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ABSTRACT. - We give the asymptotics as n - oo of the probability for
the empirical mean of a sequence of i.i.d. random vectors to be in an open
domain whose closure doesn’t contain the true value of the mean. Our result

generalizes those of Bahadur and Rao and holds under suitable assumptions
on the boundary of the domain (which needs not however to be convex)
and on the laws of the random vectors (a bounded density is needed).

RESUME. - On donne le comportement asymptotique pour n - oo de la
probability que la moyenne empirique d’une suite de variables aleatoires
multi-dimensionnelles prenne ses valeurs dans un ouvert ne contenant pas la

moyenne dans sa fermeture. Ce resultat generalise celui de Bahadur et Rao
et est valable sous certaines hypotheses sur la frontiere de 1’ ouvert (lequel
ne doit pas necessairement etre convexe) et sur les lois communes des v.a.
(on doit supposer un peu moins que l’existence d’une densite bomee).

1. INTRODUCTION

Cramer’s theorem on large deviations for the empirical mean states

that if ~X.n, ~n is a sequence of i.i.d. d-dimensional r.v. and we note
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372 C. ANDRIANI AND P. BALDI

for every Borel set D C where the functional I is the Fenchel-Legendre
transform of the logarithm of the Laplace transform of the law /L of Xi.
Of course ( 1.1 ) gives the asymptotics of logP{Xn ~ D} if the Borel set

D is such that inf o I(x) = infxED I(x).
By "sharp asymptotics" we mean the asymptotics of P{Xn E D}

(as opposed to the asymptotics of its logarithm). The first result in this

direction was obtained by Bahadur and Rao [2] for the dimension d = 1.
If D = [q, +00 [, q &#x3E; E( Xl) and q lies in the admissible domain of I (see
§2 for the explanation of this), then they prove that

The aim of this paper is to give the asymptotics of P{Xn E D} for r.v.’s
taking values in This is a much more complicated situation mainly
because the boundary of a Borel set D in f~d can be more complicated. For
this reason we have chosen to deal with the simplest situation: we assume
that the Laplace transform of  is finite in a neighborhood of the origin,
and that  has a bounded density (an assumption which can be however
weakened, see Remark 3.2). Moreover we suppose that there exists a unique
point x* E at which the infx~D I(x) is attained and that x* is a regular
constrained point of minimum for I on 9D (again see §2 for a precise
definition) moreover belonging to the admissible domain.

It is fair to acknowledge that we follow here the path of Borovkov and
Rogozin [7]. Actually the content of §3 comes from [7] and is here only
in order to make the paper self-contained. Borovkov and Rogozin ([7],
Theorem 2) give also an asymptotic estimate for reducing
it to the asymptotics of certain integrals whose behaviour is however not
explicitely studied. In §4 we give an explicit asymptotics (Theorem 4.4) in
terms of the Cramer transform I, its derivatives and the shape of 9D at x*.
Moreover we are able to give a clear geometric meaning of the constant
appearing in the asymptotics. By the way we also correct a mistake in the
Theorem 2 of Borovkov and Rogozin, as it is easy to detect if one considers
the case of N(0, 1)-distributed r.v.’s, a situation in which the computations
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373SHARP ESTIMATES OF DEVIATIONS OF THE SAMPLE MEAN IN MANY DIMENSIONS

can be made directly (see [3], [5] or [12] or even the following §4, for
instance).

In §2 we recall some properties of the functional I (which is sometimes
referred to as the Cramer transform of /L) and other preliminary statements.
§3 contains an asymptotic result for the density of Xn from which in §4
we derive the asymptotics.
Some results of sharp asymptotics exist already in the litterature; we

wish to recall those of R.Azencott [ 1 ], in a infinite dimensional setting,
concerning the case of small random perturbations of dynamical systems
and, more recently, of M. Iltis [10], in a context similar to the one of this
paper, but where the geometric meaning of the asymptotics is not apparent.

It is also useful to point out that we don’t need assumptions of the
existence of dominating points, in the sense of Ney [ 11 ] .

