Annales de l'I. H. P., Section B

Bernard De Meyer
 The maximal variation of a bounded martingale and the central limit theorem

Annales de l'I. H. P., section B, tome 34, n ${ }^{\circ} 1$ (1998), p. 49-59
http://www.numdam.org/item?id=AIHPB_1998_34_1_49_0

© Gauthier-Villars, 1998, tous droits réservés.
L'accès aux archives de la revue «Annales de l'I. H. P., section B » (http://www.elsevier.com/locate/anihpb) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

The maximal variation of a bounded martingale and the central limit theorem

by
Bernard DE MEYER ${ }^{0}$
C.O.R.E., Université Catholique de Louvain, 34, Voie du Roman Pays, B-1348 Louvain-la-Neuve, Belgium.
E-mail : DeMeyer@core.ucl.ac.be

Abstract. - Mertens and Zamir's paper [3] is concerned with the asymptotic behavior of the maximal L^{1}-variation $\xi_{n}^{1}(p)$ of a $[0,1]$-valued martingale of length n starting at p. They prove the convergence of $\xi_{n}^{1}(p) / \sqrt{n}$ to the normal density evaluated at its p-quantile.

This paper generalizes this result to the conditional L^{q}-variation for $q \in[1,2)$.

The appearance of the normal density remained unexplained in Mertens and Zamir's proof: it appeared as the solution of a differential equation. Our proof however justifies this normal density as a consequence of a generalization of the central limit theorem discussed in the second part of this paper. © Elsevier, Paris

Résumé. - L'article [3] de Mertens et Zamir s'intéresse au comportement asymptotique de la variation maximale $\xi_{n}^{1}(p)$ au sens L^{1} d'une martingale de longueur n issue de p et à valeurs dans $[0,1]$. Ils démontrent que $\xi_{n}^{1}(p) / \sqrt{n}$ converge vers la densité normale évaluée à son p-quantile.

Ce résultat est ici étendu à la variation L^{q} - conditionnelle pour $q \in[1,2)$.
L'apparition de la loi normale reste inexpliquée au terme de la démonstration de Mertens et Zamir : elle y apparaît en tant que solution d'une équation différentielle. Notre preuve justifie l'occurrence de la densité

[^0]Annales de l'Institut Henri Poincaré - Probabilités et Statistiques - 0246-0203
normale comme une conséquence d'une généralisation du Théorème Central Limite présentée dans la deuxième partie de l'article. © Elsevier, Paris

1. ON THE MAXIMAL VARIATION OF A MARTINGALE

Let $\mathcal{M}_{n}(p)$ denote the set of all $[0,1]$-valued martingales X of length n : $X=\left(X_{1}, \ldots, X_{n}\right)$ with $E\left[X_{1}\right]=p$. For a martingale X in $\mathcal{M}_{n}(p)$, we will refer to the quantity $V_{n}^{q}(X)$:

$$
V_{n}^{q}(X):=E\left[\sum_{k=1}^{n-1}\left(E\left[\left|X_{k+1}-X_{k}\right|^{q} \mid X_{1}, \ldots, X_{k}\right]\right)^{\frac{1}{q}}\right]
$$

as the conditional L^{q}-variation of X. In case $q=1, V_{n}^{1}(X)$ turns out to be equal to the classical L^{1}-variation of $X: \sum_{k=1}^{n-1}\left\|X_{k+1}-X_{k}\right\|_{L^{1}}$.

Let us still define $\xi_{n}^{q}(p)$ as:

$$
\xi_{n}^{q}(p):=\sup \left\{V_{n}^{q}(X) \mid X \in \mathcal{M}_{n}(p)\right\} .
$$

With these notations, the main result of this section is:
Theorem 1. - For q in $[1,2)$, the limit of $\frac{\xi_{n}^{q}(p)}{\sqrt{n}}$, as n increases to ∞, is

$$
\Phi(p):=\exp \left(-x_{p}^{2} / 2\right) / \sqrt{2 \pi}
$$

where x_{p} is such that $p=\int_{-\infty}^{x_{p}} \exp \left(-s^{2} / 2\right) / \sqrt{2 \pi} d$ s. (i.e. $\Phi(p)$ is the normal density evaluated at its p-quantile.)

Mertens and Zamir proved this result in [3] for the particular case $q=1$ and they applied it to repeated game theory in [2]. The heuristic underlying their proof is based on a recursive formula for ξ_{n}^{1} that could be written formally as $\xi_{n+1}^{1} / \sqrt{n+1}=T_{n}\left(\xi_{n}^{1} / \sqrt{n}\right)$, where T_{n} is the corresponding recurrence operator. If the sequence ξ_{n}^{1} / \sqrt{n} were to converge to a limit Φ, we would have $T_{n}(\Phi) \approx \Phi$. By interpreting heuristically the last relation as $T_{n}(\Phi)-\Phi=O\left(n^{-3 / 2}\right)$, they are led to a differential equation whose solution is the normal density evaluated at its p-quantile. In fact, their proof contains no probabilistic justification of this appearance of the normal density. Our argument is of a completely different nature and this normal density appears as a consequence of the generalization of the central limit theorem presented in the next section.

