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ABSTRACT. - We give asymptotics for the occurrence time of rare events
in infinite spin systems whose invariant measure satisfies a Logarithmic
Sobolev inequality. We then describe the typical paths close to this

occurrence time. Finally, in the case of non-interacting spins, we obtain
sharper estimates for the expected value of the occurrence time.

Key words: Interacting spin systems, Large Deviations.

RESUME. - Nous établissons des estimations asymptotiques de la

distribution du temps de realisation d’evenements rares dans des systèmes de
spins sur ~d dont la mesure invariante satisfait une inégalité logarithmique
de Sobolev. Aussi, nous caractérisons les trajectoires typiques dans un
intervalle de temps précédant la realisation de 1’ evenement considéré. Enfin,
dans le cas de spins indépendants, nous obtenons des estimations plus
précises de Fesperance du temps de realisation.
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1. INTRODUCTION

We consider stationary ergodic spin-flip systems on the infinite lattice.
We estimate the occurrence time of an event E having a small probability
with respect to the stationary measure.

Heuristics based on the ergodic theorem suggest that the occurrence time
of a rare event should be roughly the inverse of the probability of the
event itself. Moreover, provided that time correlations decay sufficiently
fast, one expects the system to perform several ’independent’ trials before
entering E, which suggests that the occurrence time should be close to an

exponential time. The mathematical problem is to show that these heuristics
are true. Also, it is of interest to describe the typical behavior of the system
just before E occurs for the first time (hitting path); this would allow, for

example, to predict from observed data the occurrence of E.
Answers to these questions have been given for several classes of

stochastic systems. Among the first results on the subject we mention [9],
where Markov chains with strong recurrence properties were considered.
Later, the Freidlin and Wentzell theory [8] permitted a good understanding
of occurrence times for small random perturbations of finite dimensional
deterministic systems.

Quite related to [8] is the study of spin systems on a finite periodic
lattice with mean field interaction, in the limit where the mesh of the

lattice goes to zero. Results on the escape time from metastable states have

been obtained for such systems with or without conservation of the particle
number (see [ 1 ] or [2] respectively). Escape time from the basin of attraction
of a metastable state has also been studied, with different techniques, for
stochastic Ising models ([15, 16, 17]) at very low temperature. In the case
of finite Markov chains, deep results on occurrence time of rare events
have been recently obtained in [19, 20]. Closer in spirit to our paper are
the results in [12] and [6, 7], where non conservative and conservative spin
systems, respectively, are studied.

In this paper, the rare event E is expressed in terms of the empirical
process (see (2.3)), so that it may depend on any macroscopic observables.
Most of our results are proved under the assumption that the invariant

measure for the system satisfies a Logarithmic Sobolev (L-S) inequality.
The L-S inequality implies good mixing properties for the system, so that
the asymptotics for the hitting time can be obtained by arguments close to
the ones in [12], where attractiveness is instead assumed. More precisely, if

Tn is the first time the empirical process Rn enters E, a rare event for the
invariant measure v, then we show that = E E).

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques



729OCCURRENCE OF RARE EVENTS IN ERGODIC INTERACTING SPIN SYSTEMS

On the other hand, estimates of the type

have been proved for the one dimensional symmetric simple exclusion
process ([7]), assuming {Rn E E} is the event that the sites {1,..., n~ are
all occupied. In the last Section of this paper we exploit ideas of [7] to
get sharp estimates for independent spin flips, assuming ~ Rn E E ~ is the

event that the empirical density in a cube of side n is above a given value.
In particular, we show that ( 1.1 ) is false in this simple case. The correct
answer differs by a factor of the order of Vii.
A different approach is needed to describe the features of the hitting path.

In the spirit of Freidlin and Wentzell theory, we study the large deviations
on the path space of the process. Thus, we characterize the asymptotics of
the empirical process (and so of any macroscopic observable) any time t
before the system enters E.
We now outline the structure of the paper. In Section 2 and 3 we describe

the model and state our results on the hitting time. Proofs are postponed to
Section 4. In Section 5 we develop the techniques needed in Section 6 to
describe the hitting path. Finally, Section 7 is devoted to the computation
of sharp estimates in the case of independent spin flips.