2. CRAMER TRANSFORM

Let /L be a probability measure on IRd. We shall denote by v its (complex)
Laplace transform

so that its Fourier transform is

It is well-known that for d = 1 the set of all z E Cd such that the integral
in the definition of v converges, is a strip, that is of the form J x iR,
where J is an interval. In general, d &#x3E; 1, v is defined on a set of the form
J x where J is a convex subset of We shall refer to this set as the

strip of convergence. We shall write Dv = {A E  and also

A(A) = A E By I we denote the Cramer transform of ~:

As a supremum of linear-affine functions, I is clearly convex and lower
semi-continuous. Moreover, since 03BB ~ 03BB, x) - is concave, one can

try to compute the supremum by looking for the critical point, e.g. by
solving in A the equation

Vol. 33, n° 3-1997.



374 C. ANDRIANI AND P. BALDI

If this equation has a solution A := A(x), then clearly

(otherwise the supremum is attained at infinity). If equation (2.1 ) has a
o o

solution A E VA == Vv we shall say that x lies in the admissible domain
of I. In other words the admissible domain 0 is the image of the interior
of V A by A’. If the support of J-L is not contained in a proper hyperplane
of then the covariance matrix of ~c is positive definite and thus A"(0)
is invertible. Indeed this argument implies that A"(A) is always invertible
for A in the domain of v, since A"(A) coincides (see next paragraph) with
the covariance matrix of another probability still having its support not
contained in a proper hyperspace. This implies that A is strictly convex

o

on D:1, so that the solution of (2.1 ) is unique for x in the admissible

comain. Moreover the implicit function theorem gives immediately that the
admissible domain is an open set and that x - A(x) is C°° on H.

This also implies that the Cramer transform I is C°° when restricted

to the admissible domain. By computing the derivatives in (2.2) one has
the relations

For more on questions of convex analysis the reader can refer to the books
of Rockafellar [13] and Ellis [8].

3. THE ASYMPTOTICS FOR THE DENSITY

Assume that x belongs to the admissible domain. Lat us denote 
the probability measure on IRd defined either by A - + x) or

An important role is going to be played by the following measure

A straightforward computation gives that its Laplace transform is
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so that is a probability measure. If x belongs to the admissible domain,
then let us set /Lx = (3.1) gives then for the Fourier transform
jix of ~c~

Computing the derivatives one gets easily that ~c~ is centered and that its

covariance matrix coincides with the Hessian of A computed at a = 

As we already remarked if the support of /L is not contained in a proper
hyperplane of then the covariance matrix of /L is (strictly) positive
definite. Thus A"(0) is positive definite. But if the support of /L is not

contained in a proper hyperplane, the same is true for so that also

l1"(~(x)) is necessarily positive definite. By (2.3) ~" is strictly positive
definite in the admissible domain.

THEOREM 3.1. - Let {Xn}n be a sequence of Rd-valued r.v. ’s; assume
that their common law M has a bounded density with respect to the Lebesgue
measure and that its Laplace transform v is finite in a neighborhood of the
origin. Then Xn has a density gn for which

holds as n - oo for every x belonging to the admissible domain Q.
Moreover the above expansion holds uniformly for x in any compact subset
of IRd which is contained in Q.

Proof. - Let us denote by f n the density of xl + ... + Xn. Then

Let A E IRd be a point in the interior of PBi then the Fourier transform
of x  fn(x) is t - v(À + it)n. Let us prove that it is integrable
for large n. Indeed it suffices to show that x  is in LP for
some p &#x3E; 1, since this will imply that t - v(À + it) is in Lq for some

q &#x3E; 2, by the Hausdorff-Young inequality and that t - v ( ~ ~ it) n is in
L1 for large n. But

and the left hand term is integrable as soon as p is small enough so that pA
still lies in Ð A. Thus for large n the Fourier inversion theorem gives

Vol. 33, n° 3-1997.
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which means

and by (3.3)

Since this relationship holds for every A and x lies in the admissible domain,
then it holds also for A = À (x), so that

The last integral can be split

U being a neighborhood of the origin. Since /Lx is absolutely continuous,
then ]  1 and by the Riemann-Lebesgue lemma limt~~|x(t)| = 0.

