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Coalescing Markov labelled partitions
and a continuous sites genetics model

with infinitely many types

Steven N. EVANS

Department of Statistics, University of California at Berkeley
367 Evans Hall, Berkeley CA 94720-3860.
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Vol. 33, n° 3, 1997, p. 358. Probabilités et Statistiques

ABSTRACT. - Let Z be a Borel right process with Lusin state-space E. For
any finite set S it is possible to associate with Z a process ( of coalescing
partitions of S with components labelled by elements of E that evolve as
copies of Z. It is shown that, subject to a weak duality hypothesis on Z,
there is a Feller process X with state-space a certain space of probability
measure valued functions on E. The process X has its "moments" defined
in terms of expectations for ( in a manner suggested by various instances
of martingale problem duality between coalescing Markov processes and
voter model particle systems, systems of interacting Fisher-Wright and
Fleming-Viot diffusions, and stochastic partial differential equations with
Fisher-Wright noise. Some sample path properties are examined in the

special case where Z is a symmetric stable process on R with index
1  0152  2. In particular, we show that for fixed t &#x3E; 0 the essential range
of the random probability measure valued function Xt is almost surely a
countable set of point masses.
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340 S. N. EVANS

RESUME. - Soit Z un processus droit Borelien dont les états forment un

espace de Lusin E. On peut, pour tout ensemble S fini, associer a Z un
processus ( de partitions fusionnantes dont les composantes sont étiquettées
par des elements de E, eux-mêmes soumis a evolution a la maniere de Z.
On montre que, sous une hypothèse faible de dualité pour Z, il y a un

processus de Feller X dont les états sont des fonctions sur E a valeurs
mesures de probabilité. Le processus X a des « moments » définis par des
espérances pour Z d’une facon deja suggérée par des exemples divers de
dualité de problèmes de martingales entre des processus Markov fusionnants
et des systèmes de particules représentant les votes, des systèmes de Fisher-
Wright entrelacés et les diffusions de Fleming-Viot ainsi que les equations
différentielles partielles stochastiques dont le bruit est de Fisher-Wright.
On examine quelques propriétés des trajectoires pour un cas special où Z
est un processus stable symétrique d’indice 0152, 1  0152  2, a valeurs dans
R. Entre autres choses, on montre que pour t &#x3E; 0, fixe, le support essentiel
de la fonction aléatoire a valeurs mesures de probabilité Xt est presque
surement un ensemble dénombrable de masses de Dirac.

1. INTRODUCTION

A powerful tool for analysing a number of stochastic systems that are
defined as solutions to martingale problems is the notion of duality between
two martingale problems (cf. §II.3 of [10] or §4.4 of [6]). A particularly
successful application of this idea is to be found in the study of the voter
model using duality with a system of coalescing random walks (see Ch. V
of [10] for a number of results obtained using duality and a comprehensive
bibliography).

Shiga [12] noted an analogous duality between systems of delayed
coalescing Markov chains and certain systems of interacting Fisher-Wright
diffusions. The latter interacting processes arise as diffusion limits for two-

type genetics models with populations at a countable set of discrete sites for
which there is within site resampling and between site migration. The form
of the duality is that multivariate moments for the system of diffusions can
be represented as certain expectations for the delayed coalescing Markov
chains. Shiga’s observation has been particularly useful in studying the

phenomenon of cluster formation in such models (see [7] or [3] for recent

bibliographies covering papers in this area). Shiga [13] also showed that
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341COALESCING MARKOV LABELLED PARTITIONS

the natural stochastic partial differential equation analogue of such a system
of interacting Fisher-Wright diffusions is dual in a similar way to a system
of delayed coalescing Markov processes.
The above two-type genetics models have infinitely-many-types

counterparts, and duality for these has been investigated in [9] and [3].
Here the processes at each site are Fleming-Viot diffusions that take values
in the set of probability measures on the type-space [0,1], and once again
the processes interact via a migratory drift given by the jump rates of a
Markov chain on the site-space. Now the dual process has values that are
partitions of some finite set, with each component of the partition labelled
by a point in the site-space. The labels evolve as a system of delayed
coalescing Markov chains, and when two labels coalesce the corresponding
components of the partition are aggregated together to form one component.
Once again, the form of the duality is that moment-like expectations for
the Fleming-Viot diffusions can be represented as appropriate expectations
for the system of labelled partitions.

