]), then the existence of the mean forward velocity cp is trivial from the
well known relation (see, e.g., [12, Theorem I 2.13 (iii)]);

and cp is identified, where is the A-resolvent of H)y. (When the limit
is non-degenerate, this is something hardly expected because

Hy has invariant probability measure and f is in L2(~, ~cj). Taking this into
account, we consider the new Markov process on the extended space
Rdx8. (For this we assumed (A.4) and (A.5)). Then Xt - Xo of is an

additive functional of the form like as (0.13), with coordinate function
x. We next introduce a weighted non-symmetric form and a weighted L2
space, associated with in such a way that x is in its domain. Then,
as we see in Lemma 3.1, we obtain the existence of the mean forward

velocity of X.

At a first glance one may think our formulation is complicated; however,
it nicely fit concrete problems. In order to convince readers to this point,
we give applications in the next section. The proof of main theorems will
be started from Section 2.

The organization of this paper is as follows: In Sect. 1 we apply main
theorems to central limit theorems for tagged particles of interacting
Brownian motions with skew symmetric drifts. We also refer to the

homogenization of non-symmetric reflecting diffusion processes in (~d.
In Sect. 2 we introduce a weighted form and prove is conservative.

In Sect. 3 we prove the existence of mean forward velocity. In Sect. 4 we
complete the proof of Theorems 1-3. In Sect. 5 we collect some results

from Dirichlet form theory. These results are used in preceding sections.

1. Applications

In this section we give applications.

Vol. 34, n° 2-1998.
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1. Tagged particles of interacting Brownian motions

We first give a rough sketch of the problem. Let 03A6:Rd ~ R U be

a measurable function such that ~(~) = ~(2014~c). We consider a diffusion
on formally given by the following SDE;

where N={1,2,...} is the set of the natural numbers and Bl (i E N) are
independent Brownian motion on IRd. We tag one particle, say. The

problem is to prove aBt.
When ~ E SDE ( 1.1 ) was solved by Lang [9], [10]. (See also

[25], [4], [28]). We however use here the Dirichlet form construction due
to [ 18] because it does not need the smoothness of ~ and gives associated
Dirichlet forms explicitly.
We now proceed to the precise formulation of the problem: Let 8 be

the set of all locally finite configurations in IRd, where a locally finite

configuration means a Radon measure 8 of the form 8 = Here

~xn ~ is a finite or infinite sequence in f~d with no cluster points and b~,
is the delta measure at a. By convention we regard zero measure as a
configuration. We equip 0 with the vague topology. 0 is a Polish space
with this topology. (cf. [23]. The 0-valued process associated with (1.1) is

In order to construct dynamics (1.2) we introduce a bilinear form: Let
ei = (0 E 8; = Z~ for i E ~0~ U N U Let = R~’~
for i E N, and 1R(00) = have no cluster points in 
A map xi : ei ---71R(i) (i E N U is called a R(i)-coordinate of 0 if

9 = ~.~~ ~~~ (e) for all 8 E ei, where Xi (()) == (x’- (8), ..., xz (0)) . Let for
z E N and f, g E 

Here x = and - means the inner product on
Let Doo be the set of all local, smooth functions on e (see [ 18, ( 1.2)]

for the precise definition). For f, 9 E Doo we set D [ f , g] : e by

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Here x2 ( 8 ) is a R(i)-coordinate, and fi is the permutation invariant function
on such that f(9) = for all () E ei. We set gi similarly. Note
that such /~ and gi are unique for each z G N and D is well defined.

For a probability measure ~c on (0,B(0)) we set

Our dynamics are diffusion {P 03B8} associated with on L2 (O, 

Remark 1.1. - ( 1 ) If we take p to be the Poisson random measure whose

intensity measure is Lebesgue measure, is given by 8-valued
Brownian motion Bt; that is, Bt = ~°° 1 bB~ . Here Bi are independent
copies of Brownian motion. 