2. MODEL AND NOTATIONS

We consider a spin flip system on 2Z~, i. e. a Markov process with state

space S = ~ - l, 1 ~ ~d . The evolution is determined by the generator

with f a function depending on a finite number of spins (local), a G S
and = f(a), where ~2 is obtained from a by flipping
the i-th spin. We assume the rates to be translation invariant, i.e.

c(i,a) = where c(.) is a given positive local function, and 92 is the
shift on 7ld. We denote by P~‘ the law of this process when’ starting from
the initial measure ~c. We write P~ rather than Ps~ , for ç E S. Expectation
with respect to is denoted by E~ . We remark that will also denote

p-expectation in S.
For a E S, ai denotes the spin value at i G 7ld. If f is a real

valued local function, let supp( f ) = {i : 0~. For A C 7ld, let

Vol. 33, n° 6-1997.



730 A. ASSELAH AND P. DAI PRA

0A = {i E A" : dist(i, A) = 1} be its boundary, and its cardinality.
Moreover, we define to be the a-field in S generated z E A}.
We write when A = Vn = [0, n - We denote by the set of

probability measures on S that are 03B8i-invariant for all i E This space
is provided with the weak topology. For /-1, ’ E Ms the free energy or
specific relative entropy of  w.r.t. ’ is defined by

where denotes the Radon-Nykodim derivative of the restrictions of
M and ~’ to The value of is infinite if is singular with
respect to // for some n. Of special interest among the elements of Ms
are the Gibbs measures. We say that v E Ms is a Gibbs measure if there
exists a family of functions

indexed by the finite subsets of 2~, such that

and

where Z is a normalization factor depending i # 0}. Now, given
a E S we consider the associated empirical process

where a(n) is the configuration obtained by repeating periodically the

restriction of a to the sites in Vn. Note that Rn(a) so that the

empirical process can be thought of as a measure valued random variable.
We will use later the fact that the laws of Rn under v satisfy a Large
Deviation Principle with rate function h(’~). For the definition of Large
Deviation Principle and a proof of this result we refer to [18].
The path space for a spin flip system is the space of cadlag functions

H = D([0,+oo)~), provided with the product Skorohod topology. For
H, denotes the z-th spin at time t. We also let, for T > 0,

S2T = D([0, T), S). Similarly to above, ~~ denotes the a-field in Hr

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



731OCCURRENCE OF RARE EVENTS IN ERGODIC INTERACTING SPIN SYSTEMS

generated by i E A}, and we write Qn for Qvn. The shifts () i act

naturally on so that we define to be the space of shift invariant

probability measures on The specific relative entropy between two such
measures is defined as in (2.2), with Qn replacing 0n. We use the same
notation for the relative entropy in and the ambiguity being
eliminated by the fact that elements of will be denoted by capital
letters P, Q, ...
To a given 03C9 E Hr we associate the empirical process

where the shifts 82 i act in the obvious way on and is the

periodization of w. Note that pn G 

3. ASYMPTOTICS FOR THE HITTING TIME

Most results in this paper will be proved under the following assumptions.

Al. The system has an invariant measure v which is a Gibbs measure.

A2. The measure v satisfies a Log-Sobolev inequality

where f > 0, = 1 and 0152 > 0.

Assumption A2 says basically that the correlations decay exponentially
in time. There is a large literature linking rate of decay of correlations to
Log-Sobolev inequality: see [21] for a fundamental result and [14] for the
best results in two dimensions for finite range interactions.
Now, for A C measurable we consider the sequence of stopping

times

In what follows, for B we define = M E B~.
We assume the set A to be such that > 0 (but possibly infinite).

PROPOSITION 1. - Under Al, for every E > 0

Vol. 33, n° 6-1997.



