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ABSTRACT. - We obtain a probabilistic interpretation for systems of
second order nonlinear parabolic partial differential equations by using
a backward stochastic differential equation associated to a diffusion-
transmutation process.
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RESUME. - Nous obtenons une formule probabiliste pour la solution
de viscosite d’un systeme d’équations aux derivees partielles paraboliques
semilineaires, a l’aide d’une equation differentielle stochastique retrograde
couplee a un processus de diffusion-transmutation. La nouveaute de ce
travail tient a ce que I’ opérateur linéaire du second ordre est different d’ une
ligne a l’autre du systeme d’equations aux derivees partielles.
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1. INTRODUCTION

The well-known Feynman-Kac formula (see Kac [8]) expresses the

solution of a large class of linear second order partial differrential equations
of elliptic and parabolic type as the expectation of a functional of a diffusion
process. Until recently, there existed three versions of the Feynman-Kac
formula for nonlinear PDEs. The first one identifies the value function

of an optimal stochastic control problem for a diffusion process with the
solution of a Hamilton-Jacobi-Bellman equation, see e.g. Fleming-Soner [5].
The second relates a "nonlinear diffusion process", where the evolution of
each trajectory depends not only on the current position but also on the
probability law of that position (i.e. on the other trajectories), to the solution
of a nonlinear PDE. This topics was initiated by McKean [9] and plays
an essential role in the probabilistic approach to the Boltzman equation,
see Sznitman [19]. The third one relates the law of a branching-diffusion
process - or of a superprocess - with the solution of a semilinear equation,
see e.g. Dynkin [4] for the case of superprocesses.
A new probabilistic approach to systems of semilinear PDEs has been

invented recently, based on the notion of "backward stochastic differential
equation" (which consists in fact rather in an inverse problem for a

forward stochastic differential equation), see Peng [16], Pardoux-Peng [14],
Pardoux [12]. So far, those systems of semilinear PDEs had the same linear
second order operator appearing on each line. The aim of this paper is
to treat the case of systems where the equation is completely different
on each line. This is done by coupling the diffusion process with a so-
called "transmutation process" which jumps from one state to another, thus
modifying the dynamics of the diffusion. This idea seems to be originally
due to Milstein [10] in the case of systems of linear PDEs.

Note that the results of this paper have already been exploited by one of
the authors, see Pradeilles [ 17], in order to study the propagation of fronts
in systems of reaction-diffusion equations.
The paper is organized as follows. In section 2, we introduce a class of

backward stochastic differential equations with respect to both a Brownian
motion and a finite sequence of Poisson processes. Some properties of
the solution are discussed. Section 3 is devoted to the proof of a formula
relating the components Z and Y of the solution of the BSDE. In section 4,
we obtain a stochastic interpretation for the viscosity solution of a system
of nonlinear parabolic partial differential equations by using the result of
section 2 and a comparison theorem. Finally, we prove the uniqueness of the

viscosity solution of our system of nonlinear parabolic partial differential
equations in section 5.
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2. BACKWARD STOCHASTIC DIFFERENTIAL EQUATION

Let k &#x3E; 2 be an integer and K = {1,2,..., l~ ~ . Let bi E 
ai E x IRd; IRd x E K. We define b E C’(j!R+ x JRd x K ; JRd)
and a E x JRd x K ; JRd x by :

We fix a terminal time T &#x3E; 0. For each t E [0, T], we define the following
differential operators Lt, Lt by:

where i E E C2(IRd).
For each i E K, we are given f e C(IR+ x IRd x IRk x E 

Throughout the paper, we assume that there exist K, p &#x3E; 0 such that for

all i E K ; (t, x) E [0, T] x IRd; u, u’ E z, z’ E IRd,

Let ( SZ, .~’, (.~’t ) t &#x3E; o , P ) be a right continous and complete stochastic

basis. We are given:
- a d-dimensional standard Wiener process which is a

Ft-martingale;
- a Poisson random measure N, independent on x L,

where L = K 2014 {~} is the set of marks equipped with the field ,C of all
subsets of L, such that M( ~0, t~ x A) = N( ~0, t~ x A) - 
is a Ft-martingale for all A G L and some fixed A &#x3E; 0.