(2) Typical examples of p are grand canonical Gibbs measures with
potential ~. See [18] for the definition; there they are called Gibbs measures.

(3) If we take  to be a grand canonical Gibbs measure with hard core
potential given in Example 1.1, then {1f:D~} describe the motion of infinitely
many hard core Brownian balls.

Let IRd; ~ ~  r ~ and Q~ be the z times product of Qr. We
denote by ~T the density functions of p on Qr (see [18] for the definition).
We also denote the infinite volume correlation functions

of p if exist. (see [24]). Let T~:02014~Q denote the translation given by
TaB = ~n for () = ~n We assume:

By (M.1 ) we denote by the closure of on L2 ( ~ 
We note by (M.3) p1 (x) = constant.

LEMMA 1.1. - Assume (M.l)-(M.4). Then we have the following:
( 1 ) D~‘ ) is a quasi-regular Dirichlet form on L2 (0, p) and there

exists a associated with Du ) on L2 (O, 

Vol. 34, n 2-!998.
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Proof - Since pl is constant, we have Jo pldx  o0

for all r  oo, where Q~ = {9 E = 2 ~ . Hence ( 1 ) follows from

[18, Theorem 1]. (2) follows from (M.3). (3) follows from (M.4). D

Let px denote the conditional probability given by == /-L(.I 8 ~ ~ x ~ ) = 1 ) .
By (M.3) we can choose the version in such a way that J-Lx = po o ,; I
for all x E (~d. Here the subscript 0 of po denotes the origin in [R~. We set

We can write X E C([0, oo) - C) as Xt = 8~Yl’ where Xl E 
IRd) and Ii is an interval in [0, oo) of the form [0, b) or (a, b). (Although we
can prove Ii = ~0, oo) for all i from (M.3), we consider here a general case).
Then Ii are unique up to numbering. If Xo = 8 E 0~, then there exists an

i(x, 6~) such that X~~ = .r and such IRd-valued path = X;(x,e)
is unique. For each 8 E ex we call P§) a tagged particle starting
from x. We want to prove the convergence of So for

8 E 0. we set _ Pe o 

THEOREMI.2. - Assume that f-1 satisfies (M.l)-(M.4). Then for each
x E ~d we obtain

where Pe is the distribution of d-dimensional continuous martingale Xt
such that

Here 80 -+ R.
We will reduce Theorem 1.2 to Theorems 1 and 2. As previous works [6],

[1] we consider the dynamics so called environments seen from the tagged
particle. For this we introduce new Dirichlet forms: Let D : 
such that

Here Vj, and are same as in (1.5). We note is the

generator of a family of unitary operators {Ua}a~Rd on L2 (O, given by
(,1 and ~co( ~ - We set

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Here - is the inner product in IRd as before, and for Qi = £~ 
we set

LEMMA 1.3. - ( 1 ) (~~-, is closable on L2 ( ~, and its closure
is a quasi regular Dirichlet form on L2(Q, po).

(2) (~XY,C~0~D~) is closable on L2(Rd 0398,dx 0), and its closure
(~XY,DXY) is a quasi regular Dirichlet form on L2(Rd 0398, dx 0).

(3) Let (Xt, denote the diffusion associated with

(~~~T, V~y}/) on Then f~e o (X~~x’e~)-1 = o Xt-l.
Remark 1.2. - A diffusion associated with describes the motion of

environments seen from the tagged particle, and corresponds to the
motion of the coupling of the tagged particle and environments seen from
the tagged particle. The former diffusion is represented by

Here is the (position of) tagged particle. This representation makes
sense until t  a := E !R~}. Here, in other words, a is the
right end point of the random interval [0, a), where the tagged particle
Xt ’ is defined. We see eventually a = oo a.s. by Lemma 2.3.
Proof - For the sake of brevity we only sketch the proof; the details

will appear in [19]. The closability can be proved in precisely the
same fashion as [18, Theorems 1 and 4].