732 A. ASSELAH AND P. DAI PRA

PROPOSITION 2. - Under Al and A2 there is a constant c > 0 such that

Moreover, for every E > 0

Now let ,~n > 0 be defined by

Note that Propositions 1 and 2 imply

PROPOSITION 3. - Under Al, A2

PROPOSITION 4. - Under Al, A2

4. PROOFS OF PROPOSITIONS 1-4

Proof of Proposition 1. - The proof is identical to the one of Prop. 1 in

[ 12], and is based on the large deviations upper bound for the v-law of the

empirical process (see [18])..

Before giving the proofs of the other propositions, we state two lemmas.
The first one is close to a classical result [10] which deals with dependence
of the law of the process on the initial condition. Its proof is standard and we
refer the reader to [10]. We prove the second one at the end of this section.

LEMMA 1. - For T > 0 and A finite, let AT be the family of
space-time events depending on i E A, 0  t  T ~ only. Define

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



733OCCURRENCE OF RARE EVENTS IN ERGODIC INTERACTING SPIN SYSTEMS

At = ~i E dist(i, A)  t~. Then there is a C > 0 such that for all M
large enough (independently of T)

A E Çi == 7]i Vi E  

Remark 1. - The following variation of Lemma 1 will also be used later.
For A a finite subset of ~d, define

It is easy to check that the Markov chain on {20141,1}~ having generator

has the restriction of v to as unique invariant measure. Denote by Pf
the law of this Markov chain when starting from the initial measure p. Then

for M large enough, where the supremum in  is over all probability
measures on {20141,1}~.

In the next Lemma we show that Assumption A2 implies fast convergence
to equilibrium. Let St be the semigroup associated to L, =

~(/(~))).
LEMMA 2. - Under A2, there exist constants C, k > 0 such that for every

t > 0 and any local function g

Proof of Proposition 2. - Let c be any positive constant.

Vol. 33, n° 6-1997.



734 A. ASSELAH AND P. DAI PRA

But, by using Lemma 2, and choosing c large enough

that, plugged in (4.2), gives the desired bound..

Proof of Proposition 3. - It is enough to show that for any s, t > 0

If we define, for 0  t  t’,

then t} = {x~0; t] > O}. Thus we need to show

Take any sequence An going to infinity, such that An  eÀnd for some
A  By Proposition 1, for such An, goes to zero as

oo. Thus, by stationarity

as n - oo. Similarly

as n - oo. Therefore we only have to show that

as n - oo. By the Markov property:

Now we let

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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By Lemma 1 we can find a local function /n such that C 

for some M large, and

Thus, using Lemma 2,

fore some c > 0. The last expression goes to zero if for example An = 
This completes the proof..

Proof of Proposition 4. - We first show that, for n large enough,

for a decreasing h(k) satisfying  oo. Now let An = By
the argument in the proof of Proposition 3, and the definition of /3~

Therefore, by the Markov property,

and so

which proves (4.3). Now, as in [12], we observe that

Now, let n - oo in (4.4). By (4.3) we can use Dominated Convergence
Theorem in the r.h.s. of (4.4), which, together with Proposition 3, completes
the proof..

Vol. 33, n° 6-1997.
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Proof of Lemma 2. - The proof relies on approximations with finite

volume dynamics. Let A be a finite subset of ~d, and define CA and L~
as in Remark 1. It is shown in [5] that Log-Sobolev inequality implies
exponential decay of relative entropy:

for some a’ > 0, where

SA is the semigroup generated by L~ and IL is any probability measure on S.
Now let g be a given local function. For t > 0 we construct an increasing

family {A(t)~ of finite subsets on ~ such that

and

for some A, a, B, b > 0, that would conclude the proof.
Note that (4.7) is easily implied by what stated in Remark 1 once we

let A = supp(g), and A(t) = AMt (defined as in Lemma 1 ) for M large
enough.
To show that, with the same choice of A(t) also (4.6) holds, let

where R is, as above, the diameter of supp(g). By letting ~ . . denote

the total variation norm in the space of signed measures, using (4.5) and
Csisar’s inequality, we obtain

which proves (4.6), since Ao = supp (g ) and IAMt grows like td..