Thus, for every neighborhood U of the origin there exists a constant k  1

such that

so that

where q is such that .Lq. Thus the contribution of the integral over UC

goes to 0 exponentially fast. As for the other term, by a change of variable
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Since the probability measure jix is centered and has covariance matrix

A"(A(~)) = I" ( x ) -1 : - r x, by the Central Limit Theorem

In order to apply Lebesgue theorem we remark that, if U is small enough
then

for c &#x3E; 0, which can be chosen small enough so that rx = EI is

still positive definite. Thus

B

and since 1 - y  e-y

B /

Lebesgue theorem now gives

Since the contribution of the integral over UC goes to 0 exponentially
fast, we have finally

~ B 
_ 

/ B /

We finish by indicating the arguments which lead to the uniformity of the
asymptotics (3.2). First it is easy to prove that the Laplace transform v
is uniformly continuous in any strip of the form K + where K is

any compact such that K c c J (recall that J + ilRd is the domain of v).
This implies that a constant k  1 can be chosen so that (3.4) holds in
a neighborhood of x. The analiticity properties of v moreover imply that
the remainder in the development to the second order of jix at the origin
can be controlled with continuity, so that the convergence in (3.5) and the
majorization in (3.6) are uniform in a small neighborhood of x.

REMARK 3.2. - A closer look to the proof of Theorem 3.1 shows that the
assumption of existence o.f’a bounded density for /L can be weakened. Indeed
any assumption ensuring that, for some n, has a density to which the
inversion Fourier theorem can be applied is sufficient; for instance that *n
has a bounded density for some n.

Vol. 33, n° 3-1997.
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4. THE ASYMPTOTICS

In this section we state our main result, giving the asymptotics for
We begin by stating the assumptions.

HYPOTHESIS (A). - ~ has a bounded density with respect to the Lebesgue
measure and its Laplace transform is finite in a neighborhood of the origin.

DEFINITION 4.1. - Let W : R be a smooth function and let x* E ~D
be a local constrained minimum of w on ,x* is said to be non degenerate
or regular if for some local system of coordinates G: U - o~D the
Hessian of W o G is positive definite at G-1 (x* ).

Let M be a hypersurface of let z be a point on M and Mz the
tangent space to M at z. Let be a C°° unit normal field to M around
z. If X = is a vector in M~ consider the transformation

where X n is the vector whose j-th component is ~ ~ 1 ai a~ ~ ( z ) . Then
X n is still a vector in Mz so that (4.1 ) defines a transformation of Mz into
itself which is called the Weingarten map (see Hicks [1965], p.21 e.g.).
This map is closely related with the curvature of M at z (ibidem p.24).
The following examples show how to compute the Weingarten map in

two typical situations. In doing this one must take care because the choice
of the C°° normal unit field is not unique, so that the Weingarten map is
defined up to a constant -1. In the following examples the C°° normal unit
field is chosen so that at xo it points in the direction of the positive d-axis.

EXAMPLE 4.2. - Let us assume that M is locally the graph of a function
g. That is Xo E M is such that in a neighborhood of xo M consists
of the points (xl, ... , xa-l, g(~1, ... , xd-1)), g : IRd-1 - R being a

smooth function such that g’ (xo) = 0. Then in the system of coordinates
z - (~ 1, ... , Xd-1) the Weingarten map of M at xo is given 
(see, e.g., Baldi [3], §5).
EXAMPLE 4.3. - Let us assume that M = {x; F( x) = 0~ where

R is a smooth function such that F’ (xo ) # 0 and even
that F’ (xo) points along the d-th coordinate. By the implicit functions
theorem there exists a smooth function g : R such that

F(~i,...,~_i,~(~i,...~_i)) = 0 and g’(xo) = 0. Computing the
Hessian of g in terms of the derivatives of F one gets
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for = 1,..., d - 1. In particular the Weingarten map of a sphere of
radius R equals the identity matrix divided by R. Also, for d = 2, the

Weingarten map reduces to multiplication by the inverse of the radius of
the osculating circle (multiplication by 0 if the latter equals oo).

HYPOTHESIS (B). - The infimum of I over D is attained at a unique point
x* E which moreover is a regular constrained minimum and belongs
to the admissible domain.

THEOREM 4.4. - Under Hypotheses (A) and (B) the following expansion
holds

where Ll and L2 are the Weingarten maps at x* of the hypersurfaces
{~;7(~/) ~ ~(~)} and c~D respectively.
Before the proof of Theorem 4.4 it is worth to point out that in the

asymptotics the term before the exponential is always of order n-1/2,
regardless of the dimension d. Also the asymptotics of Theorem 4.4 depend
on the law  only through the value of its Cramer transform I and of its
first two derivatives at x*.

It is not difficult to realize that if x* is a regular point, then L1 - L2 is

positive definite (and viceversa ! ) thus ensuring that det(L11(L1 -L2)) &#x3E; 0.

