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Lp adaptive density estimation
in a 03B2 mixing framework
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ABSTRACT. - We study the Lx-integrated risk with x &#x3E; 2 of an adaptive
density estimator by wavelets method for absolutely regular observations.
By a duality argument, the study of the risk is linked to the control of
the supremum of the empirical process over a suitable class of functions.
The main argument is a generalization to absolutely regular variables of a
result of Talagrand stated for i.i.d. variables. Assuming that the sequence
of the ,8-mixing coefficients is arithmetically decreasing, we prove
that our estimator is adaptive in a class of Besov spaces with unknown
smoothness. (c) Elsevier, Paris

Key words and phrases: Adaptive estimation, absolutely regular variables, Besov spaces,
density estimation, strictly stationary sequences, wavelet orthonormal basis.

RESUME. - Dans un cadre des variables absolument regulieres, on etudie
le risque 7r &#x3E; 2, d’un estimateur par methode d’ ondelettes

adaptatif. A l’aide d’un argument de dualite, F etude du risque est liee

au controle du supremum du processus empirique sur une classe adequate
de fonctions. L’ argument principal est une generalisation a des variables
absolument regulieres d’un resultat de Talagrand enonce pour des variables
i.i.d. En supposant que la suite des coefficients de ,8-mélange 
est arithmetiquement decroissante, on demontre que notre estimateur est
adaptatif dans une classe d’ espace de Besov de regularite inconnue.
@ Elsevier, Paris

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques - 0246-0203
Vol. 34/98/02/@ Elsevier, Paris



180 K. TRIBOULEY AND G. VIENNET

1. INTRODUCTION

Let (Xi,..., Xn) be n observations drawn from some strictly stationary
process The aim of this paper is to study adaptive estimation
of the stationary density f of the process under some adequate mixing
assumptions. Assuming some prior knowledge on f (such as its degree
of smoothness for instance) it is possible to prove the optimality of many
estimators. But, from a practical point of view, this is not satisfactory: one
would rather prefer to get optimal estimation without any extra knowledge
on the density. Recently different procedures have been proposed in the
i.i.d. case which all tend to reduce the prior information needed to estimate
the unknown density. Roughly, we say that such procedures are adaptive,
the precise sense being defined in each specific situation. Let us present the
definition of adaptivity that we use in the sequel. We first recall the minimax
risk associated to the loss function &#x3E; 1 for a set of functions ~’~ :

where the infimum is taken over all estimators f . We say that an estimator
f * is adaptive in a class of functions {.F0152; a E A~ if and only if there

exists a positive constant C( a) such that:

We aim at giving an account of the different constructions of adaptive
estimators and of their performances in the independent framework. One
of the most popular method is the cross-validation method. It consists in
minimizing an empirical criterion which tends to estimate the unknown
quadratic loss. The first example of adaptation to unknown smoothness in
the sense of Definition (2) appears in a crucial paper of Efromovich and
Pinsker [ 11 ] . They deal with the white noise model in the context of the
Fourier basis and their procedure is based on thresholding. Efromovich [ 10]
has adapted their method to density estimation. They obtain adaptation over
a class 5i~ of Sobolev ellipsoids relatively to L2 loss. The introduction

of wavelet bases provides more accurate approximation than the Fourier
basis for functions with spacially inhomogeneous smoothness. They allow
adaptation over more complicated functions classes. Wavelet thresholding
methods have been extensively developed these last years and we refer

to Donoho et al. [7] for numerous references. Let us describe the method
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181Lp ADAPTATIVE DENSITY ESTIMATION IN A (3 MIXING FRAMEWORK

of local thresholding. Let f be the unknown density to be estimated. One
assumes that f belongs to a ball of the Besov space Bs,p,q and is compactly
supported. More precisely, one assumes that

denotes the Besov norm. The density is expanded on
some wavelet basis into a sum of a low frequency term and a detail

