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ABSTRACT. - Mertens and Zamir’s paper [3] is concerned with the

asymptotic behavior of the maximal L1-variation ~n ( p) of a [0,1]-valued
martingale of length n starting at p. They prove the convergence of

~l n (p) / ~ to the normal density evaluated at its p-quantile.
This paper generalizes this result to the conditional Lq-variation for

q E [1,2).
The appearance of the normal density remained unexplained in Mertens

and Zamir’s proof: it appeared as the solution of a differential equation.
Our proof however justifies this normal density as a consequence of a
generalization of the central limit theorem discussed in the second part of
this paper. © Elsevier, Paris

RESUME. - L’article [3] de Mertens et Zamir s’interesse au comportement
asymptotique de la variation maximale ~n(~) au sens L1 d’une martingale
de longueur n issue de p et a valeurs dans [0, 1]. Ils demontrent que

~~, (p) / ~ converge vers la densite normale evaluee a son p-quantile.
Ce resultat est ici etendu a la variation Lq- conditionnelle pour q E [1,2).
L’apparition de la loi normale reste inexpliquee au terme de la

demonstration de Mertens et Zamir : elle y apparait en tant que solution
d’une equation differentielle. Notre preuve j ustifie l’ occurrence de la densite
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50 B. DE MEYER

normale comme une consequence d’ une generalisation du Theoreme Central
Limite presentee dans la deuxieme partie de 1’article, (c) Elsevier, Paris

1. ON THE MAXIMAL VARIATION OF A MARTINGALE

Let Mn (p) denote the set of all [0, 1]-valued martingales X of length n:
X = (X1, ... , Xn) with E[X1] = p. For a martingale X in we

will refer to the quantity 

as the conditional Lq-variation of X. In case q = 1, turns out to be

equal to the classical L1-variation of X : ~ ~- i ! ~ X~+1 - 
Let us still define ~n (p) as:

With these notations, the main result of this section is:

THEOREM 1. - For q in [1, 2), the limit of 03BEqn(p) n, as n increases to ~, is

where xp is such that p = (i.e. is the

normal density evaluated at its p-quantile.)

Mertens and Zamir proved this result in [3] for the particular case q = 1
and they applied it to repeated game theory in [2]. The heuristic underlying
their proof is based on a recursive formula for ~n that could be written
formally as + 1 = where Tn is the corresponding
recurrence operator. If the sequence were to converge to a limit ~,
we would have ~. By interpreting heuristically the last relation
as Tn (~) - ~ _ ~ (n-3~2 ), they are led to a differential equation whose
solution is the normal density evaluated at its p-quantile. In fact, their proof
contains no probabilistic justification of this appearance of the normal
density. Our argument is of a completely different nature and this normal
density appears as a consequence of the generalization of the central limit
theorem presented in the next section.
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51THE MAXIMAL VARIATION OF A BOUNDED MARTINGALE

Proof of Theorem 1. - Let us first observe that Yn (X ) just depends on
the joint distribution of the random vector X 1, ... , Xn .

Let then {~cl, ... , un) be a system of independent random variables
uniformly distributed on [0, 1] and be the filtration

generated by (~cl, ... , un) : ~~ .- o-~~cl, ... , 
It is well known that if Fi denotes the distribution function of

Xi, then X i := has the same distribution as where

:= > Applying this argument recursively on
the distribution of Xk+i conditional on (X1,...,Xk) , we obtain a g-
adapted martingale X’ inducing on Rn the same distribution as X, and thus
VJ(X) = As a consequence,

where denotes the set of 0-adapted martingales in 
It follows from the above construction of X’ that, for k = 0, ... , n - 1,

is measurable with respect to o- ~ X 1, ... , X ~ , u~+ 1 ~ . Thus,

This last relation implies then that = = where

denotes the Lq-variation conditional on Q of the 0-adapted
martingale X’ :

We then infer that ~~ (~)  E On the other

hand, is included in ~~, it follows from Jensen’s

inequality that  Vn (X ), and we may conclude that

We now will prove that the term

in the definition of T~n ~X ) can be replaced with

where Bk+1 denotes the set of ~~+1-measurable random variables Yk+1 such
that is a.s. less than 1, with ql fulfilling = 1. (In

Vol. 34, n° 1-1998.
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the particular case q = 1, we define Bk+i as the set of [-1, l]-valued 
measurable random variables.). Indeed, a conditional version of Holder’s

inequality indicates that

Thus, for E we have

Since the equality is satisfied in the last relation for

we then conclude as announced that

As a next step, let us remark that, since X is a martingale, we have

We obtain therefore:

