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ABSTRACT. - The aim of this paper is to relate estimates on the hitting
times of closed sets by a Markov process and a special class of inequalities
involving the Lp (p  1) norm of a function and its Dirichlet norm. These
inequalities are weaker than the usual spectral gap inequality. In particular
they hold for diffusion processes in IRn when the potential decreases
polynomially. We derive uniform bounds for the moments of the hitting
times. We also obtain estimates of the difference between the law of the

hitting time of a "small" set and an exponential law.

RESUME. - L’ objet de cet article est d’ étudier les liens entre, d’ une part,
des estimées des temps d’atteinte d’ensembles fermés par un processus de
Markov et, d’ autre part, une nouvelle famille d’ inegalites liant la norme Lp
(p  1 ) d’une fonction et la forme de Dirichlet. Ces inégalités sont plus
générales que Finegalite de trou spectral. En particulier elles sont vérifiées
pour une diffusion dans IRn dont le potentiel décroit polynomialement.
Nous obtenons des majorations uniformes des petits moments des temps
d’atteinte. Notre méthode permet également d’estimer la distance entre la
loi du temps d’ atteinte d’un "petit" ensemble et une loi exponentielle.

A.M.S. Classifications : 60 J 25, 60 J 60.
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INTRODUCTION

Diffusions in mn

Let w be a smooth function from .lRn to Also assume that

~’ w(x)dx = 1. Let Xt be the Markov process solution of the stochastic
differential equation:

The probability measure d/1(x) = w(x)dx is invariant and reversible for X.
For a closed set A, let TA = inf{ t &#x3E; 0 s . t . Xt E A} be the hitting

time of A.

In this paper we shall use functional inequalities to study the links

between, on one hand, estimates of ~.~ and, on the other hand, the behaviour
of w at infinity.

For p &#x3E; 0, let

and

where H = {u E Co s.t. u &#x3E; 0 and = 0] 2: ~}.
Note that A(p) is non-negative but might be 0. Also ~1(p)  A ( p’ ) whenever
p &#x3E; p’. A(2) is the first non vanishing eigenvalue of the generator of X
in 

Our main results are the following:
For any closed set A,

(see part III)
Let 0  p  1. If A(p) &#x3E; 0, then
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439HITTING TIMES

= the norm of

F. (See part III).
It is interesting to note that some converse to these inequalities is also

true: if the first inequality is satisfied for some constant instead of A( 1),
then is non zero. Similarly, if the second inequality holds for some
p G]0~ 1[, then A(p’) is non zero for all p’  p.
Let us consider the case w(x) = (x~-~ (/3 &#x3E; n). It is easy to see that

A(2) = A(2) = 0 for any /3. But we shall prove that, for 13 &#x3E; n, there

exists a p e]0,1] s.t. 0. In particular, for 13 &#x3E; 2 + n, then A(1) # 0.
(See part VII). Therefore the quantities A(p), 0  p  1 seem to be quite
well adapted to deal with slowly decreasing potentials.
These results do not depend on the fact that X is a diffusion in Since

it is more natural, we shall deal with general Markov processes. Note that
we shall also consider non-symmetric processes.

General set-up

Let E be a locally compact separable Hausdorff space. Let  be a Radon
measure on E. We assume that p is a probability.

Let be a regular Dirichlet form and its domain.
(By regular Dirichlet form we mean that the symmetric part of ?

is a symmetric Dirichlet form in the sense of Fukushima. The normal
contractions operate on ?. We also assume that normal contractions operate
on the adjoint form ?(i~ v) = ?(~ u). We assume that the following sector
condition holds: ~1 (u, v)2  M2~1 (u, u)~1 (v, v), where, for t &#x3E; 0, 
is the bilinear form v) = ~(u, v) +t u03BDd . Since the symmetric part
of E1 is closed, the set F endowed with the scalar product associated to the
symmetric part of £1 is a Hilbert space. The sector condition implies that,
for any t &#x3E; 0, the bilinear form (St , ~) is continuous on ~’. By regularity,
we mean that the set .~’ n Co is dense in .~ and in Co, where Co is the

space of continuous functions with compact support.)
Also assume that 1 E (1 is the constant function whose value is 1)

and = ?(~ 1) = 0 for any u E .~’.