term, and one considers the projection estimator. The local thresholding
method consists in keeping only the empirical details greater than a fixed
level and the computation of the estimator requires the knowledge of
the radius Mi. Let N be the number of vanishing moments of the
wavelet. Donoho et al. show that the local thresholding estimator is

adaptive (up to a power of log(n) for the small regularities) over the class
{Fs,p,q(M1,M2,B), 1/p  s  N + 1,p &#x3E; l, q &#x3E; 1,B &#x3E; 0} relatively to

any L,-loss function, x &#x3E; 1. A global thresholding procedure is studied
by Kerkyacharian et al. [14]: they compute a statistic close to the lx-
norm of the empirical details at a fixed resolution level; they keep all the
empirical details of the resolution level, if this quantity is greater than a
fixed amount. The global procedure of Kerkyacharian et al. is adaptive
over the class of functions  s  N + l, p &#x3E; x,

q &#x3E; 1, B &#x3E; 0, Mi &#x3E; 0, M2 &#x3E; 0} relatively to the loss function x &#x3E; 2.

This latter procedure has been inspired by the work of Efromovich [10].
For the particular case x = 2, it is similar to the cross validation procedure
with the advantage to provide an explicit estimator.
The problem of adaptive estimation in weakly dependent framework is

quite new. In the case of the estimation of the regression function (in
linear AR models), some results have been obtained by Dahlaus et al. [5],
Hoffmann [12].

In this paper, we propose to extend the thresholding methods to

the dependent framework. In fact, without any a priori independence
assumption on the data, it is interesting to get some robustness results
with respect to dependence. We focus on the situation where the data are
absolutely regular. It covers a large class of examples and allows us to
use coupling technics in the proofs. Examples of such processes may be
found in Doukhan [8]. Even if the local thresholding method can easily
be generalized in the weaker case of ~2014mixing, it is not adapted to the
absolutely regular context. Nevertheless, the global thresholding method is
well fitted for this dependent framework. Introducing a small modification
of the threshold, we show that the global thresholding method preserves its

Vol. 34, n° 2-1998.



182 K. TRIBOULEY AND G. VIENNET

adaptive properties in the minimax &#x3E; 2. Our results may be

extend to other bases such as splines; we focus on the wavelet estimator
which provides clearest proofs.

Let us present our results. Let (Xi )iEZ be a strictly stationary absolutely
regular process, also called 3-mixing with a sequence of 3-mixing
coefficients We assume that the rate of decay of the sequence

z &#x3E;o is arithmetic. More precisely, we assume that there exists () &#x3E; x - 2

and a positive constant such that

and we denote by B7r the bound for the series

Such an assumption of arithmetic decay of the coefficients is often made
in papers on density estimation in a dependent framework. Let us remark
that for x = 2, the condition B2  oo is known to be a minimal condition

for results like the central limit theorem (see Doukhan et al. [9]).
In this paper we consider a compactly supported wavelet basis with

scaling function cp and wavelet function ~ and we denote by N the number
of vanishing moments of the wavelet. We use an estimator f similar to the
global threshold estimator introduced by Kerkyacharian et al. 114] which
computation depends and on B~ if x &#x3E; 2, but only on B~ if x = 2.
We show that if 2  x, as soon as

our global threshold estimator is adaptive in the class:

For 1r = 2, as soon as e &#x3E; 2, the estimator is adaptive in the class:

The idea of the proof of adaptation is completely different as the one
used in the independent case. It is based on an interesting result stated
in Theorem 2.2 which relies on an important Theorem of Talagrand [22].
In the same spirit as in Birge and Massart [4], it provides a control of