In order to prove the quasi regularity of ~lv ~~, we first construct the

associated diffusion {Px03B8}. For 03B8 E ex we consider a family of finite
measures ~ ~~8 ~ given by

Then it is clear that is a diffusion with state space IRdx8.

Let Tt denote the semigroup associated with on

Then it is not difficult to see

Here is the expectation with respect to and a = IXt  oo}.
We can prove ( 1.7) by using an approximating sequence of finite dynamics.

Vol. 34, n° 2-1998.
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We thus see is the diffusion associated with on

.~2 

Now by Ma-Rockner’s result [12, Ch. IV Theorem 5.1], the quasi
regularity follows form the existence of the associated diffusion {Px03B8}.
We thus proved (2). (3) is clear from the construction of 

Closability of (~~r , D~ ) on L~(0,~o) follows from that of

Let (~e = 0 Then it is clear that is a

diffusion associated with (E~~, D~-- ) on L2 ( O, Hence by Ma-R6ckner’ s
result we obtain the quasi-regularity of on L2(~, which

yields ( 1 ). D

Proof of Theorem. 1.2. - By Lemma 1.3 ( 1 ) and (2), we see 
on L2 (8, and ~ satisfy the assumptions in Theorem 1. (p in Theorem
1 corresponds to po here). By Lemma 1.3 (3)

Hence Theorem 1.2 follows from Theorem 1. 0

We now give a class of measures p satisfying the assumptions in Theorem
1.2. As we stated before, this class consist of grand canonical Gibbs
measures J1 with pair For the existence of

Gibbs measures and dynamics we assume ~ satisfies the following:
is super stable in the sense of Ruelle [24].

(~.2) ~ is regular in the sense of Ruelle [24]; there exists
a positive decreasing and a constant Ri such
that  &#x3E; for all x, and 4J(x) 

03C6(|x|) for |x| &#x3E; Ri.
(~.3) ~ is upper semicontinuous.

By (~.3) r = {x E = is a closed set. We call F the core of

particles. denote the set of all grand canonical Gibbs measures
with activity z and potential ~ satisfying (M.1)-(M.4).

LEMMA 1.4. - Assume that ~ satisfies (I&#x3E;.1)-(J?3) and d &#x3E; 2. Then

translation invariant, grand canonical Gibbs measures obtained by Ruelle
[24] are elements of In particular, ~(~~z ~ ~ for all z &#x3E; 0.

Proof - By results in [24] assumptions and (~.2) imply, for each
activity z &#x3E; 0, the existence of grand canonical Gibbs measures satisfying
(M.2), (M.3) and having infinite volume correlation functions pi such that

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



229AN INVARIANCE PRINCIPLE FOR MARKOV PROCESSES

Moreover (M.I) follows from [18, Theorem 4]. (M.4) follows from (1.8)
with i = 2 and d &#x3E; 2. D

We proceed with the main theorem in this subsection:

THEOREM 1.5. - Assume that ~ satisfies and d &#x3E; 2. Then

for each z &#x3E; 0 for each 0, and for each M E we

obtain ( 1.6).

Proof. - Theorem 1.5 follows from Theorem 1.2 and Lemma 1.4

immediately.

Remark 1 .3. - ( 1 ) In [20] we will prove the limit matrix is strictly positive
if d &#x3E; 2 and 03A6 satisfies the following:

(~.4) r is convex. r has positive Lebesgue measure.
We conjecture that (~.5) is unnecessary. On the other hand, (~.4) seems

essential; we conjecture that there exists a potential ~ whose limit matrix
is degenerate when (~.4) is not satisfied.

(2) When d = 1 and ~ E then (M.4) is not satisfied in general.
So it may happen that ~ ( ~ )~ _ 0.