By the general theory of Dirichlet forms , there exists a Markov process,
in fact a Hunt process, (Xt, t &#x3E; E E), associated to (~, ~). Then

where L is the generator of X and u, v are in the
L2 domain of L. Also when t tends to

0, where Pt is the L2 semi-group of X and u, v E .~’.
Let Ex be the expectation w.r.t. Px, the law of X when the initial law is

a Dirac mass at point x. Also let E~ = f ExdjL.

Vol. 33, n° 4-1997.
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Since we have assumed = 0, the process X is in fact strictly
markovian. The probability measure tc is invariant under Pt i.e. when the

law of Xo is tc, then, for any t &#x3E; 0, the law of Xt is also p.
For any closed subset of E, A, and any t &#x3E; 0, let hf be the t-

potential of A. By definition hA E F satisfies = 0 for any
quasi-continuous function u E F s.t. u = 0 quasi-everywhere on A and
hf = 1 quasi-everywhere on A.

It is known that it is possible to identify hf with the Laplace transform
of the hitting time of A by X : let TA = inf{ t &#x3E; 0 s . t . X t E A ~ , then

= 

These results are part of the classical theory of Dirichlet forms, analytic
potential theory and its probabilistic counterpart. They can be found in the
book of Fukushima 1980 [5] for the symmetric case, and in the paper of
S. Carrillo Menendez 1975 [4] for the general case.
The assumptions we have just described are sufficient to carry out our

program but they are far from necessary. In particular our results still hold
if E is not locally compact, provided it is a topological space and (~, fi)
satisfies some regularity condition (see Ma-Rockner, 1991 [6]). It is also

possible to suppress the assumption of regularity for (~, In this latter

case, one has to consider Borel sets instead of closed sets in parts III-IV.

Spectral gap inequalities and hitting times

For p &#x3E; 0, let

Also let

where the inf is taken on functions u s.t. u &#x3E; 0 and = 0) &#x3E; 1/2.
Note that A(p) is non-negative but might be 0. The inequality A(p) &#x3E; 0

gets stronger when p increases. The inequality A(2) &#x3E; 0 is the well known

"spectral gap inequality". It is easy to prove that for any t &#x3E; 0, any u E L2,
IIPtu -  
Here we shall be interested in the implications of the weaker inequality

A(p) &#x3E; 0 for 0  p  1.

It is not difficult to show that if A(p) &#x3E; 0, for some p e]0,1], then
Pt converges to equilibrium at an exponential speed in Li i.e. for any
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441HITTING TIMES

where c(p) is a strictly positive universal constant. You can replace A by
A in this inequality. (See Theorem 2).
The aim of this paper is to express the inequality A(p) &#x3E; 0 in terms of

hitting times. Our main result deals with the case p = 1: i

MAIN THEOREM

(i) For any closed set A,

(ii) Assume that the Dirichlet form £ is symmetric, or, more generally,
that it satisfies the strong sector condition : there exists a constant M s.t.
for any u, v E .F, ~E(u, v)~ ]  M E(u)E(v), then there exists a constant
C that only depends on M s.t

The same estimates hold for A instead of A in (i) and (ii).
(See Proposition 4 for (i) and see the end of part III for (ii)).
The proof of this result is based on estimates of in Theorems 3 and

6, we shall prove that, for any p E]O, 1], any t &#x3E; 0 and any closed set A

and

where C(p) is a universal constant that only depends on p. Here also one
can replace A by A.
From the inequality (0.1) it is possible to deduce uniform bounds for the

moments of TA let = f be the law of X at equilibrium. Let
F be a measurable function = &#x3E; be

Vol. 33, n° 4-1997.
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the norm of F. Fr.om (0.1) we deduce that, if A(p) &#x3E; 0 or

A(p) &#x3E; 0 for some p e]0,1], then

(See Proposition 3).
Some converse to inequality (0.1) is true: if we assume that is

symmetric, i.e. that X is reversible, or, more generally, if we assume that
(~, .~") satisfies the strong sector condition, and if there exists a constant c
s.t. for any t &#x3E; 0 and any closed subset A,

then &#x3E; 0 for any p’  p. (See Theorems 1 and 4). It is not clear

wether you can replace A by A in this last statement.