Annales de Henri Poincaré - Probabilités et Statistiques
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the supremum of the empirical process over a suitable class of functions.
This method has the advantage of providing simpler proofs and estimates
than those of Kerkyacharian et al. [14] at the price of introducing the
unknown constants Bx if x &#x3E; 2. Nevertheless, we propose a

practical procedure using an over-estimate of the unknown quantity 1111100.
We prove that the error due to this practical procedure is, in probability,
of the same order than the error due to the adaptive procedure. Under the
same mixing conditions as before, this estimator is shown to be adaptive
in probability in the class

with

that is

Let us remark that the a priori knowledge about the process needed to
make the estimation is quite reasonable. Indeed, as noticed before, the

assumption of arithmetic decay of the mixing coefficients is usual and

suggest that Bx is not too large. It is also important to notice that in
contrast to previous authors, no assumption is required on the joint law
of (Xo, Xl). In fact as mentioned, our result could be understood in the
following way: when we think that the process is nearly independent but
when independency is debatable, a safe strategy to avoid too large errors
is to increase the threshold.

The paper is organized as follows. In the section 2, we briefly recall some
results about Besov spaces, wavelets and absolutely regular processes. We
state our main tool Theorem 2.2. We introduce in section 3 the two
estimators of interest and study their adaptive properties. All the proofs
are given in section 4.

Vol. 34, n° 2-1998.



184 K. TRIBOULEY AND G. VIENNET

2. WAVELETS AND ABSOLUTELY REGULAR PROCESSES

We first review the very basic features of the multiresolution analysis of
Meyer [17] and give useful elements of wavelets analysis. We recall then
the definition of absolutely regular mixing coefficients and a result used
on several occasions along this work. This result provides a sharp control
of the variance of the empirical process and a Rosenthal type moment
inequality for bounded absolutely regular variables. It is proved in Viennet
[23]. Finally, we state in Theorem 2.2 a control on the probability tails for
the supremum of the empirical process on a suitable class of functions. This
result is based on a recent result of Talagrand [21] avaible for independent
and identically distributed variables and is shown in the last section of

this paper.

2.1. Wavelets and Besov spaces

One can construct a real function p (the scaling function) such that
1. the sequence {03C60k = cp ( . - k) E Z} is an orthonormal family of

)L-2(tR). Let us call Vo the subspace spanned by this sequence.
2. if Vj denotes the subspace spanned by the sequence {03C6jk =

2~(~(2~. 2014 E ~}, then is an increasing sequence of nested
spaces such that

It is possible to require in addition that cp is of class C’~° and compactly
supported (Daubechies wavelets [6]). We define the space Wj by the
following: = Wj. Then, there also exists a function ~ (the
wavelet) such that

1. ~ is of class C~’° compactly supported,

For jo E Z, the following decomposition is also true

where

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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According to a result of Meyer [17], we link the Lr-norm of the details
at the level j or the Lr-norm of the low frequency part to the lr-norm of
the wavelets coefficients.

the lr-norm.
Besov spaces are characterized in terms of wavelet coefficients (see

Meyer [17]); we do not use this characterization but just the following
property (8). Let N be a positive integer. We consider in the sequel a
wavelet basis such that the scaling function cp and the wavelet function ~
satisfy the following properties 

(i) for any m = 0,..., N

(iii) for any m = 0, ... , N

As a typical example, the Daubechies wavelets DB2N satisfy P(N)
(Daubechies [6]). Then, for any f E 0  s  N + 1, 1  p  oo,

1  g  oo

We can notice moreover that, as soon as f is compactly supported, only a
finite number of coefficients (or (jk), is nonzero. In fact, this number
is less than 2j A B-1 where 2B and 2A are the respective lengths of the
supports of f and 1jJ.

Vol. 34, n° 2-1998.



186 K. TRIBOULEY AND G. VIENNET

2.2. Absolutely regular sequences

Let ([1, A; IP) be a probability space. For any two a-algebra U and V
of A, the absolutely regular mixing (or j3 mixing) coefficient (3(U, V ) is

defined by

where the supremum is taken over all the finite partitions (Ui)iEI and
respectively U and V measurable (Kolmogorov and Rozanov

[15]).
Let (Xi)iEZ be a strictly stationary process of R-valued random

elements of a Polish space ~. If we denote :Fo = a ( X j , j  0) and
sii = a( Xj, j &#x3E; l ), the ;3-mixing coefficient 03B2l is defined by 03B2l = 
for any integer l. The process is called absolutely regular (or /3
mixing) if the sequence of its ;3-mixing coefficients tend to zero
when l tends to infinity.