Proof of Theorem 1. - Let us first observe that $V_{n}^{q}(X)$ just depends on the joint distribution of the random vector X_{1}, \ldots, X_{n}.

Let then $\left(u_{1}, \ldots, u_{n}\right)$ be a system of independent random variables uniformly distributed on $[0,1]$ and let $\mathcal{G}:=\left\{\mathcal{G}_{k}\right\}_{k=1}^{n}$ be the filtration generated by $\left(u_{1}, \ldots, u_{n}\right): \mathcal{G}_{k}:=\sigma\left\{u_{1}, \ldots, u_{k}\right\}$.

It is well known that if F_{1} denotes the distribution function of X_{1}, then $X_{1}^{\prime}:=F_{1}^{i n v}\left(u_{1}\right)$ has the same distribution as X_{1}, where $F_{1}^{i n v}(u):=\inf \left\{x \mid F_{1}(x) \geq u\right\}$. Applying this argument recursively on the distribution of X_{k+1} conditional on $\left(X_{1}, \ldots, X_{k}\right)$, we obtain a \mathcal{G} adapted martingale X^{\prime} inducing on \mathbb{R}^{n} the same distribution as X, and thus $V_{n}^{q}(X)=V_{n}^{q}\left(X^{\prime}\right)$. As a consequence,

$$
\xi_{n}^{q}(p)=\sup \left\{V_{n}^{q}(X) \mid X \in \mathcal{M}_{n}(\mathcal{G}, p)\right\}
$$

where $\mathcal{M}_{n}(\mathcal{G}, p)$ denotes the set of \mathcal{G}-adapted martingales in $\mathcal{M}_{n}(p)$.
It follows from the above construction of X^{\prime} that, for $k=0, \cdots, n-1$, X_{k+1}^{\prime} is measurable with respect to $\sigma\left\{X_{1}^{\prime}, \ldots, X_{k}^{\prime}, u_{k+1}\right\}$. Thus,

$$
E\left[\left|X_{k+1}^{\prime}-X_{k}^{\prime}\right|^{q} \mid \mathcal{G}_{k}\right]=E\left[\left|X_{k+1}^{\prime}-X_{k}^{\prime}\right|^{q} \mid X_{1}^{\prime}, \ldots, X_{k}^{\prime}\right] .
$$

This last relation implies then that $V_{n}^{q}(X)=V_{n}^{q}\left(X^{\prime}\right)=\tilde{V}_{n}^{q}\left(X^{\prime}\right)$, where $\tilde{V}_{n}^{q}\left(X^{\prime}\right)$ denotes the L^{q}-variation conditional on \mathcal{G} of the \mathcal{G}-adapted martingale X^{\prime} :

$$
\tilde{V}_{n}^{q}\left(X^{\prime}\right):=E\left[\sum_{k=1}^{n-1}\left(E\left[\left|X_{k+1}^{\prime}-X_{k}^{\prime}\right|^{q} \mid \mathcal{G}_{k}\right]\right)^{\frac{1}{q}}\right] .
$$

We then infer that $\xi_{n}^{q}(p) \leq \sup \left\{\tilde{V}_{n}^{q}(X) \mid X \in \mathcal{M}_{n}(\mathcal{G}, p)\right\}$. On the other hand, since $\sigma\left\{X_{1}, \ldots, X_{k}\right\}$ is included in \mathcal{G}_{k}, it follows from Jensen's inequality that $\tilde{V}_{n}^{q}(X) \leq V_{n}^{q}(X)$, and we may conclude that

$$
\xi_{n}^{q}(p)=\sup \left\{\tilde{V}_{n}^{q}(X) \mid X \in \mathcal{M}_{n}(\mathcal{G}, p)\right\} .
$$

We now will prove that the term

$$
E\left[\left(E\left[\left|X_{k+1}-X_{k}\right|^{q} \mid \mathcal{G}_{k}\right]\right)^{\frac{1}{q}}\right]
$$

in the definition of $\tilde{V}_{n}^{q}(X)$ can be replaced with

$$
\sup \left\{E\left[\left(X_{k+1}-X_{k}\right) Y_{k+1}\right] \mid Y_{k+1} \in \mathcal{B}_{k+1}\right\},
$$

where \mathcal{B}_{k+1} denotes the set of \mathcal{G}_{k+1}-measurable random variables Y_{k+1} such that $E\left[\left|Y_{k+1}\right|^{q^{\prime}} \mid \mathcal{G}_{k}\right]$ is a.s. less than 1 , with q^{\prime} fulfilling $1 / q+1 / q^{\prime}=1$. (In
the particular case $q=1$, we define \mathcal{B}_{k+1} as the set of $[-1,1]$-valued $\mathcal{G}_{k+1^{-}}$ measurable random variables.). Indeed, a conditional version of Holder's inequality indicates that

$$
E\left[\left(X_{k+1}-X_{k}\right) Y_{k+1} \mid \mathcal{G}_{k}\right] \leq\left(E\left[\left|X_{k+1}-X_{k}\right|^{q} \mid \mathcal{G}_{k}\right]\right)^{\frac{1}{q}}\left(E\left[Y_{k+1}^{q^{\prime}} \mid \mathcal{G}_{k}\right]\right)^{\frac{1}{q^{\prime}}} .
$$