The unpredictability property

Roughly speaking, we say the unpredictability property (U.P) holds if
the law of the hitting time of a "small" subset of E by Xt t is close to

an exponential law. This terminology is justified by the loss of memory
property of the exponential law. Proving the unpredictability property is

the key step in the so-called "pathwise approach" of metastability (see
Cassandro et al., 1984 [3]).
We shall investigate the connections between the unpredictability property

and generalized spectral gap inequalities.
Let A be a closed subset of E. If there exists a t &#x3E; 0 s.t. J = 1/2,

we denote by T(A) the (unique) solution of the equation ~ = 1 /2.
If not let T(A) = oo. Note that if  1/2 and T~  --f-oo 

then T(A)  +00. In a sense, T(A) measures the size of A. Let us define
the capacity of A by As a consequence of Hölder’s

inequality, we have T(A) log(1/cap(A))  log 2, provided that T(A)  1

or cap(A)  1/2. Hence if cap(An)-0 then 
The aim of this section is to estimate the difference between the law of

TA and an exponential law in terms of T(A) and A(p).
As a consequence of the inequality (0.2), we have the following estimate:

for any p 1]. (See Proposition 6). (0.4) also holds for A instead of A.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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In sections V and VI, we shall discuss the links between our generalized
spectral gap inequalities, the usual spectral gap inequality A(2) &#x3E; 0, and

log-Sobolev inequalities (Section V) and the link between the spectral gap
inequality and estimates of the hitting times (Section VI). The last section is
devoted to the examples of diffusions in IRn we discussed at the beginning
of this introduction. The paper is organized as follows:

I. Generalized spectral gap inequalities
II. Estimates of the semi-group
III. Estimates of the moments of the hitting times
IV. Estimates of the law of the hitting times of small sets: the

unpredictability property
V. Generalized spectral gap and log-Sobolev inequalities
VI. The spectral gap inequality and hittting times
VII. Diffusions in 7R"

Notations

In the paper, C(a), C(a, ~)... are universal constants that only
depend on the parameters a, r~, a and ~3... They do not depend on the
choice of 

I. GENERALIZED SPECTRAL GAP INEQUALITIES

For p ~ 1, we cannot compare A(p) and A(p). To. avoid this

difficulty we introduce two families of "spectral gap constants" and we
prove that there exist two constants, K(a, and IC(a, +00), S.t.

A(~/(1+~))  andA(a/(1-~--a))  1C(a,-I-oo) (Proposition 1)
and besides the two constants 7C(a, -I-oo) and K(a, +(0) only differ

by an universal constant (Proposition 2). Once this is done, it will be
sufficient for our purposes to prove estimates on the hitting times in terms
of IC(a, 

In Theorem 1, we prove that, if K(a,+oo) &#x3E; 0 then + /?)) &#x3E; 0,
for any 03B2  a. This result will play an important role when we want to
estimate the spectral gap constants in terms of hitting times.

In the sequel are parameters satisfying:
a +00], p 00, +00], r E +00]

and 1/p + 1/g = 1, a = Note that q e] - oo, 0[ when p 1 [.
For u E L log L, let El (u) 

Vol. 33, n° 4-1997.
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We define the following constants:

Let x be the space of non-negative measurable functions u s.t. =

0) &#x3E; 1/2.