(3) When 03A6 E = 1, Guo [6] proved the

convergence in f.d.d.. In [1] ] DeMasi et al proved the convergence weak
in C([0,~) - not only the f.d.d. convergence, when 03A6 E 
and ~2 E ~2(~, po). They used the Kipnis-Varadhan argument.
Compared with these results, our results require no such restrictions on 03A6
and, in addition, the convergence is weak in C([0,oo) - We will

study non symmetric interacting Brownian motions in the next subsection,
which are also excluded in [6], [1].
We give three examples of 03A6 which satisfy assumptions (03A6.1)-(03A6.3).

No example below are covered by [6], [1].

Example 1.1. - (hard core Brownian balls). Let be a hard core

potential such that

Here R &#x3E; 0 is a constant. Let hard be a grand canonical Gibbs measure
with potential and activity z &#x3E; 0. Then the associated diffusion

~~e ~ for phard describe the motion of infinitely many hard core Brownian
balls with diameter R. In [20] we will prove, if d &#x3E; 2, then the limit matrix
is strictly positive for all z &#x3E; 0.

Example 1.2. - (Lennard-Jones 6-12 potentials) Let d = 3 and

Vol. 34, n° 2-1998.
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In this case the corresponding SDE is

Example 1.3. - (Lennard-Jones type potentials). Let a &#x3E; d. Set
= In this case the corresponding SDE is

1.2. Interacting Brownian motions with skew symmetric drifts

We consider non-symmetric Dirichlet forms obtained by adding
skew symmetric forms to Dirichlet forms in Sect. 2.1. Let

~ = be a measurable function satisfying
the following:

For i E N U and E we set

Here x = E and . are same as in ( 1 .3). We remark, if f and
g are permutation invariant, then [ f, g] is also permutation invariant.
So for f and g E D~ we define by

Here i and gi are same as in (1.4). Let

Note that ~~( f, f ) == 0 by (W.2). So we have f) == f). We
assume

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Remark 1.4. - If r has positive Lebesgue measure and sup{|03A8|; x ~
r}  oo, and 03A8 is finite range, then (03A8.3) is satisfied. We also remark, for
soft core interaction, (~.3) should not be true; so it is still an open problem.
By (~.3) and Lemma 1.3 it is clear that (~~‘W , is a quasi-regular

Dirichlet form on L2(~, ~c). So let ~f~e’~~ denote the associated diffusion.
Since N defined in (M.4) is also capacity zero for ~~~‘W , L2 (0, ~c) ~,
we define the tagged particle starting from x similarly as before and denote
it by By Theorem 1 and 3 we obtain

THEOREM 1.6. - Assume (1&#x3E;.1)-(1&#x3E;.3), p E 0z (W) and (~.l)-(~.3). Then
for 03B8 E ex we set P ,03A8,~03B8 = P ,03A803B8 o Then for each x E Rd

Here is the distribution of the d-dimensional continuous martingale
X such that

Moreover its limit matrix = f satisfies the following
ineguality;

Example 1.4. - (Hard core vortexes) Let hard and R be as in Example
1.1. Let d = 2 and

Here 0  R  Ri  R2  oo are constants. Let ~12~) == -~21 (~) =
and ~22(~) = 0. If we assume &#x3E; 0 and

R2  oo, then the assumptions in Theorem 1.6 are fulfilled. In case of

R = Ri = 0 and l~~ = oo, we do not know whether (W.3) is satisfied or
not. In this case the associated SDE becomes

where Zl = (Xit, Yit) are R2-valued processes, are

independent copies of two dimensional Brownian motion. This describes
the motion of vortexes with the same vorticity in viscous planer fluid. This

Vol. 34, n° 2-1998.
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model has particular interests and, in case of finite number vortexes, has
been studied from various motivations (c.f. [2], [ 11 ], [15], [16], [5]). When
the number of vortexes is finite, ( 1.9) was solved in [2], [14], [15]. On the
other hand if the number of vortexes is infinite, (1.9) has not been solved
yet. This problem was proposed in [4].