Let P denote the a-algebra of 0t-predictable subsets of 0 x [0, T]. Now
let us define some spaces of processes. We denote by M2 the set of one
dimensional 0t-adapted processes {~ : 0  t  T} such that

Vol. 33, n° 4-1997.
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Let S2 denote the set of 0t-adapted cadlag one-dimensional processes
{~,0  t  T} such that

Let [L~(7~)]~ be the set of 0t-progressively mesurable d-dimensional

processes {Zt : 0  T} such that

By G)~k-1 we denote the set of mappings H : !1 x [0, T] x L -
which are ~ mesurable and such that

Finally, we define 132 = ~Sz x ~L2(7~)~~ x [L~ 0 G)~x-1.

Ns(l) = N({0, s] x {L}) and Ms(l) = As. We define a Markov

process by

Let s E [t, T~ ~ the unique strong solution of the following SDE:

We notice that (Xs~~~n, is a Markov process.
We define f2 E x lRd x lR x ~?/-’~ x ~) by

where

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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It is easy to see that

for all (t , ~) E [0, T] x IRd, where

Now we claim the

PROPOSITION 2.1. - Under the conditions (?-~ 1 ), (H2) and (H3), for each
(t, x, n) E [0, T] x IRd x K, the following BSDE:

where

admits a unique strong solution E ;~2 and un (t, x) _
deterministic function on [0, T] x ~~.

Proof. - For all n E K, it is easy to see that f n is a Lipschitz function
since f n is a Lipschitz function.
So we only need to note that the BSDE (3) is a special case of the class

of B SDEs considered in [1]..
Now we prove some technical lemmas which will be useful in what

follows.

LEMMA 2.1. - un grows at most polynomialy in x.

Proof. - Using Ito’s formula applied to we obtain

Vol. 33, n° 4-1997.
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Now we notice that  K’(1 + for all p &#x3E; 1, g has
polynomial growth and /(t, x, y, h, z) has polynomial growth with respect
to x and is a Lipchitz function with respect to y, h, z. So we deduce, for
some c, p &#x3E; 0,

and  e( 1 + Thus we get

which yields, from Gronwall’ s lemma,  + for all

s E [t, T] . And we deduce finally x)~ - S .K’(1 + 
A immediate consequence of this lemma and proposition 2.1 is the

LEMMA 2.2. - Define u .- ..., For all (t, x, n, l) E [0 , T] x

Proof. - The identification of Y comes from the uniqueness of the
solution of our BSDE (3):

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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Now we verify the identification of H. Let

We first use the equation (3) and then the representation of Y in terms
of u and get

Hence, E (HS(l) - = 0 which implies that

Then, we have the second equality. Using the two previous equalities and
the definition of f , we get the third one..
The last lemma establishes the continuity of the function Un (t, x) in (t, x).
LEMMA 2.3. - un (t, x) is continuous if f and g are continuous.

Proof. - We fix (t, x, n, r’ ) E [0, T] x IRd x K x 1Rd and t’ E [t, (t-f-1) nT~.
For all s E [t’, T], we denote XS = Y: == 

yt’ ,x’,n H = ,x’,n Z = zt’ ,x’,n and
s , s s s ~ s s s ,

We get, from (1),

Vol. 33, n° 4-1997.
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and

which yields, from Gronwall’s lemma,

where K’ &#x3E; 0 can change from line to line. Using again Ito’s formula yields

But we have

where ~(.) and ER(.) are positive functions tending to 0 at 0+. In the
same way,

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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So we can get

which yields,

for all R &#x3E; 1.

Finaly, it is easy to see that is continuous in s E [t, t’~ . So the
function L t" is continuous..

3. THE LINK BETWEEN Z AND Y

In Pardoux-Peng [14], it is shown that Z and Y are connected in the

following sense under appropriate asumptions:

where 8Y is, in some sense, the gradient of with respect to x. In this
section, we extend this result to our case. It is extensively used in Pradeilles
[17] and it is very usefull to get sharp estimates on 

Cl denotes the set of functions of class C 1 which are bounded, together
with their partial derivatives of first order. D : - L2(0 x [0, T], lRd)
denotes the Malliavin derivation operator with respect to the Brownian
motion and

We make the following asumptions: for all i E K and all t E [0, T]
- bz E 

E 

- gi E with partial derivatives which grow at most like a
polynomial function of the variable x at infinity

Vol. 33, n° 4-1997.
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- fi(t, ., ., .) E x IRk x with bounded partial derivatives
with respect to (y, z) and polynomial growth of the partial derivatives with
respect to x.