Thus, for $Y_{k+1} \in \mathcal{B}_{k+1}$, we have

$$
E\left[\left(X_{k+1}-X_{k}\right) Y_{k+1}\right] \leq E\left[\left(E\left[\left|X_{k+1}-X_{k}\right|^{q} \mid \mathcal{G}_{k}\right]\right)^{\frac{1}{q}}\right]
$$

Since the equality is satisfied in the last relation for

$$
\left.Y_{k+1}=\operatorname{sgn}\left(X_{k+1}-X_{k}\right)\left|X_{k+1}-X_{k}\right|^{\frac{q}{q^{\prime}}} \right\rvert\, E\left[\left|X_{k+1}-X_{k}\right|^{q} \mid \mathcal{G}_{k}\right]^{\frac{1}{q^{\prime}}} \in \mathcal{B}_{k+1}
$$

we then conclude as announced that

$$
E\left[\left(E\left[\left|X_{k+1}-X_{k}\right|^{q} \mid \mathcal{G}_{k}\right]\right)^{\frac{1}{q}}\right]=\sup \left\{E\left[\left(X_{k+1}-X_{k}\right) Y_{k+1}\right] \mid Y_{k+1} \in \mathcal{B}_{k+1}\right\}
$$

As a next step, let us remark that, since X is a martingale, we have

$$
\begin{aligned}
E\left[\left(X_{k+1}-X_{k}\right) Y_{k+1}\right] & =E\left[\left(X_{k+1}-X_{k}\right)\left(Y_{k+1}-E\left[Y_{k+1} \mid \mathcal{G}_{k}\right]\right)\right] \\
& =E\left[X_{k+1}\left(Y_{k+1}-E\left[Y_{k+1} \mid \mathcal{G}_{k}\right]\right)\right] \\
& =E\left[X_{n}\left(Y_{k+1}-E\left[Y_{k+1} \mid \mathcal{G}_{k}\right]\right)\right]
\end{aligned}
$$

We obtain therefore:

$$
\tilde{V}_{n}^{q}(X)=\sup \left\{E\left[X_{n} \sum_{k=1}^{n-1}\left(Y_{k+1}-E\left[Y_{k+1} \mid \mathcal{G}_{k}\right]\right)\right] \mid Y_{2} \in \mathcal{B}_{2}, \ldots, Y_{n} \in \mathcal{B}_{n}\right\}
$$

This expression of $\tilde{V}_{n}^{q}(X)$ just depends on the final value X_{n} of the martingale X. Furthermore, if, for a σ-algebra $\mathcal{A}, \mathcal{R}(\mathcal{A}, p)$ denotes the class of $[0,1]$-valued \mathcal{A}-measurable random variables R with $E[R]=p$, any R in $\mathcal{R}\left(\mathcal{G}_{n}, p\right)$ is the value X_{n} at time n of a martingale X in $\mathcal{M}_{n}(\mathcal{G}, p)$. We then conclude that

$$
\begin{align*}
& \xi_{n}^{q}(p)=\sup \left\{E\left[R \sum_{k=1}^{n-1}\left(Y_{k+1}-E\left[Y_{k+1} \mid \mathcal{G}_{k}\right]\right)\right]\right. \tag{1}\\
&\left.\mid R \in \mathcal{R}\left(\mathcal{G}_{n}, p\right), Y_{2} \in \mathcal{B}_{2}, \ldots, Y_{n} \in \mathcal{B}_{n}\right\}
\end{align*}
$$

By hypothesis we have $q<2$. This implies $q^{\prime}>2$. Therefore $E\left[Y_{k+1}^{2} \mid \mathcal{G}_{k}\right] \leq 1$ since $Y_{k} \in \mathcal{B}_{k}$. Hence, the terms $\left(Y_{k+1}-E\left[Y_{k+1} \mid \mathcal{G}_{k}\right]\right)$
appearing in the last formula have a conditional variance bounded by 1 . The process S defined as $S_{m}:=\sum_{k=1}^{m-1}\left(Y_{k+1}-E\left[Y_{k+1} \mid \mathcal{G}_{k}\right]\right)$ belongs therefore to the class $\mathcal{S}_{n}^{q^{\prime}}([0,1], 2)$ of the martingales S of length n starting at 0 and whose increments $S_{k+1}-S_{k}$ have a conditional variance $E\left[\left(S_{k+1}-S_{k}\right)^{2} \mid \mathcal{G}_{k}\right]$ a.s. valued in the interval $[0,1]$ and a conditional q^{\prime}-order moment bounded by $2^{q^{\prime}}$.
So, we infer that