Remark 1.5. - Let 03A6 satisfy (P.l)-(P.3) and (p.5) and let p E 
Let G be a bounded measurable function with compact support on 1R2.
Then by replacing J-Lhard and in Example 1.4 by p and G we
obtain W satisfying the assumptions in Theorem 1.6. This argument can be
generalized to any even dimensional IRd.

1.3. Reflecting diffusions in random domains

In [21] we studied homogenization of reflecting diffusion in random

domains. By applying Theorems 1-3 to this problem, we obtain better
results than ones in [21, Sect. 3]. Indeed, assumptions (3.3) and (3.4) of
[21, Theorem 3.1] ] become unnecessary.

2. WEIGHTED DIRICHLET FORMS

In this section we introduce a weighted form on a weighted
L2-space L2 ( p) such that (~p, Dp, L2 ( p) ) is associated with and that

~ == ~P + 0152( *, is a positive form for large ~. Let

where C &#x3E; 0 is a constant such that J~d p(x)2dx = 1, and

We set

We easily see

LEMMA 2.1. - ( 1 ) Let f~ == EP ~- ~ ( ~, ~ ) L2 (P~ . Then there exists

Ao &#x3E; 0 such that are closable on L2 ( p) for all 03BB &#x3E; 03BB0.
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Moreover, its closure (~a , ÐP) on L2 ( p) for a &#x3E; ~o is a quasi regular
Dirichlet form.

(2) E Dp (z = 1,... d).

Proof - We prepare a subsidiary form ~* given ==

ph2). It is clear that (E’*, is closable on 

and its closure (~* , D* ) on L2 ( p) is a quasi regular Dirichlet form. A
straightforward calculation shows

Let Ii denote the i-th term in the right-hand side of (2.4). Then by (2.3)

Here C8 = CsC7 and C9 = C3(C7/C2)1/2. Taking h1 = h2 = h in (2.4)
we see

Hence Ef are positive for all A &#x3E; Ao = C8 + 4C~;

The first statement in ( 1 ) follows from (2.6), (2.7) and the closability
of fB By (2.6) and (2.7) we have D* = DP. So quasi regularity of

(SP , Dp, L2{p)) follows from that of (S* , D’~, L2{p)).
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Note that  oo and ~i ((x~)~~1, (x2)2~1j  00.

Combining this with D* = DP yields (2). D

Let be the expectation with respect to and Rx denote the
A-resolvent 

Since is associated with ([~YY-, on x 8, dx x ~c),
can be regarded as the resolvent of the Dirichlet space

Moreover, is associated with

in the sense that for A &#x3E; 0

In the rest of this paper we fix A’ &#x3E; Ao and set

By Lemma 2.1 (~‘, DP, L2 ( p) ) is a Dirichlet space. So let R~ be the
A-resolvent of ( p) ) . The relation between resolvents is given
by the following.

Accordingly, the same equality also holds for /~i e L~(/)).
Let T~ and 7~ denote semigroups associated with

(~Y~ 1~, L2 ~~d x 0, d~ x ~c) ) and (~’, DP, L2 ( p) ), respectively.
Then it is easy to see

Hence Tt can be regarded as the strongly continuous semigroup on L2 ( p)
such that

Here ] ] &#x3E; means the operator norm on L2(p). We remark, if
we regard Tt as the semigroup on L2 ( p~, then Tt is not a contraction

semigroup in general.
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LEMMA 2.2. - Let hl E DP and Then

Proof. - By (2.8) we have

which implies ( 1 ). We obtain (2) by replacing h2 by p-2 h2 in ( 1 ). D

Recall that Hy = (~,0, Yt, and =

(Q,~,~3~(~~),{P~~}) are special standard processes associated

with D~~ ) on L2 (0, and (£~yy-, D ~ ~T ) on L2 (~d x 8, dx x 
respectively. We remark {Px03B8} is unique up to q.e. (x, ().
LEMMA 2.3. - Assume (A.l )-(A.5). Then is conservative. Moreover

there exists a version satisfying the following: For each () E e

Proof. - Let

For a E ~d let Tah(x, ()) = h(x + a, 8). Since are independent of
x, we see

Since dx  and dxxv are invariant under transformations (x, 0) ~

(x + a, 9), we have
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where = £-Y}T + A(’, Let RA denote the A-resolvent
of (~xy~.w) on as before. Then by (2.11) we see
for all a e R~