Note that when y = -1, then p = + a). Besides

and

Also

and

In the definitions of K and K, one can replace fi by JF n Co.
Now let p’, q’, r~’ be chosen as p, q, q and s.t. p’ &#x3E; p. As an immediate

corollary of Holder’s inequality, we get the

PROPOSITION 1. - Assume that p’ &#x3E; p and a = r~’q’. Then

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Proof. - The Proposition is a corollary of Holder’s inequality. With the
notations of the Proposition, we have

And if p  1  p’,

(Let p or p’ tend to 1 in ( 1.1 )).
(v) is a consequence of (i), and (vi) is a consequence of (iii).

The link between J’C and K is described in the following Proposition.

PROPOSITION 2. - Assume that 1  p  +00 and 0  77  +00. Then

Proof. - Note that, since p &#x3E; 1 and a &#x3E; 0, then ~ &#x3E; 0.

To prove (i), let u ~ F n Lp be s,t, J* ud  = 0. Then either u+ e H n .F
or ~’ e ~ U JF. Assume that ~+ e ~ n JF. Then ~(~+)  ~(~), since
u+ is a normal contraction of i6. Obviously, ~u+~p  ~u~p. Besides
~u~1 = 2u+d .
Thus,

To prove (ii), let u ~ F n = {a; s.t. ux&#x3E; = 0}. By definition of
~-l, ~f(~) &#x3E; 1/2.

Let M = Then d  = 0 and ~() = ~(u), ~~1 &#x3E;
&#x3E; Besides +  2~u~p.

Thus 
." _ n ,,

and (ii) is proved.
Let u E F and J udl1 = 0. Assume that u+ E H. In order to establish

(iii), it is clearly sufficient to prove that

Vol. 33, n° 4-1997.
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But, for any p &#x3E; 1&#x3E; J = f + .f &#x3E; f +

(J == J + (J Therefore, &#x3E;

lIu+ 111 + Dividing this last inequality by p,
and letting p tend to 1, we get (1.3).

(iv) is a consequence of (i) and (ii) for q == +00.

Proposition 1 (iii) implies that K( -1, :::; +(0). We shall now
describe a converse to that inequality.

THEOREM 1. - Let a +00[. For any /3  + 0152), there exists

a constant, C( 0152, /3), s.t.

Proof - The proof is based on the ideas of Bakry et al, 1995 [2].
We first have to introduce the scale of Lorentz norms: for a measurable

function u, and a, b let

be the Lorentz norm of u.

Observe that = and that

Let u E F n 1t. For k E ~, define (u(x) - 2~)+ A 2k. Then
uk E 1t n fi.

By definition of 1C,

~uk~1 ~ 2k (u &#x3E; 2k+l) and  2k. Therefore

Corollary 2.3. of Bakry et al., 1995 [2] implies that 6~(~c).
Hence

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques



447HITTING TIMES

Using (1.4), we get that

Proof. - Let ~(t) _ &#x3E; t). ~ is decreasing and ~(0) = 1.

Choose T = (~ s~(s)2~~ds)1 ~2 to get the result.

II. ESTIMATES OF THE SEMI-GROUP

Let (Pt, t &#x3E; 0) be the L2 semi-group associated to (~, ~’).
Our aim is to prove that if one’ of the constants 1C or fë is non zero,

then the process X converges exponentially quickly to equilibrium. Owing
to Propositions 1, 2 and Theorem 1, it is sufficient to consider the case

/C(~2) ~ 0.

THEOREM 2. - For any ri +oo], there exists a constant, c(ri) &#x3E; 0 s.t.

for any t &#x3E; 0 and any function u E L2,

Vol. 33, n° 4-1997.
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This inequality also holds for A(2~/(l + 2~)) or A(2q / ( 1 + 2r~)) instead
of 2).
We break the proof into two Lemmas:

LEMMA 2. - Let ~ G]0, +oo[. For any function u E F s.t. f ud  = 0

1

~roof. - Note that for any x, ~ &#x3E; 0, x 1~ ~ 1+~ _

( 1~’~ x) 1+~ ( ( ~’ )’~ y) 1+~  x -+- 1 ~~’ 1+~ ~. Applying this inequality to
r 1+~ ( +~a&#x3E; Q

x = ~(u)/lC(r~, 2) and y = ~~u~~2, since

we get the Lemma.