$$
\frac{\xi_{n}^{q}(p)}{\sqrt{n}} \leq \sup _{S \in \mathcal{S}_{n}^{G^{\prime}}([0,1], 2)} \mu_{p}\left(\frac{S_{n}}{\sqrt{n}}\right)
$$

where

$$
\mu_{p}\left(\frac{S_{n}}{\sqrt{n}}\right):=\sup _{R \in \mathcal{R}\left(\mathcal{G}_{n}, p\right)} E\left[R \frac{S_{n}}{\sqrt{n}}\right] .
$$

Obviously the quantity $\mu_{p}\left(\frac{S_{n}}{\sqrt{n}}\right)$ just depends on the distribution of S_{n} / \sqrt{n} and not on the σ-algebra on which this random variable is defined.
According to Theorem 3, there exists a κ such that for all S in $\mathcal{S}_{n}^{q^{\prime}}([0,1], 2)$ we can claim the existence of a Brownian Motion β on a filtration \mathcal{F}, of a [0,1$]$-valued stopping time τ and of a \mathcal{F}_{∞}-measurable random variable Y such that Y has the same distribution as S_{n} / \sqrt{n} and $\left\|Y-\beta_{\tau}\right\|_{L^{2}} \leq 2 \kappa n^{\frac{1}{q^{1} \Lambda^{4}}-\frac{1}{2}}$.

We then conclude that

$$
\mu_{p}\left(\frac{S_{n}}{\sqrt{n}}\right)=\sup _{R \in \mathcal{R}\left(\mathcal{F}_{\infty}, p\right)} E[R \cdot Y] \leq \sup _{R \in \mathcal{R}\left(\mathcal{F}_{\infty}, p\right)} E\left[R \cdot \beta_{\tau}\right]+2 \kappa n^{\frac{1}{q^{\wedge 4}}-\frac{1}{2}} .
$$

Due to the inequality $\tau \leq 1$, it follows that:

$$
\begin{aligned}
\sup _{R \in \mathcal{R}\left(\mathcal{F}_{\infty}, p\right)} E\left[R \cdot \beta_{\tau}\right] & =\sup _{R \in \mathcal{R}\left(\mathcal{F}_{\infty}, p\right)} E\left[E\left[R \mid \mathcal{F}_{\tau}\right] \cdot \beta_{\tau}\right] \\
& =\sup _{R \in \mathcal{R}\left(\mathcal{F}_{\tau}, p\right)} E\left[R \cdot \beta_{\tau}\right] \\
& =\sup _{R \in \mathcal{R}\left(\mathcal{F}_{\tau}, p\right)} E\left[R \cdot \beta_{1}\right] \\
& \leq \sup _{R \in \mathcal{R}\left(\mathcal{F}_{1}, p\right)} E\left[R \cdot \beta_{1}\right]
\end{aligned}
$$

We will now explicitly compute $\sup _{R \in \mathcal{R}\left(\mathcal{F}_{1}, p\right)} E\left[R \cdot \beta_{1}\right]$: if \mathcal{H} denotes $\sigma\left\{\beta_{1}\right\}$, then

$$
\sup _{R \in \mathcal{R}\left(\mathcal{F}_{1}, p\right)} E\left[R \cdot \beta_{1}\right]=\sup _{R \in \mathcal{R}\left(\mathcal{F}_{1}, p\right)} E\left[E[R \mid \mathcal{H}] \cdot \beta_{1}\right]=\sup _{R \in \mathcal{R}(\mathcal{H}, p)} E\left[R \cdot \beta_{1}\right] .
$$

Since this optimization problem consists of maximizing a linear functional on the convex set $\mathcal{R}(\mathcal{H}, p)$, we may restrict our attention to the extreme

Vol. 34, n° 1-1998.
points of $\mathcal{R}(\mathcal{H}, p)$, which are clearly the $\{0,1\}$-valued random variables R in $\mathcal{R}(\mathcal{H}, p)$ since the normal density has no atoms. Now, in order to maximize $E\left[R \cdot \beta_{1}\right]$, the random variable $R\left(\beta_{1}\right)$ has to map the highest values of β_{1} to 1 , and the lowest values to 0 , i.e. $R\left(\beta_{1}\right)=\mathbb{1}_{\beta_{1} \geq v}$, where v is a constant such that $p=E\left[\mathbb{1}_{\beta_{1} \geq v}\right]=\int_{v}^{\infty} e^{\left(-s^{2} / 2\right)} / \sqrt{2 \pi} d s$.