For f’ E and g’ E ~ we have

where = + 03BB(*,.)L2(0398, ) and is the 03BB-resolvent of 
on L2 ( O, ,~~ . Then we easily see

Since HY is conservative, we have = 1/03BB. So by (2.13) we see
= 1/A/ which implies is conservative.

If f E then 6~) is continuous in x for fixed 8. Indeed

Combining (2.12) with the continuity in x of Ra ( f ~g) (x, B) yields (2.9).
Combining (2.12) with the continuity of in x we obtain

(2.10). D
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3. MEAN FORWARD VELOCITY AND ENERGY

The purpose of this section is to prove the existence of the mean forward

velocity of For this we will use a (non-symmetric) form DP) on
L2 ( p), introduced in Section 2, that is also associated with Recall

that the existence of the mean forward velocity is clear if E 

Unfortunately is not in we have however by Lemma 2.1 that
~’01 E DP, which is the reason we consider on L2(p).

Let Do - R be the linear functional given by

By (A.3), we see cpi are bounded functional. If ~ = Doo, then

By abuse of notation we set 03C6i(h) = -039803A3dj=1 aijDjhd03BD for h E D&#x3E;/.
For a function u which has a quasi continuous modification we denote

by AM the additive functional given by A[u] = ~(X~ ~) - û(Xo, Yo). For
an additive functional A = At we set Aa = 

LEMMA 3.1. - ( 1 ) Let / E and g E D~T . Then

(2) Let u E Then E DP and

Proof - By definition = -A(I - So by
Lemma 2.1 (2) we see

Here we used ~X~T.(xi ~ 1, = = 0 for the third

line. Since and g(9) are independent of x, we see
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Hence

Combining this with (3.5) yields ( 1 ). The proof of (2) is similar. So we

omit it. D

Remark 3.1. - By (2.9) and Lemma 3.1 (2) we have

In this sense cp = (cpi) is a mean forward velocity of Xt.
We next introduce energies of additive functionals of (Xt, E) of 

For additive functionals A = At and B = Bt, we set
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Proof - We only prove the case of u = u1 = u2 and v = vi = v2.

The statement follows from this immediately. D

4. PROOF OF THEOREM 1-3

In this section we prove Theorem 1-3. Let (A &#x3E; 0,z = 1,..., d)
denote the unique solution of equation (4.1 ) in D~ :

Here as before aijDjgdv. Let be the element of D

whose representative is ~~ . Let be the solution of (0.9) as before.

LEMMA 4.1. - [21, Proposition 2.2] Let and 1/Ji be as above. Then

Let M be the collection of d-dimensional cadlag processes that are L2-

martingales satisfying Mo = 0 a. s. and have stationary
increments. Then M is a complete metric space with the metric induced

. where

LEMMA 4.2. - Let NI ~ _ (li~l ~~i ~ be the d-dimensional additive functional
given by
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Then M~ E M.

Proof. - Let Ni = A~~2 ~ 1~ - ~ fo We will prove Ni satisfies
the assumptions (1)-(4) in Lemma 5.2. ( 1 ) and (2) in Lemma 5.2 follow
from ~i ~ 1 E L2 ( p) and the fact that Tt is a strongly continuous semigroup
on L2 ( p) . (3) in Lemma 5.2 is clear by definition. To prove (4) we observe
for !0g E 

Here we used (4.1 ) for the third line, and (3.6) for the last line. By Lemma
3.1 ( 1 ) we have

Let = Combining these two representations we see

It is not difficult to see the above relation can be extended to the one for

all h E DP. Hence N satisfies Lemma 5.2 (4) with u = D

Since that M = e M has stationary increments under I? PIl’
we have

Here e~ is the energy introduced by (3.7). Hence M is a complete
metric space with metric where e~(M) = for
M = (Mi) E M.