The quantities appearing in Theorem 4.4 have an intuitive meaning
which is easy to understand; det(L11(L1 - L2 ) ) -1 / 2 is a measure of the

contact between 9D and the level set {~/;7(?/) = I (~* ) ~ at their point of
tangency ~* . The more these two hypersurfaces are "close" the more the
symmetric matrix L1 - L2 will be small thus giving a large asymptotics.
Conversely the measures how fast the

action functional I increases as one moves from x* to the interior of D. It

should be recalled that the gradient I’ (~* ) is orthogonal to 9D and points
to the interior of D.

The quantity det(L11(L1 - L2 ) ) appeared already in a completely
different problem of sharp asymptotics (Baldi [3]). It should also be noticed
that it doesn’t depend on the choice of the normal field.

Also remark that the assumption of existence of a bounded density for
F is needed only in order to apply Theorem 3.1. Thus Hypothesis (A) can
be weakened according to Remark (3.2).

Proof of Theorem 4.4. - For every neighborhood 17 of x* we can split

Vol. 33, n 3-1997.
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Since I is l.s.c. and I(x) - +00 as +00 (consequence of Hypothesis
(A)) there exists ~ &#x3E; 0 such that

and by Cramer’ s theorem

As for the estimation of the other term in (4.2) one has

Let us denote by G a local system of coordinates of 9D around x* and
assume for simplicity that G(0) = x*. Let us denote by A the Hessian
of I o G at 0 (it is a positive definite matrix because of Hypothesis (B)).
Then classical expansion formulas (see e.g. Bleistein and Handelsman [6],
(8.3.63) p. 140) state that

This already proves that the quantity P{Xn E in (4.2) is negligible
because of (4.4). In a first step we shall assume that I" (x* ) is the identity
matrix. We only need to prove that

By a orthogonal change of coordinates we can assume that locally, around
x*, 9D is the graph of a smooth function g defined on an open set
U C We can assume moreover that 0 E U, that x* = (0,..., 0, Ix* I)
and that at x* the normal to 9D is parallel to the positive d-axis (it suffices
to choose an isometry which changes x* to (0,..., 0, and the tangent
space to 9D at x* to the hyperplane xd = ~x* ~). This means in particular
that the first derivatives of g at 0 vanish. We can thus consider the local
system of coordinates G defined by

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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Since all the first derivatives of g vanish at 0 one has

so that

where denotes the ( d -1 ) x ( d -1 ) identity matrix. The vanishing of the
first derivatives of g at 0 also implies, by a straightforward computation,
that for z,j’=l,...,d2014l

Since we assume that I" (x* ) is the identity matrix

But in this situation we know that L2 = -g" (0) (Example 4.2) whereas
Li = -Ia-1 ( a d (G(o))-1 (Example 4.3). Thus

Since of course

(4.7), (4.8) and (4.9) give (4.5) under the assumption that I" (x* ) is the

identity matrix. Let us now remove this assumption. We know that the
Hessian I" (x* ) is positive definite. Let C be the (symmetric) square root
of I" (x* ), and let us define the r.v.’s Zi = One has thus

where D = CD. It is immediate to check that, denoting with A and I
the log-Laplace and the Cramer transforms respectively of the r.v.’s Zi,
one has the relations

Vol. 33, n° 3-1997.
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Moreover the infimum of I over D is attained at z* = Cx* and

Since 7~(~) is the identity matrix, we can apply Step 2 and obtain the
asymptotics

where Li and L~ are the Weingarten maps of the hypersurfaces 9D and
{~,7(~/) = I (~* ) ~ respectively. Thus we only have to prove that the

quantity det ( L11 (L1 - L2)) is invariant by linear transformations. This is
proved in the next statement which concludes the proof of Theorem 4.4.

PROPOSITION 4.5. - Let Ml , M2 be smooth hypersurfaces of IRd which
are tangent at xo. Let C be an inversible linear transformation of (~d
and let Mi, M2 be the images through C of Ml and M2 respectively. If
Li,L2?Li,L2 are the Weingarten maps of Ml and M2 at xo and of 1Ml
and M2 at Yo = Cxo respectively, then the quantities L2))
and L2 ) ) are equal.