Thus

$$
\begin{aligned}
\sup _{R \in \mathcal{R}\left(\mathcal{F}_{1}, p\right)} E\left[R \cdot \beta_{1}\right] & =E\left[\mathbb{1}_{\beta_{1} \geq v} \beta_{1}\right] \\
& =\int_{v}^{\infty} s e^{\left(-s^{2} / 2\right)} / \sqrt{2 \pi} d s \\
& =e^{\left(-v^{2} / 2\right)} / \sqrt{2 \pi} .
\end{aligned}
$$

Observing that $v=-x_{p}$, we get

$$
\sup _{R \in \mathcal{R}\left(\mathcal{F}_{1}, p\right)} E\left[R \cdot \beta_{1}\right]=\Phi(p)
$$

and the following inequality is proved:

$$
\frac{\xi_{n}^{q}(p)}{\sqrt{n}} \leq \Phi(p)+2 \kappa n^{\frac{1}{q^{\prime} \wedge 4}-\frac{1}{2}}
$$

To get the reverse inequality, let us come back to equation (1). Obviously, if Y_{k} is a system of independent random variables adapted to \mathcal{G}, with $Y_{k}=+1$ or -1 each with probability $1 / 2$, we get $Y_{k} \in \mathcal{B}_{k}$ and we infer that

$$
\frac{\xi_{n}^{q}(p)}{\sqrt{n}} \geq \mu_{p}\left(\frac{S_{n}}{\sqrt{n}}\right)
$$

where $S_{m}:=\sum_{k=1}^{m-1} Y_{k+1}$. Since $\left(S_{k+1}-S_{k}\right)^{2}=1, S$ belongs to $\mathcal{S}_{n}^{4}([1,1], 2)$. According to Theorem 3, there exist a Brownian motion β on a filtration \mathcal{F} and a \mathcal{F}_{∞}-measurable random variable Y distributed as S_{n} / \sqrt{n}, with the property $\left\|Y-\beta_{1}\right\|_{L^{2}} \leq 2 \kappa n^{-\frac{1}{4}}$. We then infer that

$$
\mu_{p}\left(\frac{S_{n}}{\sqrt{n}}\right) \geq \sup _{R \in \mathcal{R}\left(\mathcal{F}_{1}, p\right)} E\left[R \cdot \beta_{1}\right]-2 \kappa n^{-\frac{1}{4}}=\Phi(p)-2 \kappa n^{-\frac{1}{4}},
$$

as we wanted to prove.
To continue this analysis of the maximal variation of a bounded martingale, let us prove the following result:

Theorem 2. - For $q>2$ and for $0<p<1, \xi_{n}^{q}(p) / \sqrt{n}$ tends to ∞ as n increases.

Proof. - For fixed n let $X^{n}=\left(X_{1}^{n}, \ldots, X_{n}^{n}\right)$ denotes the martingale starting from p defined by the following transitions: $X_{k}^{n}=X_{k+1}^{n}$ conditionally on $X_{k}^{n} \in\{0,1\}$, and conditionally on $X_{k}^{n}=p, X_{k+1}^{n}$ takes the value $0, p$ and 1 with respective probability $(1-p) / n, 1-n^{-1}$ and p / n.

An easy computation indicates that

$$
V_{n}^{q}\left(X^{n}\right)=\sum_{k=1}^{n-1}\left(1-n^{-1}\right)^{k-1} n^{-\frac{1}{q}} \lambda(p)=\left(1-\left(1-n^{-1}\right)^{n}\right) n^{1-\frac{1}{q}} \lambda(p)
$$

with $\lambda(p):=\left(p(1-p)^{q}+(1-p) p^{q}\right)^{\frac{1}{q}}>0$. Since $\left(1-n^{-1}\right)^{n}$ converges to e^{-1} as n tends to ∞, we conclude that $V_{n}^{q}\left(X^{n}\right)=O\left(n^{1-\frac{1}{q}}\right)$, and thus $V_{n}^{q}\left(X^{n}\right) / \sqrt{n}$ tends to ∞ as far as $\frac{1}{2}-\frac{1}{q}>0$ i.e. $q>2$.

So the only unexplored case is the asymptotic behavior of $\xi_{n}^{2}(p) / \sqrt{n}$. The argument used above to prove Theorem 1 fails to work here. However, it can be proved that $\lim _{n \rightarrow \infty} \xi_{n}^{2}(p) / \sqrt{n}=\Phi(p)$: the argument of Mertens and Zamir's paper can be adapted to this case.

2. A GENERALIZATION OF THE CENTRAL LIMIT THEOREM

The central limit theorem deals with the limit distributions of S_{n} / \sqrt{n}, where S_{n} is the sum of n i.i.d. random variables. The next result dispenses with the i.i.d. hypothesis: It identifies the class of all possible limit distributions of X_{n} / \sqrt{n}, where X_{n} is the terminal value of a discrete time martingale X whose n increments $X_{k+1}-X_{k}$ have a conditional variance in a given interval $[A, B]$ and a conditional q-order moment uniformly bounded for a $q>2$, as the weak closure of the set of distributions of a Brownian motion stopped at a $[A, B]$-valued stopping time. The classical central limit theorem, when stated for i.i.d. random variables with bounded q-order moment, appears then as a particular case of this result when $A=B$.