LEMMA 3. - Assume that there exist E E [0, 1[ and ~1 &#x3E; 0 s. t. for any
function u E F s. t. f ud  = 0,

Then, for any function u E L2,

Proof. - Let u E J’ s.t. f ud  = 0.
Let u(t) = f |Ptu|2d  and v(t) _ ( f 
Then

So

Besides v(t)  u(t). Therefore

Annales de l’Institut Henri Poincaré - Probabilites et Statistiques
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Applying Gronwall’s Lemma, we get that

Proof of Theorem 2. - If q  then ( +~ ) i 1+n ( 1+~ ) I’+~  1 and

the conclusion of the Theorem follows at once from Lemmas 2 and 3.

If 7? = +oo, then the inequality of Lemma 3 is satisfied for E = 0 and

x = JC( +00).
By Propositions 1 and 2, one can replace 1C(~, 2) by A(2~/(1 + 2r~))

or A(2~/(l + 2~)).

III. ESTIMATES OF THE MOMENTS OF THE HITTING TIMES

Estimates of the potentials

In the next Theorem, we shall prove that the inequality &#x3E; 0

is equivalent to uniform estimates of the t-potentials of sets of p-measure

bigger than 1/2.
Let E e]0,2]. Let I(E) be the best constant in the inequality: for any

t &#x3E; 0, for any closed set A s.t. M( A) &#x3E; 1/2,

In other words I(E) = where the inf is taken on

t &#x3E; 0 and closed sets A s.t. &#x3E; 1/2. Note that I(E) might be 0.
More generally, for a 1], let be the best constant in the

inequality: for any t &#x3E; 0, for any closed set A s.t. &#x3E; a,

THEOREM 3. - For any a +0oo] and a 

This inequality also holds for (03B1/(1 + 03B1)) instead of 03BA(03B1,

Proof. - We first consider the case a = 1/2.
By Proposition 2, it is equivalent to prove the Theorem for IC(cx, 

or lC(a, 
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Let A be a closed set s.t. u(A) &#x3E; 1/2.
Remember that = 0 for any quasi-continuous function u E .F

s.t. u = 0 quasi everywhere on A.
We apply this equality to u = 1 - hf to get

Therefore

Since &#x3E; 1/2, Besides 111 - 1. Hence

Therefore

i.e.

Let us now consider the general case a 1].
Let be the space of non-negative measurable functions u s.t.

= 0) &#x3E; a.

Let u E Ha and let  = u - ud . Then it is easy to see that

= E(u), and Therefore

Let A be a closed set s.t. ~(~4) &#x3E;: a. Then 1 - hf E Ha. We can now
repeat the same argument as for a = 1/2 to prove that

The fact that one can replace +oo) by A(~/(1 + a)) is a consequence
of Proposition 1.

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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In order to prove a converse to Theorem 3, we need a further assumption
on the Dirichlet form (~~): we shall say that the Dirichlet form (S, .~’)
satisfies the strong sector condition with constant M E [1, +oo[ if for

any u, v E ~B

Note that the strong sector condition is fulfilled by symmetric Umcmet

forms with M = 1.

THEOREM 4. - Assume that the strong sector condition holds with constant

M e]0, +oo[. Then, for any a 

Remark. - By Theorem 1, one can replace 1C(a,+oo) by A(p’) in the

inequality of the Theorem, provided that p’  ~/(1 + a).

Proof. Let e = 2o;/(2 + a) and I = 
Let u E H n Co. Let A = {x s.t. u(x) = 0).. Then A is closed and

&#x3E; 1/2. Therefore 1 - hA E H.
From the strong sector condition, we get that

It follows from (3.2) and the definition of I that

On the other hand, since u = 0 on A, == 0 

--t f Besides

Thus

Vol. 33, n° 4-1997.
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Using this last inequality and (3.4) in (3.3), we obtain that for t 

We choose t = I( f to get

i. e. we have proved that

But 2E /(2 - c) = a and, by Proposition 2, ~-oo)  +00oo).
Thus the proof of the Theorem is complete.