In all of the above instances, the duality did not play an explicit role
in establishing the existence of the process. Rather, existence was obtained
using general Markov chain, weak convergence or stochastic differential
equation techniques. The duality first entered in when establishing
uniqueness of the solution to a martingale problem and deriving properties
of the process.

In [7] the use of coalescing systems was more fundamental. There the
authors considered a two-type genetics model with continuous site-space,
within sites resampling, and between sites migration. The state-space of
this process is a suitable space of functions from the site-space into [0,1],
with the value of the function at a given site being thought of as the
proportion of the "population" at that site that has one of the two types.
The process was constructed by explicitly defining a Feller semigroup
that had its associated "moments" expressed as expectations for a certain
system of delayed coalescing Markov processes. The existence of transition
kernels was established using weak convergence arguments beginning with a
discrete site-space system of interacting Fisher-Wright diffusions of the sort
discussed above. However, the Feller, Chapman-Kolmogorov and strong
continuity properties of the transition kernels were established directly
from the description in terms of delayed coalescing Markov processes.

It was shown in [7] that the particular class of continuous sites models
considered there have space-time rescaling limits that are again Feller
processes with semigroups that have similar explicit descriptions in terms
of systems of (instantaneously) coalescing Markov processes. Each of the
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342 S. N. EVANS

limit processes has the interesting property of being somewhat like a

continuous sites "particle system": at any fixed time the value of process
lies in a set of ~0, I} - valued functions. One might expect this from

the abovementioned fact that the voter model particle system is dual to a
system of instantaneously coalescing random walks. Moreover, it should

be the case (as pointed out in [7]) that the limit processes also appear as
rescaling limits of suitable long-range, voter-like models.

Our aim in this paper is to show that, subject to a weak duality condition
(here duality is used now in the sense of the general theory of Markov
processes), any system of coalescing Borel right processes gives rise to
a Feller semigroup via the sort of prescription that arose from duality
considerations in [7].

Some of our argument is similar to that in [7]. One major difference is
that, because of the generality in which we are working, weak convergence
arguments are no longer available to establish the existence of transition
kernels. Instead, we proceed analytically and base the proof on the solution
to the multidimensional Hausdorff moment problem. This state of affairs is
somewhat similar to that which occurred in the development of the theory
of superprocesses, where existence proofs based on weak convergence ideas
were superseded by ones incorporating analytic characterisations of those
functions that appear as the Laplace functional of an infinitely divisible
random measure (cf. [8]).

Another significant difference is that we work in the infinitely-many-types
setting. The type-space in infinitely-many-types models is usually taken to
be the interval [0, 1]. From a modelling perspective, only the measure-
theoretic properties of [0,1] are relevant. In order to make our proofs more
transparent, we use instead the Borel-isomorphic space {0.1}~. However,
our results can easily be translated into ones for [0,1].
The plan of the rest of the paper is as follows. In §2 we discuss the

"dual" process of coalescing partitions labelled by points in the site-space
that evolve according to some Markov process. In §3 we review some
elementary ideas from the theory of vector measures and introduce the space
that will be the state-space of the process we are trying to construct. This is
a suitable space of functions from the site-space into the set of probability
measures In §4 we state and prove our main theorem on the
existence of a Feller semi group defined in terms of coalescing Markov
labelled partitions. We examine the special case of the general construction
that arises when the labels come from a symmetric a-stable process on I~
with !~2in§5, and prove some results about the clumping behaviour
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343COALESCING MARKOV LABELLED PARTITIONS

of this model. Finally, we record in an Appendix a couple of facts about
Lusin spaces that we are unable to find in the literature.

2. COALESCING MARKOV LABELLED PARTITIONS

Given a finite set S, let 03A0S denote the set of partitions of S. That is,
elements of 11~ are subsets ~A1, ... , AN ) of P(S) (:= the power set of S)
with the property that ~iAi = S and Ai ~ Aj =  for i # j. Equivalently,
we can think of 11~ as the set of equivalence relations on S. We define a
partial order on 03A0S by declaring that Jr  Jr’ if Jr’ is a refinement of Jr,
that is, if the components of Jr are obtained by aggregating together one or

, 

more components of Jrt. Given Jr = ~A1, ... , E IIs, put = N.