Let us introduce some notation. Let P be the distribution of Xo on X.
For any measurable function h which is P-integrable, Ix hdP is denoted
by Ep(h) . We denote by vn the centered empirical process vn P

where IP n = n ¿~ 1 8_Yi is the empirical measure. Finally, for r &#x3E; 2, let

,C~r, ,~, P) be the set of functions b : R+ such that

Let us recall that Br is the bound of the series (l + 
The following lemma which gives an evaluation of the of

the function b is very useful in the sequel. For more details about Lemma

(2.2) and Theorem (2.1) we refer to Viennet [23].

LEMMA 2.2. - Let 1  r  oo. As soon as  ~, for any function
b in /;(2,/3,P),

Finally, Theorem 2.1 provides a sharp control of the variance of a sum
of absolutely regular variables and states a Rosenthal type inequality for

absolutely regular variables.

THEOREM 2.1. - Let be a strictly stationary absolutely regular

process with sequence of Q-mixing coefficients 

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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2022 If the 03B2-mixing coefficients satisfy the summability condition B2  00,

there exists a function b in £(2, Q, P), such that for any positive integer n
and any measurable function h E ~~ (P),

. Let r &#x3E; 2. If the 03B2-mixing coefficients satisfy the summability condition
Br  oo, there exist two functions band b’ in ,~ ( 2, ~, P ) and ,C ( r, ~, P )
respectively, such that for any measurable bounded function h

where Cl (r) and C2 (r) are positive constants depending only on r.
The following theorem is our first main result. We explain in some

remarks how to use it for our statistical purpose.

THEOREM 2.2. - Let K be a set of indices of cardinality D. 
be a real basis such that: for any m’ &#x3E; 1, there exists a constant Cm~ &#x3E; 0

depending on m’ such that for any E RD:

For any r &#x3E; 2, we denote by the class of functions defined by

Let 2  m  oo and (Xi)i&#x3E;Ü be a strictly stationary absolutely regular
process such that its sequence of 03B2-mixing coefficients satisfies

We assume that the stationary distribution Pf of (Xi)2&#x3E;o admits a density f
with respect to the Lebesgue measure and that f is uniformly bounded. Then,
there exists a positive constant Kl depending on r, Br and and there

exists a function b in fL?.,.t (P f ) C mBm+1  oo such that, as
soon as D  n, for any integer q, q  n, for any 03BB1 &#x3E; 0 and for any 03BB2 &#x3E; 0

Vol. 34. n° 2-1998.



188 K. TRIBOULEY AND G. VIENNET

where

with Rr is the Rosenthal constant, is defined in ( 11 ) and ~’1 (r) and
O2 (r) are the same as in Theorem 2.1.

According to Ledoux and Talagrand [16], the Rosenthal constant is

smaller than 4’~ . The following remarks will be detailed in the proof of
Theorem 2.2.

Remark 1. - We will apply this theorem in our wavelet framework for
the following class of functions

In that case, condition ( 11 ) is satisfied for any m’ &#x3E; 1 (see Lemma 2.1 )
with Cm, = 111m’.
Remark 2. - Let us comment the theorem in the classical case r = 2.

The constant is then more tractable, namely K2 = 
When (Xi)iEZ is a uniformly mixing process (also called ~-mixing) such
that its sequence of mixing coefficients ( ~ 1 ) l &#x3E; o satisfies the summability
condition  oo, the function b may be taken as a constant,

namely b = ~l ~2, Then, the conclusion of Theorem 2.2 is again valid
for m = 00 and with 1&#x3E;~/2.
Remark 3. - When is an independent process one can take

~ - 

3. ESTIMATION

In the first part of this section, we present our estimation procedure. We
give in Theorem 3.1 the main statistical result of the paper concerning the
adaptation (in the sense defined in the introduction) of our estimator. We
explain in the second part how to compute our estimator in practice.