To be more formal, let $\mathcal{S}_{n}^{q}([A, B], C)$ denote the set of n-stages martingales S such that for all k, both relations hold:

$$
A \leq E\left[\left|S_{k+1}-S_{k}\right|^{2} \mid S_{1}, \ldots, S_{k}\right] \leq B
$$

and

$$
E\left[\left|S_{k+1}-S_{k}\right|^{q} \mid S_{1}, \ldots, S_{k}\right] \leq C^{q}
$$

Theorem 3. - There exists a universal constant κ such that for all $n \in \mathbb{N}$, for all $q>2$, for all $A, B, C \in \mathbb{R}$ with $0 \leq A \leq B \leq C$ and for all $X \in \mathcal{S}_{n}^{q}([A, B], C)$, there exist a filtration \mathcal{F}, an \mathcal{F}-Brownian motion β, an
$[A, B]$-valued stopping time τ on \mathcal{F} and $a \mathcal{F}_{\infty}$-measurable random variable Y whose marginal distribution coincides with that of X_{n} / \sqrt{n} and such that

$$
E\left[\left(Y-\beta_{\tau}\right)^{2}\right] \leq \kappa^{2} C^{2} n^{\frac{2}{q \wedge 4}-1}
$$

To prove this result, we will need the following Lemma which is obvious in case $p=2$:

Lemma 4. - For $p \in[1,2]$, for all discrete martingale X with $X_{0}=0$, we have:

$$
E\left[\left|X_{n}\right|^{p}\right] \leq 2^{2-p} \sum_{k=0}^{n-1} E\left[\left|X_{k+1}-X_{k}\right|^{p}\right]
$$

Proof ${ }^{1}$.
By a recursive argument, this follows from the relation:

$$
E\left[|x+Y|^{p}\right] \leq|x|^{p}+2^{2-p} E\left[|Y|^{p}\right]
$$

that holds for all x in \mathbb{R} whenever Y is a centered random variable: Indeed,

$$
|x+Y|^{p}-|x|^{p}=Y \int_{0}^{1} p|x+s Y|^{p-1} \operatorname{sgn}(x+s Y) d s
$$

Thus, since $E[Y]=0$, we get

$$
E\left[|x+Y|^{p}\right]-|x|^{p}=E\left[Y \int_{0}^{1} p\left(|x+s Y|^{p-1} \operatorname{sgn}(x+s Y)-|x|^{p-1} \operatorname{sgn}(x)\right) d s\right]
$$

A straightforward computation indicates that, for $1 \leq p \leq 2$ and a fixed a, the function $g(x):=\left||x+a|^{p-1} \operatorname{sgn}(x+a)-|x|^{p-1} \operatorname{sgn}(x)\right|$ reaches its maximum at $x=-a / 2$, implying $g(x) \leq 2^{2-p}|a|^{p-1}$.

So, $E\left[|x+Y|^{p}\right]-|x|^{p} \leq E\left[|Y| \int_{0}^{1} 2^{2-p} p|s Y|^{p-1} d s\right]=2^{2-p} E\left[|Y|^{p}\right]$, as announced.

Proof of Theorem 3. - Let W be a standard 1-dimensional Brownian motion starting at 0 at time 0 and let \mathcal{H}_{s} denote the completion of the

[^1]σ-algebra generated by $\left\{W_{t}, t \leq s\right\}$. The filtration $\mathcal{G}:=\left\{\mathcal{G}_{k}\right\}_{k=1}^{n}$ defined as $\mathcal{G}_{k}=\mathcal{H}_{\frac{k}{n}}$ is rich enough to insure the existence of an adapted system $\left(u_{1}, \ldots, u_{n}\right)^{n}$ of independent random variables uniformly distributed on $[0,1]$.

Let then X be in $\mathcal{S}_{n}^{q}([A, B], C)$. As we saw in the previous section, it is possible to create a \mathcal{G}-adapted martingale Z inducing on \mathbb{R}^{n} the same distribution as X, with the property $E\left[Z_{k+1}-Z_{k} \mid \mathcal{G}_{k}\right]=$ $E\left[Z_{k+1}-Z_{k} \mid Z_{1}, \ldots, Z_{k}\right]$.

In turn, Z_{k} is the value at time k / n of the process $S_{t}:=E\left[Z_{n} \mid \mathcal{H}_{t}\right]$. As a particular property of the Brownian filtration \mathcal{H}, any such martingale can be represented as the Itô-integral $S_{t}=\int_{0}^{t} R_{s} d W_{s}$ of a progressively measurable process R with $E\left[\int_{0}^{1} R_{s}^{2} d s\right] \leq \infty$ (see Proposition (3.2), Chapter V in [4]).