This expression of VJ(X) just depends on the final value Xn of the
martingale X. Furthermore, if, for a a-algebra A, R( A, p) denotes the
class of [0,1]-valued A-measurable random variables R with E[R] = p,
any R in is the value Xn at time n of a martingale X in

We then conclude that

By hypothesis we have q  2. This implies q’ > 2. Therefore
 1 since Yk E Bk. Hence, the terms 
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53THE MAXIMAL VARIATION OF A BOUNDED MARTINGALE

appearing in the last formula have a conditional variance bounded by 1. The
process S defined as Sm - ~ ~ 11 (Y~~ 1 - belongs therefore
to the class S~~ ( ~0,1 ~ , 2) of the martingales S of length n starting at 0 and
whose increments have a conditional variance ]
a.s. valued in the interval [0,1] and a conditional q’-order moment bounded
by 2q .

So, we infer that

where

Obviously the quantity just depends on the distribution of 
and not on the a-algebra on which this random variable is defined.
According to Theorem 3, there exists a x such that for all S in

S~~ ( [0, l~ , 2) we can claim the existence of a Brownian Motion ,~ on a
filtration F, of a [0,1]-valued stopping time T and of a .~’~-measurable
random variable Y such that Y has the same distribution as and

We then conclude that

Due to the inequality T  1, it follows that:

We will now explicitly compute E[R . if H denotes

then 

Since this optimization problem consists of maximizing a linear functional
on the convex set R(1i,p), we may restrict our attention to the the extreme

Vol. 34, n° 1-1998.



54 B. DE MEYER

points of p), which are clearly the (0, 1)-valued random variables
R in p) since the normal density has no atoms. Now, in order to
maximize E[R . the random variable R(fli) has to map the highest
values of ~31 to 1, and the lowest values to 0, i.e. R(,Cil ) = 11~1 >v, where v
is a constant such that p = = f °° 
Thus 

- _ _ - _

Observing that v = we get

and the following inequality is proved:

To get the reverse inequality, let us come back to equation (1). Obviously,
if Yk is a system of independent random variables adapted to C, with

+1 or -1 each with probability 1/2, we get Yk E Bk and we
infer that

where Sm := Since = l, S belongs to

S~ ~ ~l,1~, 2). According to Theorem 3, there exist a Brownian motion

/3 on a filtration .~’ and a .~’~-measurable random variable Y distributed as
Sn/n, with the property ~Y - 03B21~L2  2kn - 1 4. We then infer that

as we wanted to prove. D
To continue this analysis of the maximal variation of a bounded

martingale, let us prove the following result:

THEOREM 2. - For q > 2 and for 0 C p  l, tends to 00
as n increases.

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



55THE MAXIMAL VARIATION OF A BOUNDED MARTINGALE

Proof. - For fixed n let X" = (X1 , ... , Xn ) denotes the martingale
starting from p defined by the following transitions: X,~ = 

conditionally on X~ E ~0,1~, and conditionally on X~ = p, takes

the value 0, p and 1 with respective probability ( 1- p) /n, 1- n-1 and p/n.
An easy computation indicates that

with A(p) := (p(1 - p)q + (1 - > 0. Since (1 - n-~)n converges
to e-1 as n tends to oo, we conclude that = 0(nl- q ), and thus

tends to oo as far as ) - § > 0 i.e. q > 2. D

So the only unexplored case is the asymptotic behavior of ~n (p) 
The argument used above to prove Theorem 1 fails to work here. However,
it can be proved that the argument of Mertens
and Zamir’s paper can be adapted to this case.

2. A GENERALIZATION OF THE CENTRAL LIMIT THEOREM

The central limit theorem deals with the limit distributions of 

where Sn is the sum of n i.i.d. random variables. The next result dispenses
with the i.i.d. hypothesis: It identifies the class of all possible limit

distributions of where Xn is the terminal value of a discrete time

martingale X whose n increments Xk+1 - Xk have a conditional variance
in a given interval ~A, B~ and a conditional q-order moment uniformly
bounded for a q > 2, as the weak closure of the set of distributions of a
Brownian motion stopped at a [A, B]-valued stopping time. The classical
central limit theorem, when stated for i.i.d. random variables with bounded

q-order moment, appears then as a particular case of this result when A = B.
To be more formal, let Sn ( ~A, B~ , G’) denote the set of n-stages

martingales S such that for all k, both relations hold:

and

THEOREM 3. - There exists a universal eonstant k such that for all n E N,
for all q > 2, for all A, B, C with 0  A  B  C and for all
X E Sqn ([A, B], C), there exist a filtration X, an F-Brownian motion fl, an