3.1. Estimation and result

Let 7r &#x3E; 2. We consider in the sequel a strictly stationary
absolutely regular process with Q-mixing coefficients satisfying: Blf  o0

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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where B7r is defined in (3). These assumptions are quite natural in view
of applying Theorem 2.1 and Lemma 2.2. We assume moreover that the
mixing coefficients are arithmetically decreasing, more precisely:

Let P f be the marginal distribution of the process, absolutely continuous
with respect to the Lebesgue measure. We denote by f its unknown

density to estimate. Because of the expansions (6) and (7), we consider
the weighted estimator:

where and ( are the empirical coefficients:

and where j is a thresholding statistic:

for a threshold to be determined below.
This estimator is nearly the same as the one introduced by Kerkyacharian

et al. [14] in an independent and identically distributed framework. Under
some Besov regular assumption on f, the first sum in (15) is an estimation
of the low-frequency part of f and we choose the level jo (n) = 0 in order
to make the term of linear variance E ~~(c~o~ " negligible
in the global error. In the same spirit, the level can

also be chosen such that the bias term E~03A3j~j1 03A3k03B6jk03C8jk~03C0 will never

contribute in the global error.
We use the same idea as in the i.i.d. case to determine the threshold

statistic: we keep all the details of the level j if, at this level, the 17r-norm

CE k 17r) 1/ 7r of the coefficients is greater than the threshold We have

now to estimate the quantity i.i.d. case, the study of
the properties of the density estimator is based on the computation of the
moments of the estimator of ~ ~ ~ ~a ~ ~ ~ : it is then necessary to estimate

~~ with its associated U-statistic because of the crossing terms. This
method allows to choose sa = C2j n03C0/2 with C= 1. Since it is unreasonable
Vol. 34, n° 2-1998.



190 K. TRIBOULEY AND G. VIENNET

to compute the moments of the U-statistic in a mixing setting, we use an
other approach. The advantage is that we can use the natural estimator

~~ the price to pay for this simplicity of implementation is that the
constant C is now depending on the quantities 11.11100 and En.
The main idea is contained in the following remark: the study of

linked to the study of the supremum of the empirical
process on a suitable function class. Indeed, if ~~. is the class of functions
defined by (14) (with r = 7r), we have == It follows

by duality arguments that -

where = 1. This linearization is crucial in our mixing framework;
indeed it allows to take advantage of Theorem 2.2. Let us now state our
statistical result.

THEOREM 3.1. - Let 7r &#x3E; 2. We assume that f belongs to the class

where  s  N + 1 and q &#x3E; 1. Let

with:

where

with R7r is the Rosenthal constant, ~’~ is defined in (11) and and

are the same as in Theorem 2.1.

Then for s E] N + 1 [, q E [1, +00], p &#x3E; 1r and for mixing coefficients
arithmetically decreasing such that

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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there exists a positive constant C which is an increasing function of Ml
and M2 such that:

Let us recall (see Donoho et al. [7] for the density, Nemirovskii [ 18] for
the regression), that the optimal theoretical rate of the minimax risk Rn (a)
defined in (1) for the set of functions B) is -1+2s for the loss
function 2. We immediately deduce the following corollary:

COROLLARY 3.1. - Under the same assumptions as in Theorem 3.2,
j is adaptive in the class B),  s  N + 1, p &#x3E; 1f,

q &#x3E; 1, B &#x3E; 0,Mi &#x3E; o~.

3.2. Practical estimation

When 7f &#x3E; 2, f depends on the quantity M2. We propose hereafter a new
estimator / the computation of which does not need prior knowledge of
M2. Let jo and ji be defined as previously. We assume now that f belongs
to a Besov space Let S be a positive constant (0  S  00).
We consider

We introduce the estimator f and specify its adaptivity property in the
following theorem.