Let us now define the process $r_{t}:=R_{t} / \sqrt{n}$, if $t \leq 1$ and $r_{t}:=1$ if $t>1$, let $\phi(t)$ denote $\phi(t):=B$ if $t \leq 1$ and $\phi(t):=A$ otherwise. Let us define the stopping times

$$
\theta:=\inf \left\{t \mid \int_{0}^{t} r_{s}^{2} d s \geq \phi(t)\right\}
$$

and

$$
T_{u}:=\inf \left\{t \mid \int_{0}^{t} r_{s}^{2} d s>u\right\}
$$

Let finally ρ_{t} be $\int_{0}^{t} r_{s} d W_{s}$.
With these definitions, our proof is as follows: On one hand, $Y:=\rho_{1}$ is equal to S_{1} / \sqrt{n} and has thus the same distribution as X_{n} / \sqrt{n}. According to Dambis Dubins Schwarz's Theorem (see Theorem 1.6, Chapter V in [4]), the process $\beta_{u}:=\rho_{T_{u}}$ is a Brownian motion with respect to the filtration $\left\{\mathcal{H}_{T_{u}}\right\}_{u \geq 0}$ and for all t, the random variable $U_{t}:=\int_{0}^{t} r_{s}^{2} d s$ is a stopping time on this filtration. In particular, $Y=\beta_{U_{1}}$ is $\mathcal{H}_{T_{\infty}}$-measurable.

On the other hand, $\tau:=U_{\theta}$ is a stopping time on $\left\{\mathcal{H}_{T_{u}}\right\}_{u \geq 0}$. Indeed, for all $u,\{\tau \leq u\}=\left\{\theta \leq T_{u}\right\} \in \mathcal{H}_{T_{u}}$, according to 4.16, chapter I in [4]. Due to the definition of θ, τ is $[A, B]$-valued and it remains for us to prove that $\left\|Y-\beta_{\tau}\right\|_{L^{2}}=\left\|\rho_{1}-\rho_{\theta}\right\|_{L^{2}}$ is bounded.

Now $\left\|\rho_{1}-\rho_{\theta}\right\|_{L^{2}}^{2}=E\left[\int_{\theta \wedge 1}^{\theta \vee 1} r_{s}^{2} d s\right]=E\left[\int_{\theta \wedge 1}^{1} r_{s}^{2} d s\right]+E\left[\int_{1}^{\theta \vee 1} r_{s}^{2} d s\right]$. According to the definition of θ, on $\{\theta>1\}$, we have $\int_{0}^{\theta} r_{s}^{2} d s=A$ and thus $\int_{1}^{\theta \vee 1} r_{s}^{2} d s=A-\int_{0}^{1} r_{s}^{2} d s$. Since the event $\{\theta>1\}$ is just equal to $\left\{\int_{0}^{1} r_{s}^{2} d s<A\right\}$, we conclude that $E\left[\int_{1}^{\theta \vee 1} r_{s}^{2} d s\right]=E\left[\left(A-\int_{0}^{1} r_{s}^{2} d s\right)^{+}\right]$.

Similarly, on $\{\theta<1\}, \int_{0}^{\theta} r_{s}^{2} d s=B$ and $\int_{\theta}^{1} r_{s}^{2} d s=\int_{0}^{1} r_{s}^{2} d s-B$. Furthermore, on $\{\theta=1\}, \int_{0}^{1} r_{s}^{2} d s \leq B$. Hence, $E\left[\int_{\theta \wedge 1}^{1} r_{s}^{2} d s\right]=$ $E\left[\left(\int_{0}^{1} r_{s}^{2} d s-B\right)^{+}\right]$.

All together, we find $\left\|\rho_{1}-\rho_{\theta}\right\|_{L^{2}}^{2}=E\left[\left|\int_{0}^{1} r_{s}^{2} d s-V\right|\right]$, where

$$
V:=\left(B \wedge\left(A \vee \int_{0}^{1} r_{s}^{2} d s\right)\right)
$$

is the "truncation" to the interval $[A, B]$ of the random variable $\int_{0}^{1} r_{s}^{2} d s$.
Obviously, among the $[A, B]$-valued random variables, V is the best L^{1}-approximation of $\int_{0}^{1} r_{s}^{2} d s$.