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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5. SOME TOOLS FROM LARGE DEVIATIONS THEORY

In analogy with [8] we use large deviation estimates on the paths of the

process to analyze how the system enters the rare event {Rn E ~4}.
In what follows, given E = space of probability measures on

S, we let PM be the law of the spin flip process with rates c(-) - 1 and
initial condition IL. In the following theorem, we prove a large deviation

principle for the empirical process pn on the path space.

THEOREM 1. - Let IL E Gibbs measure. Then the sequence of
measures P~ o E ,/~! 1 (f2T)) satisfies a nd-large deviation principle
with a good rate function HT ( ~ ). Moreover

where No (t) is the point process counting the jumps of Wo (t).

Proof - The proof is an application of Varadhan’s Lemma. Several

superexponential estimates are required. Since all technicalities are

straightforward adaptations of ideas in [3, 4], we only sketch the proof,
and refer there for details.

Step 1. - Proof of the LDP for PM o pn 1: This comes from the fact that
P~ is a Gibbs measure on 

Step 2. - A perturbation argument. Let

By the same proof as in [3], Lemma 7.3 and [4] Corollary 4.4, we have
that, for every sequence An E 0n

Then note that Zn is of the form Zn (cv) = The function

F here is not continuous, due to the unboundedness of the stochastic integral

fo log Nevertheless, by the approximation argument in [3],
Lemma 7.8, one can exploit (5.3) and Varadhan’s Lemma to show that the

sequence P’ o satisfies a nd-LDP with rate function

Vol. 33, n° 6-1997.
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that proves (5.1 ). To show (5.2) it is enough to observe that by the same
proof as in [4], Proposition 4.7, it is shown that for every p E (in
particular for p = ~c) and for every Q E with  oo

For technical reasons, we will use a slightly stronger version of

Assumption Al.

AF. Same as Al plus either one of the following conditions:
i) The system is reversible w.r.t. v;

ii) v is Gibbsian for a finite range potential.

We do not believe that these new conditions are necessary. As will be

seen later, to avoid the use of Al’ we would need to prove Theorem 1

for a system with nonlocal rates (but with dependence on distant spins
decaying sufficiently fast). This should be possible, but we prefer to avoid
this issue here.

Now define

where IItQ is the projection of Q at time t. The function Vv plays the role
of the quasipotential in the Freidlin-Wentzell theory [8].