Estimates of the moments of the hitting times

From the inequalities of Theorem 4 it is easy to derive an upper bound
on the moments of the hitting times under (P, is the law of the process
X when the initial law is ~.)

Instead of Lp spaces, it is more convenient to work in weak Lp spaces:
for 0  p  +0oo let

be the weak-Lp norm of F.
Remember that for p’  p, there exists a constant, C(p, p’), s.t.

where is the norm

of F.

As a consequence of Theorem 4, we have the

PROPOSITION 3. - For any a E]O, and any closed subset A,

This inequality also holds for + a)) instead of 1C(a, +00).

Proof

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Hence, using Theorem 3, we have

Therefore

Case a = proof of the main theorem

When a = +0o, it is possible to prove a slightly stronger result than
Proposition 3: remember that A(l) = Applying
this definition to the function u - ud , for u E we get

Let A be a closed set. Applying the last inequality to the function
1 - ht E we get,

And since ( f  we have

.

i. e.

Therefore

Letting ~ tend to 0, we get

Vol. 33, n° 4-1997.
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Thus we have proved the

PROPOSITION 4. - For any closed set A,

We can now complete the proof of the main theorem (ii):
Assume that E satisfies the strong sector condition with constant M.
Let L = Since, for any t &#x3E; 0, 1- ~’  

we have 1(2) &#x3E; 1/L.
From Theorem 4 it then follows that &#x3E; C(M)/L, where

C(M) is a constant that only depends on M.
But = A(l). Thus the proof of part (ii) of the main

theorem is complete.

Extensions

We do not assume anymore that the measure  is invariant for the process
X. We also only suppose that (~, .~’) is sub-markovian, i.e. Ptl  1 a.s.

We shall now describe how it is possible to extend our results to this

more general situation. For the sake of simplicity, we only consider the
case a = +00.

For a closed set A, let =  +00].
Then ha E .~’ and equation (3.1 ) now reads: for any t &#x3E; 0,

The statement of Theorem 3 thus becomes:

for any closed set A s.t &#x3E; 1/2, for any t &#x3E; 0,

As in Proposition 4, it is easy to deduce from (3.6) that, for any closed
set A s.t. /-l(A) &#x3E; 1/2,

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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IV. ESTIMATES OF THE LAW OF THE HITTING TIMES

OF SMALL SETS: THE UNPREDICTABILITY PROPERTY

Estimates of the potentials

As in part III, for e E]O, 2], let T(c) be the best constant in the inequality:
for any t &#x3E; 0, for any closed set A,

THEOREM 5. - For any a G]0, +oo],

This inequality also holds for A(a/(l + instead of +oo).

Proof. - We proceed as for Theorem 3: by (3.2),  t. Since
= 0, we have

To replace +oo) by + a)), use Proposition l.

Estimates of the law of the hitting times of small sets

Our aim is to show that if any of the constants /C(o;, + 00) is non zero,
then the unpredictability property holds. This will be an easy consequence
of the next Theorem but we first need a preliminary result: Remember that
the quantity T (A) has been defined in the introduction.

PROPOSITION 5. - Let A be a closed set s. t. T(A)  +00, then, for any
t &#x3E; 0,

Proof - Let X be the dual process of X w.r.t /~. By definition, the
Dirichlet form of X = ~(~, f ) . We shall use a : to denote any
quantity associated to X . Thus hf is the Laplace transform of the hitting
time of A by X.

Vol. 33, n° 4-1997.
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Let A be a closed subset of E. As in the proof of Theorem 3, , for
any t, s &#x3E; 0, and any quasi-continuous function u E 0 s t u = 0 quasieverywhere on A, we have ~~) = = 0. We apply thisequality to u = 1 - hA and u = 1 - hA to get

and

L~=.;~)-~ 
Since is bounded bv 1

So, by 4.2,

I. e.

Hence

11.1.