THEOREM 3.2. - Let 03C0 &#x3E; 2. We assume that f belongs to the class

with:

Vol, 34, nO 2-] 998.
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where

with R7r is the Rosenthal constant, C~ is defined in (11) and Cl and

are the same as in Theorem 2.1.

Then for s V 1 2(1+03B8), N + and for mixing coefficients
arithmetically decreasing such that

We immediately deduce the following corollary:

COROLLARY 3.2. - Under the same assumptions as in Theorem 3.2 f is
adaptive in probabil ity in the class

Remark. - We recall that the computation of / only requires the

knowledge of B7ï, the upper bound for ~ l ~ o { l -~-1 )’~ -2 ~l . The price to pay
for the reduction of the prior knowledge is the diminution of the adaptive
regularity bandwidth. In the independent setting (0 = oo), our approach
shows that without any prior knowledge f is adaptive 

4. PROOFS

C denotes throughout a constant whose value may change from line to
line and may depend on The constant R~ denotes the
Rosenthal constant of Lemma 4.3 and and 62 (7r) are the contants
introduced in Theorem 2.1. We first state some preliminary results used
to establish the theorems.

4.1. Preliminary results

We first need a bound for the l7ï-norm of wavelet coefficients at a fixed
level j. The following lemma is a direct consequence of Theorem 2.1.

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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PROPOSITION 4. l. - Let 1[" &#x3E; 2. Under the summability condition B.~  oo,

there exists constants C~ and ~’2 depending on B.~ and ~ ~ f ~ ( ~ such that for
any j with 2J  n:

where â and 03B6 are the empirical wavelet coefficients.
In a second time, we derive from Theorem 2.2 a proposition which is its

direct application to the wavelet framework.

PROPOSITION 4.2. - Let 03C0 &#x3E; 2. Assuming that the sequence of 03B2 mixing
coefficients satisfies B.~  00, there exists a positive constant C such that,
under the condition () &#x3E; 7r, we have for any j

where

As a particular case, if j is such that 2~~ = 1  2j  2~S = n 1+2S :

Finally, we use repeatedly in the proofs the following lemma which is
simply due to a combination of the triangular inequality and of Lemma 2.1.

LEMMA 4.1. - Let 7r &#x3E; 2 and r~ be an appropriately chosen constant.

4.2. Proof of Theorem 2.2

The scheme of this proof is quite classical. We take advantage
of the absolute regularity using a corollary of Berbee’s coupling
lemma (Lemma 4.2). Thanks to this lemma, we approximate our original
process by a sequence of independent variables. We decompose the centered
empirical process into an error term and a centered empirical process

Vol. 34, n° 2-1998.
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associated to independent variables. The control of the first term is quite
direct, whereas the control of the second one requires a closer attention.
We use in the following four essential results, the sub-cited corollary

of Berbee’s lemma, the following version of a Talagrand result (Talagrand
[22], the Rosenthal inequality (Rosenthal [ 19]) and the moment inequality
for absolutely regular variables (2.1 ). As we shall see, for r = 2 the proof
is simpler, we use variance inequalities instead of Rosenthal inequalities.
LEMMA 4.2. - Let (X 2 ) i &#x3E; o be a sequence of random variables taking

their values in a Polish space X. Then, there exists a sequence of
independent random variables such that for any positive integer i, XZ has
the same distribution as Xi and

The result of Talagrand is not stated in this form but one can actually
write it as follows.