PROPOSITION 5. - Assume AI’. Then, for every ~c E 

Moreover, assuming h( |03BD)  ~, we have that a measure Q with IITQ = 
is such that = if and only if ~c(d~)~‘~ ) = 0, where
P~ is the regular conditional probability distribution (r. c.p. d. ) of Pv w. r. t.

~~~(T)~.

Proo, f : - The inequality > is clear, since relative entropy
decreases under projection. To prove the reverse inequality we first assume
that the system is reversible (AI’ 

‘ i)). By applying time reversal, we only

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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need to show that, under the condition IIoQ = f~,, = is

equivalent to = 0. Notice that

By (5.4)

Moreover

Letting n - oo in (5.5), using (5.6), (5.7), and IIoQ = /~, we get

and the conclusion follows.

We now turn to the nonreversible case (AF ii)). Denote by R[.] the time
reversal operator acting on Since the relative entropy is invariant
under time reversal

By a result in [11], R[PV] is a spin-flip system with "local" spin-flip rates
(the fact that the potential in finite range is used here). Thus Theorem 1 holds
if we replace Pv by and the argument above can be repeated..

6. THE HITTING PATH

Consider an arbitrary fixed time T. We want to characterize the typical
paths in the time window [Tn - T, Tn] . For K C measurable, we
introduce the stopping times referring to the path space

Vol. 33, n° 6-1997.
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which will be more convenient for the proof that follows. It is clear that

the arguments used for Propositions 1 and 2 can be repeated to obtain
that, under Al and A2

for all E > 0. Now, for K = AT = {Q E IIT Q E A ~, we write
Tn for Note that f n = Tn on {(j : Tn ( W) > T}. Note also that, by

2014 2014 0 0

Proposition 5, HT(AT) = and HT(AT) = h(A v ). From now on,
_ 0

besides > 0, we shall assume h(A Iv)  00.

In what follows, for E > 0, we let

{Q E P E AT with H/Jl (P)  h(A and d(Q, P)  e) ,

where d( . , .) is the Prohorov metric. This is the e-neighborhood of the set
of the elements in AT whose specific relative entropy with respect to pv

o

is not much larger that ..

PROPOSITION 6. - Under Al’ and A3, for every E > 0

Proof. - Define

Note that AT B ~4~ is closed, and

Thus, by (6.1)

But we also have

The conclusion now follows from (6.2), (6.3) and Proposition 1, after

having observed that

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



741OCCURRENCE OF RARE EVENTS IN ERGODIC INTERACTING SPIN SYSTEMS

Under some regularity of the rare set A, a better description of the hitting
path can be given.

PROPOSITION 7. - Suppose A is a continuity set for h, i.e. 
o

h(A v ) . Define

and let MT be the E-neighborhood of MT in Prohorov metric. Then, for
every E > 0

The proof of Proposition 7 is an easy application of Propositions 5 and 6.

Example 1. - We illustrate here Proposition 7 in a simple example.
Suppose d = 1, and that the system has rates c(.) - 1 (independent spin
flips). The system is reversible with respect to the symmetric Bernoulli
measure v. Let

where 0  0~  1. Note that = 0, and that A is closed. In what
follows we let ,~,~ be the ferromagnetic nearest neighbor Ising measure with
inverse temperature /?, where (3 is chosen so that = a. Note

that ~c~ is unique, since in one dimension there is no phase transition for
finite range Gibbs measures.

Fact 1. - ~c~ is the unique element of A satisfying = 

This follows from the following standard facts. Let T be the tail a-field
in S. Then it is known that, for every G 

and in L1 (~c), where the pressure, p(/3), is a continuous function

of /?. Thus, for , E A,

Vol. 33, n° 6-1997.
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Moreover

When n goes to infinity in the above equality we get that h (~c ~ v) =
+ p (,C~) if and only if h (,~ ~ ~c,~ ) = 0. Due to the absence of phase

transition, this is equivalent to , = ’{3’ To show that A is a continuity set,
observe that the /3 for which = a is an increasing continuous
function of 0152, and so h(,~,~ ~v) is a continuous function of 0152.

Fact 2. - Recall that R is the time reversal action on 

To show (6.4), observe that, using the notations in Proposition 7,
M = ~ ~c,~ ~ and MT = ~ R [P~‘a ~ ~, where, for this last equality, we use
the fact that is a finite range, one dimensional Gibbs field. Thus,
all we have to show is that + Tn - T ) ) ~ goes to zero

exponentially fast in n. By examining the argument leading to Proposition 7,
it is easy to show that such exponential convergence is implied by

To show this, first observe that the infimum in (6.5) is attained at some

Q* E AT n By (5.8)

So (6.5) follows from the fact that h(Q* > 0.

Fact 3

This follows immediately from Fact 2. In particular, we can compute the
path described by ) ~0 1 close to the hitting time Tn. In
fact, by (6.6) and easy calculations

Annales de l ’lnstitut Henri Poincare - Probabilit]és et Statistiques