Fix another (possibly infinite) set E. An E-labelled partition of S
is a subset of P(S) x E of the 

with {~4i,...~~} E 11~ and for i # j. Given A =

~(Am e_-~1 ), ... , E A~, put c~(~) _ {~i,...,~} and 6(A) =
(e_-l)AEO:(À)’ Let As denote the set of E-labelled partitions of S.
Given Jr E IIS and e = E E" such that eA i= eA’ for A # A’,

put e) = {(~4,6,4) : A E That is, e) is the labelling of Jr with
e. Denote {1,... ,~} by Write and for IIS and As when S =

Put = ~~1~? ... , (n) ) E and for (el, ... , en) E En such
that ei # 6, for i # j, put = 1 , e1 , ... , (lnl , en E 
Assume now that E is a Lusin space and that (Z, Pz) is a Borel right

process on E with semigroup {Pt}t~0 satisfying Pt 1 = 1, t &#x3E; 0, so that Z
has infinite lifetime. We wish to define an associated AS-valued Borel right
process (s that has the following intuitive description. Let A E As. The
evolution of (5 starting at A will be such that c~ (~s (t) ) remains unchanged
and E(~s(t)) evolves as a vector of independent copies of Z starting at 
until immediately before two (or more) such labels coincide. At this time,
the components of the partition corresponding to the coincident labels are
merged into one component. This component is labelled with the common
element of E. The evolution then continues in the same way.

It is possible to give a rigorous definition of (5 using a "concatenation
of processes" construction (cf. §14 of [ 11 ]). Alternatively, it is possible
to build (5 explicitly from N independent copies of Z started at 6(A) by
proceeding along the lines of the construction in [7]. Essentially, that latter
construction builds the process of labels, and the corresponding partitions
can then be added on in a simple, deterministic manner. As either of these

Vol. 33, n° 3-1997.



344 S. N. EVANS

constructions is rather straightforward but involves the introduction of a
substantial amount of notation, we will omit the details.

We will denote the law of (s starting at A as Pg. When S = we

write ((n) and for (~ and P~.
Given two finite sets Sand T and an injection p : S - T, we can define

an induced map Rp : A~ ~ As as follows. If A E AT is of the form

( (Ai , ei),..., (An, en)~~ then RP~ _ ~(p 1(Ai)~ e2) ~ p Ø}
The following observation is immediate from the definition.

LEMMA 2.1. - If S, T, p, and RP are as above, then the law of RP o ~T
under Pf is that of (s under 

ASSUMPTION. - From now on, we will suppose that there is another Borel

right process Z with semigroup {t}t~0 and a diffuse, Radon measure
m on (E, E) such that Z and Z are in weak duality with respect to

m; that is, for all nonnegative Borel functions on f , g on E we have

3. THE STATE-SPACE

We need some elementary ideas from the theory of vector measures. A

good reference is [4].
Let (E, E, m) be the measure space introduced in §2, and let X be a

Banach space with norm 11.11. We say that a function (~ : E ~ X is simple
if cP == 2::=1 xi1Ei for x 1, ... , xk E X and Ei,..., Ek We say that a

function 03C6 : E ~ X is m-measurable if there exists a sequence {03C6n}n~N of
simple functions such that ~~~r,,(e) - = 0 for m-a.e. e E E.

The definitions in [4] are given in the case when m is finite, but they make
sense in this more general setting. Also, much of the resulting theory holds

unchanged, and we will apply without comment results from [4] that are
stated for finite m but hold (with trivial modifications to the proof) for our
Radon m (or, indeed, for an arbitrary a-finite measure).

Write K for the compact, metrisable coin-tossing space equipped
with the product topology, and let lC denote the corresponding Borel a-field.

Equivalently, lC is the a-field generated by the cylinder sets.

Write M for the Banach space of finite signed measures on (K, lC)
equipped with the total variation and let Mi denote the closed

subset of M consisting of probability measures.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



345COALESCING MARKOV LABELLED PARTITIONS

Let L(X)(m, M) denote the space of (equivalence classes of) m-
measurable maps  : E - M such that e E E}  oo,

and equip with the obvious norm to make it a Banach space.
Let E denote the closed subspace of L°° (m, M) consisting of (equivalence
classes of) maps with values in Mi.