Taking into account the condition $E\left[\left(X_{k+1}-X_{k}\right)^{2} \mid X_{1}, \ldots, X_{k}\right] \in[A, B]$ we have $\hat{\zeta}_{k}:=E\left[\zeta_{k} \left\lvert\, \mathcal{H}_{\frac{k}{n}}\right.\right] \in[A, B]$, where $\zeta_{k}:=\int_{\frac{k}{n}}^{\frac{k+1}{n}} R_{s}^{2} d s$. Therefore, $V^{\prime}:=\sum_{k=0}^{n-1} \hat{\zeta}_{k} / n$ is also an $[A, B]$-valued random variable and we may conclude:

$$
\left.E\left[\left|\int_{0}^{1} r_{s}^{2} d s-V\right|\right] \leq E\left[\left|\int_{0}^{1} r_{s}^{2} d s-V^{\prime}\right|\right]=\frac{1}{n} \right\rvert\, \sum_{k=0}^{n-1}\left(\zeta_{k}-\hat{\zeta}_{k}\right) \|_{L^{1}}
$$

Finally, the conditional q-order moment condition

$$
E\left[\left|X_{k+1}-X_{k}\right|^{q} \mid X_{1}, \ldots, X_{k}\right] \leq C^{q}
$$

implies $E\left[\left|X_{k+1}-X_{k}\right|^{\tilde{q}} \mid X_{1}, \ldots, X_{k}\right] \leq C^{\tilde{q}}$, where $\tilde{q}=4 \wedge q$. As a joint consequence of Burkholder Davis Gundy's inequality and Doob's one, this condition becomes

$$
E\left[\left.\zeta_{k}^{\frac{\tilde{q}}{2}} \right\rvert\, \mathcal{H}_{\frac{k}{n}}\right] \leq\left(1 / c_{\tilde{q}}\right) E\left[\left.\sup _{t \in\left[\frac{k}{n}, \frac{k+1}{n]}\right.}\left\{\left|S_{t}-S_{\frac{k}{n}}\right|^{\tilde{q}}\right\} \right\rvert\, \mathcal{H}_{\frac{k}{n}}\right] \leq\left(\frac{\tilde{q}}{\tilde{q}-1}\right)^{\tilde{q}} C^{\tilde{q}} / c_{\tilde{q}}
$$

where $c_{\tilde{q}}$ is the Burkholder Davis Gundy universal constant (see theorem (4.1), Chapter IV in [4]). Since, by hypothesis, $q>2$, we have $\tilde{q} / 2 \in[1,2]$ and me may apply Lemma 4 to conclude that

$$
\left\|\sum_{0}^{n-1}\left(\zeta_{k}-\hat{\zeta}_{k}\right)\right\|_{L^{\tilde{q} / 2}}^{\tilde{q} / 2} \leq\left(\frac{\tilde{q}}{\tilde{q}-1}\right)^{\tilde{q}} \frac{2^{2-\tilde{q} / 2}}{c_{\tilde{q}}} C^{\tilde{q}} n
$$

and thus:

$$
\left\|Y-\beta_{\tau}\right\|_{L^{2}}^{2} \leq \frac{1}{n}\left\|\sum_{0}^{n-1}\left(\zeta_{k}-\hat{\zeta}_{k}\right)\right\|_{L^{1}} \leq\left(\frac{\tilde{q}}{\tilde{q}-1}\right)^{2} \frac{2^{4 / \tilde{q}-1}}{c_{\tilde{q}}^{2 / \tilde{q}}} C^{2} n^{2 / \tilde{q}-1}
$$

This terminates the proof of Theorem 2 since, for $\tilde{q} \in[2,4]$, the constant $c_{\tilde{q}}$ is bounded away from 0 .

REFERENCES

[1] D. L. Burkholder, Distribution function inequalities for martingales, The Annals of Probability, Vol. 1, 1973, pp. 19-42.
[2] J.-F. Mertens and S. Zamir, The normal distribution and Repeated games, International Journal of Game Theory, Vol. 5, 1976, pp. 187-197.
[3] J.-F. Mertens and S. Zamir, The maximal variation of a bounded martingale, Israel Journal of Mathematics, Vol. 27, 1977, pp. 252-276.
[4] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Springer, Berlin, Heidelberg, New York, 1990.
(Manuscript received June 19, 1996;
Revised April 8, 1997.)

[^0]: 1996 Mathematics Subject Classification. Primary 60 G 42, 60 F 05; Secondary 90 D 20.
 ${ }^{0}$ I gratefully acknowledge comments from Professors S. Sorin and J.-F. Mertens. This paper has been written during a stay at the Laboratoire d'Econométrie de l'Ecole Polytechnique at Paris. I am thankfull to the members of the "Laboratoire" for their hospitality.

[^1]: ${ }^{1}$ As suggested by an anonymous referee, we could obtain a similar inequality for $p>1$, as a consequence of Burkholder's square function inequality for discrete martingales, since $p / 2<1$. The constant factor 2^{2-p} should then be replaced by C_{p}^{p}, where C_{p} denotes Burkholder's universal constant. However, as stated in Theorem 3.2 of Burkholder's paper [1], the optimal choice of this constant C_{p} is $O(p \sqrt{q})$, where $p^{-1}+q^{-1}=1$ and is thus unbounded as p decreases to 1 . This would completely alterate the nature of the bound of Theorem 3 above.