THEOREM 4. I . - Let X 1, ..., Xn, be n independent identically distributed
random variables, and F a family of functions that are uniformly bounded
by some constant M1. Let H and v be defined by

Then, there exists universal constant K~ such that for any .~1 &#x3E; 0,

Moreover, according to Corollary 3.4 in Talagrand [21], the following
bound holds

where v and H are defined by

with 61,..., En n independent Rademacher variables. We derive then the
following inequality: there exist a positive constant K1 such that for any
Ai &#x3E; 0,

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Let us now start the proof. For sake of simplicity, we assume in the
following that X2 = 0 if i &#x3E; n, and that Ep(h) = 0. It is also useful to

notice that the condition (11) for m’ = oo implies

(see Birge and Massart [3] ). Let q be a fixed integer, q = where

~-~ denotes the integer part. According to Lemma 4.2, we build a sequence
of independent variables (Xi )i&#x3E;o such that 

and Y/ = (Xqk+~, ... , X~~~+l~ ) fulfill the conditions: for any k &#x3E; 0, Y~
and Yt have the same distributions, for any k &#x3E; 0, Yk*)  /3~,
the random variables are independent, and the are

independent. The centered empirical process Vn (h) is then decomposed as

where vn * ( h) is the empirical process associated with the random variables
Since

we just have to control theses two quantities to prove Theorem 2.2. First,
since

according to the assumption (11) with m = oo, we have

By Markov inequality, we deduce

Let us now control &#x3E; Ai + ~-~2014~j. Let p(n) be the
greatest integer such that n = qp(n) + x for 0  ~  q. Then

Vol. 34, n° 2-1998.
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The control is made in two steps, considering odd terms and even

ones. They are both treated in the same way; we only detail the even

part. Since the variables are independent by

construction, we are allowed to apply the inequality (19) to ~.~ =
with adequate choices of Ai, Mi, H, H and

v. Let J~ be the family of functions defined in ( 12). We have to determine
the quantities Mi,~f,7:f and v. Since

we put

Under the summability condition on the mixing coefficients B2m  oo,

Theorem 2.1 and Lemma 2.2 ensure that there exists a function b

belonging to ~(2,~,P~) n such that, using the Holder inequality
with m + ~, = 1 and a convexity inequality {2m’ &#x3E; r’), we have

Thus we set
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Let us now determine the quantity H. Applying Holder’s inequality with
~ + -L = 1 and Jensen’s inequality, we have

In order to bound this last term, we use Rosenthal’s inequality.

LEMMA 4.3. - Let Y1, ... , Yn be n real independent identically distributed
variables, such that for any 0  i  n

Then, there exists a constant Rr such that for any r &#x3E; 2

We apply this lemma to the variables (5fi,k = ¿(2~;21 
which are independent and satisfy

The variance is bounded by inequality (9) and the control of the Lr-
norm is obtained combining inequality (10) and Holder inequality with

..20141
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Thus,

and since q  nand D  n,

We deduce then

and we take

with
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and by inequality (9) and assumption (11)

Finally, we notice that

and we take H = H. Now, applying inequality (19) with Mi, v, Hand
77 defined in (22), (23), (24) and (25), and reminding the choice of p(n),
we obtain for any m &#x3E; r/2 - 1

where Ki is a positive constant depending on r, Br and C~ . Similarly,
we find for the odd part

Regrouping (21), (26), (27), the proof of Theorem 22 is complete.

Proof of Remark 2. - If is a uniformly mixing process such
that its sequence bf mixing coefficients satisfies the summability
condition ~l ~2  oo, according to Viennet [23] the function b may
be taken as a constant, namely b = ~ l ~ o ~ l 1 ~ 2 . Thus, we set

and
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The conclusion of Theorem 2.2 is then valid for m = oo and with

Ilb(Xo) 1100 == ~~/2.
4.3. Proof of Proposition 4.2

We apply Theorem 2.2 to the with

T7 

and q = [n2j(1/03C0-1/2)(~j)-1] where ~ is a positive constant to choose.
Clearly under the summability condition on the mixing coefficients,
b(Xo) E Thus, there exists some positive constants C and C‘ such that

Since m &#x3E; Tr/2, if we choose 7y big enough, the exponential term is

of smaller order than the mixing term and we obtain for some positive
constant C2:

In order to complete the proof, we have to bound this term by a quantity
of order 2js03C0(2j n)03C0/2 . We have to prove that:

Under the assumption B &#x3E; 7r, the exponent of 2j is positive and we just have
to verify the inequality for j == j’g. Since 8 &#x3E; 7r - 2, we obtain the assertion.