Write C for the Banach space of continuous functions on K equipped
with the usual supremum norm ]] ’ ~~c. Let Ll (m, C), denote the Banach
space of (equivalence classes of) m-measurable maps  : E - C such

that ~ m(de)  oo, and equip C) with the obvious norm to
make it a Banach space. Then .L1 (m, C) is the Banach space of Bochner
integrable C-valued functions on E (cf. Theorem II.2.2 of [4]).
From the discussion at the beginning of §IV.l in [4] and the fact that
M is isometric to the dual space of C under the pairing (v, y) - (v, y) =
f v(dk) y(k), we see that L°° (m, M) is isometric to a closed subspace of
the dual of L1 (m, C) under the pairing (~c(e), x(e) ) .

It is not true that is isometric to the whole of the dual of

L1 (m, C). From Theorem IV.l.1 of [4] this would be the case if and only if
M had the Radon-Nikodym property with respect to m. If K is coin-tossing
measure on K, then M contains L1 (~) as a closed, separable subspace.
By the remarks following Definition III.1.3 of [4] we see that Ll (~) fails
to have the Radon-Nikodym property, and hence, by Theorem 111.3.2 of
[4], the same is true of M.

From Corollary V.4.3 and Theorem V.5.1 of [5] we see that, as L1 (m, C)
is separable, E equipped with the relative weak* topology is a compact,
metrisable space.

For a finite set T, let MT (respectively, CT ) denote the Banach space of
finite signed measures (respectively, continuous functions) on the Cartesian
product KT with the usual norm ~ - ~~ (respectively, II With a

slight abuse of notation, write (’, .) for the pairing between these two
spaces. Following our usual convention, we will write M(n) and C~
when T = {1,...,~}.

When T = {1,..., n ~ we write 7~(’; ~) . Of course, 7~(’; cjJ) is always
of the form 7~( -; cjJ’) for n and a suitable ~ but this more general
notation will be useful in what follows.

Vol. 33, n° 3-1997.



346 S. N. EVANS

LEMMA 3.1. - The linear subspace spanned by the constant functions and
functions of the form Ir~ ( ~ ; ~~ with ~ = 1/) 0 x, ~~, E Ll (m~%’‘~. ) n 
and x E is dense in C(~).

Proof. - The subspace in question is an algebra that contains the constants.
The result will follow from the Stone-Weierstrass theorem if we can show

that the subspace separates points of 3. However, by definition of L1 (m, C)
and Lemma (A.2) in the Appendix, functions of the form § = ~~-1 ~~ ~ xl.,
with 1/Ji E L1(m) n C(E) and xz E C, are dense in C), and hence
the set of linear functions 7i( -; ~) for § of this type separates points.

4. STATEMENT AND PROOF OF THE MAIN RESULT

In order to complete our preparation, we need a little more notation. Given
a finite set S, partitions 1[, ~r’ E 11s such that 1[  and k == E

E by setting, for each A’ E 1[’ such that

A’ C A E ~r, = For example, if 8 = 8(4) == ~l, 2, 3, 4},
7T - {{1,3}, {2,4}}, and 1[’ _ 7r~ - {{1},{2},{3},{4}}, then

’Y((~f 1~3~~ h{2~~~~~ ~’, ~~ _ (~~1~, ~{2~, k;~3~, I~{~~) where 7~~3~ _
I~{ 1,31 and = = ~{2,4}.

Further, for E S with  a( )/) and  E 0396, define the

probability measure T(~c; ~’ , ~) on to be the push-forward
of the product measure under the map ~y ( ~ : cx ( ~’ ) , ~ ( ~ ) ) .
For example, if S = 8(4) = {1,2,3,4}, cx(~) _ {{1,3}, {2,4}}, and
~(A’) = = {{ 1 }, {2}, {3}, {4}}, then for a bounded Borel function

(~{1~, ~~2~, ~~3~, ~;~~}) r-7 F(k,~l~, ~~2~,1~~3~, I~~~~) we have

Given a finite set S, A E AS, t &#x3E; 0, and define the

probability measure -4 ~ q(A; S, ~c) on to be A -

Ps Lr(~~ ~~ ~s(t))(A)~~
Recall that a probability kernel P on 3 is Feller if PF E when

F E C(3), and a Markov semigroup on 3 is Feller if each kernel

Qt is Feller in the above sense and limt~0 QtF = F in C(3) for F E C(3)
(that is, is strongly continuous).