We have the following classical result:

LEMMA 3.1. - For all (t, x, n) E [0, T] x IRd x K and all s E [t, T],
E (D1~2)d and a version of 0 , s E [t, T~~ is given by:

l) = 0, if e ~ s
ii) s E [0, T~ ~ is the unique solution of

where Ui denotes the i-th column of the matrix u.

Proof. - It is a particular case of a result in [2]..
Let Id be the unity matrix of IRdxd and be the solution of

LEMMA 3.2. - For all (t, x, n) E [0, T] x IRd x K and all t  0  s  T,

Proof. - It is an immediate consequence of the uniqueness of the solution
of the S.D.E. satisfied by 
We are going to follow the technique developped in Pardoux-Peng [14]

in order to obtain the link between Y and Z. We introduce some notations:

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



477SYSTEM OF SEMILINEAR PDEs

PROPOSITION 3.1. - is in ~D1’2~~+d~ and
a version of

is given bv:

the unique solution of

Moreover, t  s  T~ is a version of ~Zs~~~’~ : t  s  T~.

Proof. - Before proving the first part of the proposition, we need two
lemmas. The second one is an extension of a result given in [ 14] .

LEMMA 3.3. - If H E L2(t, T; D1’2) is Fr-predictable, then

and

Proof - Let (Tj )lj be the sequence of times when N jumps after t.

The second term is in D~ and

Vol. 33, n° 4-1997.
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We only need to prove that the first one is in I) 1 e too. By asumption on H,

is defined and is in L2(O). We just have to condition by N to get

We can then conclude because = 0 if Tj  s..

LEMMA 3.4. - Let H E L2(N) and Z E L2(W). If

then

and

Proof. - According to Nualart-Pardoux [ 11 ], we know that, if Z E

~~(t, T; ~Dl’2)d~ then

Using the previous lemma, we can see that property (6) implies ~ E D1,2
and the equality (7). Moreover, if (6) is true, then

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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So, we just have to prove that the set

is dense in = O} with respect to the 11.lh,2
norm. In order to do it, we respectively note S(W) and S(N) the sets of
random variables ~ and ~ defined by:

where ~j’~’ E and ~~’ E E 

T; IRd) and ~i, - - -, hp E L~ (t, T; is the Wiener integral of

zj between t and T and N(hj) is the Stieljes integral of hj with respect
to M between t and T. By definition of D~’~,

is dense in = O} with respect to the 
norm. Moreover, for we have an Ocone’s formula:

and for ~N, we have (cf Jacod [7])

where ~ is J’f-predictable and independant of W . Applying Ito’ s formula
with the following notations

Vol. 33, n° 4-1997.
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yields:

which implies that such ~ belong to H..
Let us go back to the proof of the proposition 3.1. We omit the index

(t, x, n). Let

Then

so that (Z, H) E L2(t, T; (Dl’2)~-1+d), according to the lemma 3.4. We
can then deduce that for all s E [t, T], YS E D 1 ~ 2 and that if

for all s E [t, T], then for all () E [t, s],

So Y E T; Dl2). This result and the fact that (Y, H, Z) is the fixed
point of an appropriate problem in L2(t,T; (D1’2)k+d) with respect to a
!H!i,2,~ norm defined by

where /3 &#x3E; 0 is well choosen, yield to the first part of our proposition.
Now, let us show the second part. For all 0 s], we have

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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hence

With the version we have choosen, this means

Let be the solution of

THEOREM 3.1. - The t  s  T} has a càd-làg version
and for this version, for all s E [t, T],

A particular case is

Proof. - The uniqueness of the solution of equation (5) and the lemma 3.2

imply that for all s E ~t, T] and all 0 E ~t, s]

which allows to say that T} has a cad-lag version.
We just have to remind that T} is a version of