Let A be a closed subset of E. Applying Theorem 5 to A and T(A), we 1!et

Therefore, using 4.1,

Thus we have proved the

PROPOSITION 6. - Let A be a closed set s. t. T (A)  +0oo. Then

Remark. - By Proposition 1, one can replace +00) by t1 a 1 + a ))in the statement of the Proposition and (4.3).
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V. GENERALIZED SPECTRAL GAP

AND LOG-SOBOLEV INEQUALITIES

Let

The inequality /C(-1, a+1 ) &#x3E; 0 is strictly weaker than the usual spectral

gap inequality A(2) &#x3E; 0. It is interesting to wonder "how much weaker ?".

For u E 0 n L2 log L, let

We say that (~, .~’) satisfies a log-Sobolev inequality with constants c and
m if, for any function u E F, then u E L2 log L and

It is known (see Bakry, 1992 [1]) that log-Sobolev inequalities are equivalent
to contraction properties of the semi-group. For instance, if (S, 0) satisfies

(5 .1 ) then for any t &#x3E; 0 and any function u,  where

q = 1 + exp(4t/c) and m’ = mc(1/2 - 1/q). Note that m’ = 0 if m = 0,
and then Pt is in fact a contraction from L2 to Lq.

Following Bakry, we say that the log-Sobolev inequality (5.1 ) is tight
if m = 0.

It is known that (S, 0) satisfies a tight log-Sobolev inequality if and

only if it satisfies a log-Sobolev inequality and A(2) &#x3E; 0. We shall prove

a slightly more general result:

PROPOSITION 7. - The following five assertions are equivalent:

(i) (S, 0) satisfies a tight log-Sobolev inequality;
(ii) there exists a e]0,+oo] s.t. (S, 0) satisfies a log-Sobolev inequality

and A(a/(l + a)) &#x3E; 0;

(iii) there exists a e]0, s.t. (S, 0) satisfies a log-Sobolev inequality
and &#x3E; 0;

(iv) for any a e]0,+oo], (S, 0) satisfies a log-Sobolev inequality and

A(a/(l + a)) &#x3E; 0;

(v) for any a e]0,+oo], (S, 0) satisfies a log-Sobolev inequality and
&#x3E; 0.
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Besides the following inequality holds:

for any r~.

Proof. - It follows from the remarks at the beginning of this section,
Proposition 1 and Theorem 1 that we only have to prove that if (£, 0)
satisfies (5.1) and if &#x3E; 0 for some a, then A(2) &#x3E; 0. Because
of Theorem 1, we can in fact assume that K(q, 2) &#x3E; 0 for some r~. So that
the proof of the Theorem will be complete if we prove (5.2).
As for 1.2, Holder’s inequality implies that

Using this inequality in (5.1) yields

But if ud  = 0, then

Thus

Taking the inf over functions u s.t. = 0, we get (5.2).

VI. THE SPECTRAL GAP INEQUALITY AND HITTING TIMES

In this section we shall discuss the extension of our results to the case

p = 2.

As in Proposition 2, one easily proves that

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



459HITTING TIMES

PROPOSITION 8.- (i) For any closed set A s.t. &#x3E; 1/2,

(ii) Assume that (~, .~’) satisfies the strong sector condition with constant
M. There exists a universal constant, C, that only depends on M, s. t

Proof. - Let H = E - A.
Since ~c ( A) &#x3E; 1 / 2, 1 - hf E 11, and, by definition of A(2),

But t ~(1 - and /(1 - 
111 - hA~~2 Ec(S2). Thus (6.3) implies that

Letting t converge to 0, we get (i).
Now let L = sup4,~)&#x3E;i/2(l - 
Since the function is convex, we have, for any t &#x3E; 0,