Vol. 34, n° 1-1998.
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[A, B] - valued stopping time T on F and a F~ -measurable random variable
Y whose marginal distribution coincides with that of and such that

To prove this result, we will need the following Lemma which is obvious
in case p = 2:

LEMMA 4. - For p G [1,2], for all discrete martingale X with Xo = 0,
we have:

Proof 1.
By a recursive argument, this follows from the relation:

that holds for all x in R whenever Y is a centered random variable: Indeed,

Thus, since E ~Y~ = 0, we get

A straightforward computation indicates that, for 1  ~  2 and a fixed a,
the function :_ ~ ~~ + aIP-1sgn(x + a) - ] reaches its

maximum at ~ _ - cx/2, implying g (x)  22-p ~ a (p-1.
So, E[lx + rep  E as

announced. D

Proof of Theorem 3. - Let W be a standard I-dimensional Brownian
motion starting at 0 at time 0 and let Hs denote the completion of the

1 As suggested by an anonymous referee, we could obtain a similar inequality for p > 1, as a
consequence of Burkholder’s square function inequality for discrete martingales, since p/2  1.

The constant factor 22-p should then be replaced by where Cp denotes Burkholder’s
universal constant. However, as stated in Theorem 3.2 of Burkholder’s paper [I], the optimal
choice of this constant Cp is 0(p~/9), where p-l -i- q-1 - 1 and is thus unbounded as p
decreases to 1. This would completely alterate the nature of the bound of Theorem 3 above.
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a-algebra generated by ~ Wt , t  s ~ . The defined

as gk == is rich enough to insure the existence of an adapted system
of independent random variables uniformly distributed on

[0,1].
Let then X be in Sn ( [A, B] , G’~ . As we saw in the previous

section, it is possible to create a ~-adapted martingale Z inducing on
the same distribution as X, with the property 

In turn, Zk is the value at time k/n of the process St := 
As a particular property of the Brownian filtration ~-C, any such martingale
can be represented as the Ito-integral St = ~o Rs dWs of a progressively
measurable process R with R2sds]  oo (see Proposition (3.2),
Chapter V in [4]).

Let us now define the process rt := if t  1 and rt :== 1 if

t > 1, let denote cjJ(t) := B if t  1 and := A otherwise. Let

us define the stopping times

and

Let finally pt be J; rs dWs .
With these definitions, our proof is as follows: On one hand, Y :== pi is

equal to and has thus the same distribution as According
to Dambis Dubins Schwarz’s Theorem (see Theorem 1.6, Chapter V in [4]),
the process /3u : := PT u is a Brownian motion with respect to the filtration

and for all t, the random variable Ut : _ ~o r;ds is a stopping
time on this filtration. In particular, Y = is -measurable.

On the other hand, T : := Uo is a stopping time Indeed,
for all u, {T  ~c ~ _ ~ 8  T~ ~ E ?LCTu , according to 4.16, chapter I in [4].
Due to the definition of 0, T is [A, B] -valued and it remains for us to prove
that IIY - = ~ ~ pl - pe ~ ~ L2 is bounded.

Now ~03C11 - 03C103B8~2L2 = ridsl + 
According to the definition of 0, on {B > l~, we have jL rsds = A
and thus r2s ds = A - fo Since the event {9 > 1} is just equal
to {Jo1 r;ds  A}, we conclude that r2sds] = E[(A - 10

Similarly, on {03B8  1}, J: r;ds = B and 103B8 r2sds = B.

Furthermore, on { () = 1 ~, B. Hence, _
° °~~

Vol. 34, n° 1-1998.
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All together, we find pe~~L2 - E[I Jo1 r;ds - V~, where

is the "truncation" to the interval [A, B] of the random variable 10 r2sds.
Obviously, among the ~A, B]-valued random variables, V is the best

L1-approximation of 10 r2sds.
Taking into account the condition ..., Xk] E [A, B]

, k+i

we have (k ?+ E CA, B , where 03B6k := Kk+1 n k R2sds. Therefore,
V’ := ~ ~-o ~~ ,, /n is also an ~A, B]-valued random variable and we may
conclude: .

Finally, the conditional q-order moment condition

implies  eel, where q = 4 n q. As a joint
consequence of Burkholder Davis Gundy’s inequality and Doob’s one, this
condition becomes

where c4 is the Burkholder Davis Gundy universal constant (see
theorem (4.1), Chapter IV in [4]). Since, by hypothesis, q > 2, we have
e [1,2] and me may apply Lemma 4 to conclude that

and thus:

This terminates the proof of Theorem 2 since, for q E [2, 4], the constant
cq is bounded away from 0. ~]
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