{Z, :~~~T}. *
Vol. 33, n° 4-1997.
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4. A VISCOSITY SOLUTION FOR A PARABOLIC SYSTEM

Let

We are interested in the following system of backward parabolic PDEs:

DEFINITION 4.1. - Let u = ,, u2 , ... , belong to C( [0 , T~ x 
u is said to be a viscosily sub-solution (resp. super-solution) of the
system ( 1 ~ ) if

and for all i E K, (t, x) E (0, T) x E C1 ~2 ( (0, T) x such that

(t, x) is a local minimum (resp. maximum) point of 03C8 - ui, we have

u is said to be a viscosity solution of the system ( 11 ) if u is both a
viscosity sub-solution and a viscosity super-solution of the system (11).

THEOREM 4.1. - Under the conditions (xlj, (?~2j, (H3),the function u
defined by ( 10) is a viscosity solution of the system of backward parabobic
PDEs ( 11 ).

Proof - We show that u is a viscosity sub-solution of ( 11 ). The property
of being a viscosity super-solution can be proved analogously.

Let i E K and (t, x) E ~0, T~ x We suppose that p E C1~2(~0, T~ x
Rd) satisfies p &#x3E; u2 on [0, T] x and x) = uZ(t, xj. We need to
prove that

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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Let us argue by contradiction. We assume that

Define T by

It follows from the last statement of lemma 2.2 that (Ys, Z~) _
s E [t, t + a], is a solution of

In the same way, we define

for all s ~ [t, t + a]. Notice that Yt = f = Applying Itô’s

formula to we obtain

&#x3E; 0 on [t, T] and T &#x3E; t a.s. Then according to the

strong comparison theorem 1.6 in Pardoux [12], Yt which yields a
contradiction..

Vol. 33, n° 4-1997.
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5. UNIQUENESS OF THE VISCOSITY SOLUTION

We consider now the system ( 11 ) of partial differential equations of
parabolic type which we rewrite as

where for each i the second-order differential operator Li takes the form

The functions ai, bi, Ii and gi are supposed to satisfy the assumptions
made above. Moreover, we shall need the following result to be true: for all
R &#x3E; 0, there exists a positive function ~p(.) tending to 0 at 0+ such that

when lul  R, i E K, t E [0, T], z E Then we have:

THEOREM 5.1. - Under the conditions (~-L1), (H2), (H3) and (H4), there
exists at most one viscosity solution u of (12) such that

uniformly for t E [0, T], for some A &#x3E; 0.

In particular, the function (t) 
unique viscosity solution of (12) in the class of solutions which satisfy
(13) 

Remark 5.2. - Notice that, by lemma 2.1, u(t, x) = (yt ,~,1, ~~2
..., has at most polynomial growth at infinity and therefore it
satisfies ( 13).

Proof of theorem ’-5.1. - The result -is a.-particular case. of the -uniqueness
result in Barles, Buckdahn and Pardoux [1]. We give again the proof in the
present particular case for the convenience of the reader.

Let u and v be two viscosity solutions of (12). The proof consists in
two steps. We first show that u - v and v - u are viscosity subsolutions of

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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a partial differential system; then we build a suitable sequence of smooth

supersolutions of this system to show that u - v ~ = 0 in [0, T] x IRd. Here
and below, we denote I the sup norm in 

LEMMA 5.3. - Let u be a subsolution and v a supersolution of ( 12). Then

the function w ~ u - v is a viscosity subsolution of the system

for 1 ~ i where K is the Lipschitz constant of f in (h, g).

Proof. - Let p E C~([0,T] x lRd) and let (to, xo) E (0, T) x IRd be a
strict global maximum point of cp for some i E K.

We introduce the function

where 6:, a are positive parameters which are devoted to tend to zero.
Since (to, xo) is a strict global maximum point of ui - vi - p, by

a classical argument in the theory of viscosity solutions, there exists a

sequence (I, x, 8, y) such that _

(i) (t, x, s, ~) is a global maximum point in ([0, T] x BR)2 where
BR is a ball with a large radius R.

(ii) (t_~ x)~_(s~ ~) - (go, xo) as (~, a) - 0.

(iii) ( x - 2 y ~ 2 , ( t - 2 s ) 2 are bounded and tend to zero 0.