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7. SHARP ASYMPTOTICS FOR INDEPENDENT SPIN FLIPS

We consider a one dimensional non interacting system with flip rates 1.

Also for convenience, our spin variable ~ has values in {0,1}. Define

~iAn will be often denoted by 8A if the indices are not important. We think
of l as [pn], for p > 1 / 2. Let Tn = E An). The connection
with the formalism of the previous section is obvious. Indeed, the set A
of Section 3 is

Our main result is

PROPOSITION 8. - There are two positive constants a and b such that

for all n > 1.

It is easy to see that A is a continuity set of the specific relative entropy,
thus by Propositions 1 and 2 we already know that

however, we see by Proposition 8 and Estimate 1 below that

The proof will require several lemmas, but first we introduce a key quantity:
the number of excursions into An during the time [0, t]

where {Ji : : i = 1,...,n} are independent Poisson processes with

intensity 1. Also, define Tn(t) = 

Vol. 33, n° 6-1997.
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LEMMA 3. - For any t > 0

LEMMA 4. - For any 6 in (0, 1)

As a corollary of Lemma 4 (see [FGL])

Proof of Proposition 8. - We have seen in Section 3 that if ~3n is defined
by

Now, v(An) and can be made arbitrarily small as n goes to infinity.
It follows from Lemma 1 that there is to such that

or in other words Tn (to )  {3n. Now inequality (7.3) means that for ti
small enough

On the other hand for any cx > 0, lim v(Tn > = e-a so for n large
enough and

This means that

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Proof of Lemma 3. - We rewrite t] in terms of a mean 0 martingale
Mt

Now using the stationarity of X,

Now the result follows from the bound v( Tn  t)  t~ .

Proof of Lemma 4. - First define

From equation (7.2) and Cauchy’ s inequality

Now, Ev Mt = so that only the middle term has to be evaluated.
The middle term can be decomposed as follows

where ç1 E E ~~2,~-1. ~ ~ Ar,,-2,l-2 and ç4 E An-3,l-2.
The first term in the last sum corresponds to configurations where both i

and j make an even number of flips, in the second they both make an odd

Vol. 33, n 6-1997.
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number of flips, while in the last only one makes an odd number of flips.
The last term concerns all pairs (7~, ç) E x such that Ty(~) ~ ~(z), in
which case there is necessarily a site x such that T/(j) +~(7:) _ ç( i) + ç(x).

It is easy to see that we only need for ç E A~,1

It is then enough to show that the derivative in t of (7.6) is bounded

On the other hand, for small s, say s = with 1 > 8 > 0,
we can use the trivial bound pu (ç,  1 and then

thus, integrating a second time up to ts

PROPOSITION 9. - For ç E and s > (nv(~A))1-s with b E (0, 1)

Proof. - We distinguish the configurations of An,l according to the

number of mismatches, say 2k, with ~. It is clear that

The first task is the evaluation of

By using that 1 = q(u) + p(u) and expanding (1 - p(n))~~

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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We start by integrating

and XJ is the remaining term. Terms with superscript i in XJ , contributes
to an amount that we will denote Xn,2~. It is easy to see that

Once the alternating series ~lYn,2~, k = 0,..., n - l ~ are bounded, we will
provide the following estimates

To this very effect, we will need the following estimate.

LEMMA 5. - If l = ~pn~, with p > 1 /2 then for n large

Proof - Define

then

Vol. 33, n° 6-1997.
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A simple calculation shows that

decreases with k, thus

So we have seen that and the conclusion follows because
ao = 1 > 2al and

Remark 2. - We have seen that the ak are bounded by a geometric series.
This implies that

The following estimate is a simple consequence of Stirling formula

Estimate 1.

Estimate 2. - The contribution of X~ to the left hand side of (7.7) goes
to 0 as n goes to infinity.

Proof. - We take care of the last term of (7.9). For this term we will
have a strong estimate using absolute values.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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and

Now, because of estimate 1, we see that for t > (nv(~A))1-s, this term
goes to 0..

Estimate 3:

where we have called

It will convenient to introduce

Indeed, another way of writing Lemma 5 is

The obvious fact U2k,k  0 implies that

We want to see that

actually, this ratio decreases as i increases, so we only need to check it

for i = n - 2k - 2, that is

Vol. 33, n° 6-1997.
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with E = 1 / (2k + 4). Now, to evaluate the last term of the series, note that
2~2~+1,~ = Thus, we obtain

As a consequence of Lemma 5

Estimate 4. - The contribution of X~ to Xn,k is exactly Tn(s)/2n. So
we need to see that

which is obvious..
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