4.4. Proof of Proposition 4.1

We only 0152j.I;], the other term is bounded exactly in

the same way. This lemma is a direct application of the first part of
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Theorem 2.1. There exists two functions b and b’ respectively in £(2 , /?, Pf)
and £( 7r, Pf), and a positive constant C depending on 03C0 such that

Using (20) and Holder inequality, we deduce

4.5. Proof of Theorem 3.1

Let us denote

where ~ + ~, = i and let js be such that 235 = (~~~’) n 1+~S .

Classically, we decompose E~ - f~03C003C0 into three terms: a bias term, a

linear stochastic term and a non linear stochastic term:

We have to prove that each term of the above bound is bounded by
C n - 1+2s .

1. Bias term: it is the same term as for the independent variables case.

By a direct application of the caracterization (8) of Besov spaces, we have:
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2. Linear stochastic term: using Lemma 2.1 and Proposition 4.1 for

the we have:

3. Non linear stochastic term: we decompose this term into four terms.

where

Study of the term E4=E~03A3j1j=js 03A3k(jk-03B6jk)03C8jk{03A3k|jk|03C0203C0s03C0j}~03C003C0:
in the same way as for the bias term, we can derive the upper bound:

Study of =E! 
we bound this term as the linear stochastic term. Using Lemma 4.1 for
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some 77 &#x3E; 0, Lemma 4.1 and Proposition 4.1 for the (j k, we get:

Study of the term E2 = 

using Lemma 4.1 for some ~ &#x3E; 0 and Lemma 2.1, we get: 

On the one hand:
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On the other hand, according to the triangular inequality

and using the caracterization (8) of the Besov spaces and applying then

Proposition 4.2, we get:

Study of the term E3 = 

using the caracterization (8) of the

Besov spaces and the definition of js, we have, for all j 

Let us now applying Lemma 2.1:

which imply

Combining (28) and (29), we deduce then
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According to the triangular inequality

and using Lemma 4.1 for some ?? &#x3E; 0, Lemma 2. t and the Holder inequality
for m -~- m~ = l, we get:

This quantity is bounded by Cn- 1+;8 as soon as 6~ &#x3E; + 7r - 2. Using
the fact that s  N + 1 and choosing and m &#x3E; 1 as small as possible, we
have the result under the assumption 8 &#x3E; 2. The choice

m == 1 + completes the proof of Theorem 3.1. °

4.6. Proof of Theorem 3.2

We first state a lemma which is proved immediately after. It ensures that,
for an adequate choice of ji, the statistic M2 is bounded in probability.
According to, Lemma 2.1, we define M2 an upper bound for by
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We have the following decomposition

According to Lemma 4.4, the first term tends to 0. Let us notice that the

inequality M2 /2  M2  3/2M2 implies that there exists of the same

order as s j such that sj ~ sj  Thus, Theorem 3.1 ensures that the
second term also tends to 0.

ProofofLemma 4.4. - Let x &#x3E; 2. Since jl is a large index of resolution,
for n big enough

We first notice that by remark (17) and Markov inequality

To control this term we introduce the following lemma derived from
Lemma 4 of Doukhan et al. [9] combined with inequality (9).

LEMMA 4.5. - Let a and 8 be positive reals and G be a finite subclass of
,~.2,~ (P) satisfying the following assumptions

Let = max(1,log 191), where 191 denotes the cardinality There
exists some universal positive constant C such that, for any q E [1, n]
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We apply this lemma to the class of function 9 with

Let us detail the computation of 8. Since B7r  oo, b E thus, by
Holder’s inequality with 1/ (7r - 1) + (7r - 2)/(7r - 1 ) == 1 we have

Finally, applying (31 ) with the choices (32), inequality (30) becomes

Choosing q = j11,

and by the definition of j 1
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