We have dropped above the dependence of t, x, 8 and y in e and a for
the sake of simplicity of notations.

It follows from theorem 8.3 in [3] that there exists X, Y E Sd such that

where

Modifying if necessary by adding terms of the form x ( x ) and x(y)
with supports in BR/2’ we may assume that (t, x, s, y) is a global maximum

Vol. 33, n° 4-1997.
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point of in ([0, T] x Since u and v are respectively sub and
supersolution of (12), we have

and

Of course, we are going to substract these inequalities and we need to
estimate differences between terms of the same type.

It is worth noticing that the X terms we have to add to to have a

global maximum point do not appear in the two inequalities above because
they have a support which is included in BR~2, and since R is large, for
a and e small enough, |x|  R/2 and |y|  R/2.

First, if (el ... ed) is an orthonormal basis of 

To estimate this sum, we use the matrix inequality above together with
the Lipschitz continuity of cr. We get

for some constant C. Then

because of the Lipschitz continuity of bz. 
’

Finally, we consider the difference between the nonlinear terms

The first term in the right-hand side comes from the continuity of ~2 in
t : p~,5(s) - 0 when s - 0+ for fixed E and 8. The second term comes

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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from (H4) : we have denoted by ~ the modulus 7/p which appears in this

assumption for R large enough. The two last terms come from the Lipschitz
continuity of f i w.r.t. the two last variables.

We notice that

because of the Lipschitz continuity of az and that

Now we substract the viscosity inequalities for u and v : thanks to the
above estimates, we can write the obtained inequality in the following way

where we have gathered in the term, all the term oi the term

’ -y|2 ~2 and |x-y| ; 03C9(~, o;) ~ 0 when (c, 03B1) tends to 0. To conclude we

first let a go to zero : since |t - s|2 03B12 is bounded, |t-s| ~ 0 and we get rid of 
.

the first term of the right-hancfside above. Then we let 03B4 go to zero keeping
c fixed and finally we let c -~ 0. Since (~), (~) -~ we obtain :

and therefore w is a subsolution of the desired equation by lemma 5.3..
Now we are going to build suitable smooth supersolutions for the

equation (14).

LEMMA 5.4. - For any A &#x3E; 0, there exists Ci &#x3E; 0 such that the function

where

satisfies

for 1  i  1~ where t1 = T - A/C1.

Vol. 33, n° 4-1997.
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Proof. - We first give estimates on the first and second derivatives of
easy computations yield

and

These estimates imply that, if t E T],

and, in the same way

Because of our choice of tl, the above estimates do not depend on Ci.
Since 03C3i and bi grow at most linearly at infinity, we have

for some constant C. Since ’ljJ (x) 2:: 1 in IRd, it is clear enough that for
Ci large enough the quantity in the brackets is positive and the proof is
complete..
To conclude the proof, we are going to show that w = u - v satisfies

for any a &#x3E; 0. Then we will let a tend to zero.
To prove this inequality, we first remark that because of (13)

uniformly for t E [0, T], for some A &#x3E; 0. This implies, in particular, that
2014 a x is bounded from above in .ft1, T] x lRd for any 1 S i  1~ and that

is achieved at some point (to, xo) and for some io.
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We first remark that, since ) - ) is the sup norm in we have

and We may assume w.l.o.g. that 

otherwise we are done.

Then two cases: either w2o (to, xo) &#x3E; 0 or wio (to, xo)  0. We treat the

first case, the second one is treated in a similar way since 
the roles of u

and v are symmetric.
From the maximum point property, we deduce that

and this inequality can be interpreted as the property for the function 

to have a global maximum point at (to, xo) where

Since w is a viscosity subsolution of (14), if to E ~tl , T[, we have

But the left-hand side of this inequality is nothing but

since so, by lemma 5.4, we have a contradiction.

Therefore to = T and since Iw(T, x) = 0, we have

Letting a tend to zero, we obtain

Applying successively the same argument on the intervals [t2 , tl~ where

t2 = (tl - A/Ci)+ and then, if t2 &#x3E; 0 on ~3. t2~ where t3 = (t2 - A/Ci)+
... etc. We finally obtain that

and the p roof is complete..
Vol. 33, n° 4-1997.
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