LEMMA 4.3. - There exists an M = (Mi ) E such that M03BB under P03C1
converges to M in M O. Moreover,
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.

Proof. - We first prove that M03BB is eP-Cauchy. By definition we easily see

Note that 0. Combining this with Lemma 3.2 we have

Thus by (4.3) we see ~11~1 a ~ is ep-Cauchy, which yields the first claim.

The second claim follows from:

Here is given by (2.1 ) and E Doo is the element whose representative
is D

LEMMA 4.4. - Assume that (A.1 )-(A.6) hold. Then

Here Pe is the one given by Theorem 1 with (e) such that

Proof - The proof is now routine and same as [8]; for the sake of

completeness we give it here. Note that PJ is same as the distribution

of under II]) Let NE - ~M~2t/~2 - ~Mt/~2, RE - 
~ t/~20 03C8~2 (Ys )ds ) . Then
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Since M~ (A &#x3E; 0) under have stationary increments, so does M.
Hence by Helland theorem in [H] and the ergodic theorem we obtain for
a.s.0 with respect to J-L

Here Xt is a d-dimensional continuous martingale such that Xo = 0

We next prove limE-+o j2] = 0 for all t. By the definition of

R~ we have

By (A.2) and (2.10) we have

So by (4.4) we obtain lim~~0E03C1 [|~03C8~2 (Y;; / E2 ) |2] = 0. Similarly we have

Combining these estimates with (4.10) yields limE----7o = 0.

By (4.8), (4.9) and = 0 the one dimensional

distributions of ~Xt/~2 converge to those of Xt weakly in p-measure. The
proof for the convergence of the k-dimensional distributions is standard.
Hence we omit it. D

Proof of Theorem 1. - The first claim follows from Lemma 4.4. The
second claim follows from Lemma 5.5. D
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Proof of Theorem 2. - By the proof of Lemma 4.4 we have

So we want to identify the limit By the mean ergodic
theorem we have

Hence = Combining this with (4.5) and

(4.6) completes the proof. D

Proof of Theorem 3. - Let _ ~ d 1 is the

solution of (0.9). Then by Theorem 2 we see

Meanwhile ~~~T ~ E Do is the solution of

Recall that D is a Hilbert space with inner product ~/ and Do is its

closed subspace. Let P : D - Do be the orthogonal projection. In case of
~ = ~~ we obtain by (4.12) that

Statement (2) follows from this and (4.11) immediately. We next prove ( 1 ):

We thus complete the proof.
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5. APPENDIX

In this section we prepare some results from Dirichlet form theory. Most
of these are originally for regular Dirichlet forms on locally compact metric
spaces. It can be proved that they also hold for quasi-regular Dirichlet
forms on a Hausdorff topological space by
using the transfer method (see [3], [12]).

In the first half of this section we assume (A.1 )-(A.5) and later we will
assume (A.6) in addition. Recall that is conservative and satisfies

(2.9) and (2.10) by Lemma 2.3. Taking (2.9) and (2.10) into account, we
consider the following space of d-dimensional martingales. Let M denote
the collection of d-dimensional additive functionals of satisfying
hypotheses (5.1)-(5.3): For each t &#x3E; 0

(5.3) Mt is 7-~-measurable, where Ht = ~[(~s " Xo, Ys); s  t] .
By (5.3) and (2.9) we see for each 9,

LEMMA 5.1. - Let M E M. Then M E M.