Let u E H. Let A = {x s.t. u(x) = 0~. Using the same argument as in
the proof of Theorem 4, we get

Letting t tend to 0, we obtain that
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Following the proof of Theorem 1, let us define, for k E 7Z, =

(u(x) - 2k)+ ~ 2k. We apply (6.4) to the function uk to get

since ukd  &#x3E; 2k (u &#x3E; 2k+1) and (uk ~ 0)  (u &#x3E; 2k).
Therefore

Summing over k E 7Z and using Holder’s inequality, we get

Using (1.4) and the fact that ~k ~(v,k)  6?(~), we obtain that

VII DIFFUSIONS IN IRn

As in the introduction, let w be a smooth function from IRn to IR+ .
Also assume that J w(x)dx = 1. Let Xt be the Markov process solution
of the stochastic differential equation:

The probability measure = w(x)dx is invariant and reversible for X.
The Dirichlet form of X is given by: 0 is the set of functions u s.t.

u E L2 (~.c) and Vu E and E(u) = 2 f ~ 
Our aim is to prove that, if w decreases quickly enough at infinity, then

A(p) # 0 for some p. We shall be mainly concerned with the special case
w(x) = for Ixl &#x3E; 1 ((3 &#x3E; n).

In the following computation, we shall use polar coordinates: r = Ixl is

the radial part, and T = is the angular part of x. Let us denote by S
the unit sphere in IRn and by dA the Haar measure on S.
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Let u be a smooth function on IRn . Then, for r &#x3E; 1,

Let p 1 [ and E 1~.

by Holder’s inequality.
The second factor in the rhs can be written as

Therefore

Where
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Simple scaling arguments imply that, for any a &#x3E; 0, one has

Where

Note that  for a &#x3E; 1.

Let R &#x3E; 1. We integrate inequality (7.2) w.r.t. 11 ~ a ~ R c~’2-1 dc~, to get that

Let R &#x3E; 0. The Laplace operator satisfies a Poincare inequality on the
ball of radius R i. e. there exists a constant C s.t. for any smooth function u

Since w is bounded away from infinity and 0 on compact sets, we also
have (for a different value of the constant C),

Therefore

Let now a &#x3E; 0. As in the proofs of Proposition 2 or Theorem 3,
we deduce from (7.4) that, for non-negative smooth functions s.t.

s.t. Ixl  R} n {x s.t. u(x) = 0~~ &#x3E; a, we have
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Therefore

The constant C in (7.5) depends on R, w and a.

Let u E H. Let a 2 ~. Let R be big enough so that for any

set A s.t E~(A~ &#x3E; ~, one has E~,~A n {x s.t,. R~~ ~ a. Therefore

E~,~~x s.t. R} n {x s.t. u(x) = O}] 2:: a. Let r E [1, R].

If we integrate this last inequality w.r.t. we shall get three

terms. The first one is

Here C depends on R. By (7.3) this quantity is bounded by

(C(w,p,~)Rn n~(u))p/2.

The second term is
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provided that

By (7.5),

The third term is

by (7.5).
Gathering these calculus, we get that

if  oo and  oo.

Let us now consider the case p = 1. Using the same arguments as in the
proof of (7.2), it is possible to show that, for r &#x3E; 1,

where

From (7.7) and (7.5) one deduces that for any non-negative smooth function
u s.t. /~[{~ s.t. u(x) = 0}~ &#x3E; 1/2, we have

provided that C(w)  oo and  00.
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(7.8) means that A(1) &#x3E; Proposition 2 (iv) then implies that

A(l) &#x3E; 1/4C. Therefore we have proved the

PROPOSITION 9. - Assume that supT  00.

(i) If

then 0.

(ii) Let p 1[. If there exists E s.t.

and

then 0.

Example. - We choose w(x) = H’~ /3 &#x3E; n.

Let p 1] . A direct application of Proposition 9 yields that 0

2p/(2 - p). In particular we see that for any /3 &#x3E; n, there

exists a p 1] s.t. 0.
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