Proof. - We shall give as granted that the statement is true if C is

orthogonal. Otherwise let F : I~ be a smooth function such that

M = ~~;; F(x) = 0~ and 0. By an orthogonal transformation
we can always assume that F’ (xo ) points along the d-th coordinate. Then
we know from Example 4.3 that Li is given by HF, the principal minor
of order d - 1 of the Hessian of F, divided by the modulus of F’(xo).
If n (x) is a vector which is normal to Mi at x, then C* -1 n is normal

to M at y = Cx. Let 0 be an orthogonal matrix such that 
points along the d-th coordinate: since = and for the

orthogonal transformations the statement is true we can assume that G’* -17z
still points along the d-th coordinate. Since M = {y;FoC-1(y) = 0~ and
the gradient of F o C-1 points along the d-th coordinate, we need only to

compute the principal minor of order d - 1 of the Hessian of F o C-1 at
y, that we shall denote by Hp. Now it is known that
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However, by the assumptions we made, has the form

so that

Since the same computation holds for L2, we have finally

so that the determinants of ~2) and L11 (L1 - L 2 ) are equal.
Remark. - It is possible to prove (4.6) directly, without splitting the proof

into two parts according to the assumption that 7~(~) is the identity matrix
or not as we did. The way we have chosen points out a useful invariance
property of the form L2 ) ) .
EXAMPLE 4.6. - Let us assume that the distribution of Xl is the product

of two double exponentials, that is it has density

Then straightforward, if not amusing, computations give the Laplace
transform 

The system

has solution

Vol. 33, n° 3-1997.
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(the admisible domain coincides with so that

If D is the ball of radius 1 centered at (0,2), then using Lagrange
multipliers one finds easily that the minimum of I on 9D is attained at
x* _ (0,1), as the symmetries of the situation suggest. We already know
that the Weingarten map of 9D at x* is 1, whereas for the level set

{~;7(~) = 7(~)} at x* is

So that L2))-1~2 = (2v"2- 1)’~. Another straightforward
computation gives

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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so that, since 7’(~) = ~(.r*) _ (0,V~- 1),

Finally the asymptotics is

[1] R. AZENCOTT, Petites perturbations aléatoires des systèmes dynamiques: développements
asymptotiques, Bull. Sci. Math. (2ème série), Vol. 109, 1985, pp. 253-308.

[2] R. R. BAHADUR and RAO, On deviations of the sample mean, Ann. Math. Statist., Vol. 31,
1960, pp. 1015-1027.

[3] P. BALDI, On the exact equivalent of the exit time of a Brownian motion from an open set,
Prépublication Laboratoire de Probabilités, Université Paris 6, 1991, 71-91.

[4] P. BALDI, Exact asymptotics for the probability of exit from a domain and applications to
simulation, Ann. Probab., Vol. 23, 1995, pp. 1644-1670.

[5] C. BELLAÏCHE, Comportement asymptotyque de p(t,, x, y) quand t ~ 0 (points éloignés).
In: Gódesiques et diffusions en temps petit, Astérisque, Vol. 84-85, 1981, pp. 151-187.

[6] N. BLEISTEIN and R. A. HANDELSMAN, Asymptotic expansion of integrals, Dover, New York.
[7] A. A. BOROVKOV and B. A. ROGOZIN, On the multidimensional central limit theorem, Th.

Probab. Appl., Vol. 10, 1965, pp. 55-62.
[8] R. S. ELLIS, Entropy Large Deviations and Statistical Mechanics, Springer Verlag, New

York, Berlin, Heidelberg, Tokyo.
[9] N. J. HICKSO, Notes On Differential Geometry, Van Nostrand Math. Studies 3, 1965.

[10] M. ILTIS, Sharp Asymptotics of Large Deviations in Rd, J. Theor. Probab., Vol. 8, 1995,
pp. 501-522.

[11] P. NEY, Dominating points and the asymptotics of large deviations for random walk on
Rd, Ann. Probab., Vol. 11, 1983, pp. 158-167.

[12] W. D. RICHTER, Laplace-Gauß Integrals, Gaussian Measure Asymptotic Behaviour and
Probability of moderate Deviations, Z. Anal. ihre Anwendugen, Vol. 4, 1985, pp. 257-
267.

[13] T. R. ROCKAFELLAR, Convex Analysis, Princeton University Press, Princeton N.J., 1970.

(Manuscript received 1th September, 1995;
Revised 15 October, 1995. )

Vol. 33, n° 3-1997.

REFERENCES