Proof - Let ut(0) = By (5.4) ut is independent of x. Let ~9t
denote the time shift operator. By definition we see

Since ut(0) = 0 by (5.2) and IPpJ-I o o = ~ by (2.10)
and (A.2), we have = 0 Hence M is martingale under

We see under 

So M has a stationary increments under D

LEMMA 5.2. - Let u E Dy. Let N = be a d-dimensional
additive functional satisfying (1 )-(4) below. Then A~1~~‘~ - N E M.

(2) is continuous in t in L2 ( p) .
(3) Nt is Ht-measurable. (Ht is given by (5.3))
(4) lim h)L~(P) _ h) for all h E DP.
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Here we set NP = Ex03B8[~0 e-ptNtdt] for p &#x3E; 03BB.

Remark 5 .1. - ( 1 ) This result is a modification of [3, Theorem 5.2.4]
in symmetric case and [22, Theorem 5.2.5] in non-symmetric case. If

(~ Dp, L2 ( p) ) is a Dirichlet space, then Lemma 5.2 follows from the above
mentioned results immediately; however, we easily see is

not a Dirichlet space in general. Indeed, does not satisfies

the weak sector condition in general, and the dual semi group is not necessary
Markovian.

(2) Lemma 5.2 is an analogy of [21, Proposition 4.3]. In [21] we assumed
inequality ( 1 ) hold for all A &#x3E; 0. Since we let p - oo in (4), it is enough
that inequality ( 1 ) holds for some A. In [21 ] we missed assumption (2). We
need this assumption at the final step of the proof.

Proof - Hypotheses (5.1 ) and (5.3) follow from ( 1 ) and (3), respectively.
For 

This follows from the standard argument.

By definition (l~u)(x, e) _ u(9); we write 10u when we emphasize
10u is a function on IRdx8, otherwise we simply write u. We next prove
for 

Let denote the dual resolvent of Rp on L2 (p). Then

Hence for all p we have pmp = pRpu - u. Since for fixed (x, 0) both sides
are continuous in p, we obtain (5.7). By (5.7) for each h E L2 ( p) we have

for all p. Combining this with (2) we see Nt], = 0

for all t &#x3E; 0 and h E L2 ( p) . Hence for all t &#x3E; 0 we obtain
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Nt] = 0 Combining this with (2.9) and (2.10) yields
for all x Nt] = 0 which means (5.2). D

In the rest of this section we assume (A.6).

LEMMA. - 5.3 Let f E Then is a continuous additive

functional.

Proof - denote the symmetrization of Recall the

decomposition of Dirichlet forms (see [7, (2.8)], [3]):

0.yy are local, jump, killing parts respectively.
Let hn = where x~ E are such that xn = 1

+ 1. Then hn E = 0. Hence

Combining this with (A.6)
we have

This implies is continuous additive functionals for all n (see, e.g.,
[7, Theorem 4.9]). This completes the proof because = for

t = inf{t &#x3E; &#x3E; n~. D

Let A denote the set of ( 1-dimensional) continuous additive functionals
of Hjvy and Ac the subset of A consisting of continuous processes. We
refer to [7] for the definition. We set

Then (resp. is the set of martingale additive functional of finite

energy (additive functionals of zero energy) 
We now localize Mc and We remark here that is not a

local form; however, we can localize it in Rd-direction because X = Xt is
continuous process by Lemma 5.3. Let an = inf{t &#x3E; 0; n ~ and set

there exist such that for t  

We define similarly.

LEMMA 5.4. - Let f ~ G‘°° Then is decomposed as follows:

(5.8) + E E .
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Moreover

Proof. - Let hn be as in the proof of Lemma 5.3. Then since hn E 
(5.8) and (5.9) holds for hn (see [7, Theorem 4.8]). So by taking n - o0
we complete the proof. D

LEMMA 5.5. - Assume the matrix a = (aij) and the bilinear form ~~,
are symmetric. Then

Proof - By Lemma 5.4 we see

Hence we can apply the proof of [3, Theorem 5.7.1] ] to the present case. D
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