Annales de l’Iyistitcrt Henri Poiricat-e - Probabilités et Statistiques
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THEOREM 4.1. - There exists a unique, Feller, Markov semigroup 
on 0396 such that,for all 03C6 E L1 (m~n,C(n)), n E N, we have 

-

where the integrand is interpreted as 0 on the null set of ( e 1, ..., en) such
that e.; = ej for some pair ~j ). Consequently, there is a Hunt process,

(X, with state-space 0396 and transition semigroup 

Proof - We break the proof into a number of steps that we identify
as we proceed.

(i) Well-definedness. We need to check that the right-hand side of (4.1 )
doesn’t depend on the choice of representative for the equivalence class of

For this we need to make a few observations.

It follows from the duality hypothesis that E L1 and D is a

Borel subset of E", then

and hence the finite signed is

absolutely continuous with respect to m Ø7r. Therefore, by definition of (5,
if E II 5 with x  7r~ and 1jJ E ), then the finite signed
measure

is absolutely continuous with respect to (recall that e’) is the

labelling of the partition 7r’ with the vector e’).
Denote the Radon-Nikodym derivative of this latter measure by

Note that L1 (m,’~‘v’~~ ) - is a bounded
linear operator with norm at most 1.

Thus, for § = 1/) 0 x, where p E L 1 and x E C ~" ~ , we have

Vol. 33, n° 3-1997.
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Consider an arbitrary ~ E Define ~ _ E
and 1 E For any /1, ~c’ E :=:

we have, by (4.2), that 
’

(Here, of course, ~ - is typically not a member of E, and we are
extending in the obvious way the functions q and l7r defined on E to all of
L°° (m, M).) In particular, if ~c and ~c’ both belong to the same equivalence
class, then the rightmost member above is 0, as required.
We remark at this point that it can be the case that two different functions

cP E and 1/ E L (m , C ), n, n’ E N, are such that
In ( . ; ~) = In, ( . ; 1/). Hence, there appears to be a potential ambiguity in
(4.1 ): the left hand side should be the same for all choices of n and 03C6 that
lead to the same element of C(E), whereas it appears that, a priori, the
right hand side can depend on the particular choice of n and ~. We show
below in part (ii) of the proof that this ambiguity is not present.

(ii) Existence of measures. We next show that for each ~c E 3 and t &#x3E; 0
there exists a Borel probability measure on E that satisfies (4.1 ). It
suffices to show that on some complete probability space ( SZ , .~’, ~ ) there
is a 3-valued random variable V such that for all § E Ll (m~’~, C~~~ ),
£ E N, we have

because then we can define Qt( ,.) to be the distribution of V. We note
that (4.3) will certainly be enough to establish that the possible ambiguity
mentioned in part (i) does not occur. Let B be a countable ring of sets of
finite m-measure that generates the a-field 8, and ~ be the field of sets
generated by the cylinder sets in K. We begin with the claim that on some
complete probability space (0, 0, P) it is possible to construct a family of
random variables such that YB ,G takes values in [0, 

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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for all B E B, G E 9, and

for B 1, ... , B f E B and G 1, ... , G f E g.
In order to establish (4.4), let (Di, Hi ) , ( D2 , H2 ) , ... be an enumeration

of B x 9 (note that it is not necessarily the case that both D~ and
for z # j). By Kolmogorov’s extension theorem, it suffices

for (4.4) to show that for each there exist random variables 
_

~i,...,M4 E [0,1] such that

where n = (nl,...,nk) E N§ and ... + nk .

By the solution of the multidimensional Hausdorff moment problem (cf.
Proposition 4.6.11 of [ 1 ]), we need to check for all n, q E N~ that

where  is the usual coordinatewise partial order on Nð and (~) = I1i (~’).
Put E = From Lemma (2.1 ) the left hand side of (4.5)

is just

where

and

Vol. 33, n° 3-1997.
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with

and so (4.5) certainly holds.
. If B. D ~ B and with B n D = 0 and G n H = 0, then
computations using (4.4) show that

and

We may thus suppose that the construction of is such that
the equalities

and

hold identically.
For n E N, let ICn denote the sub-a-field of IC generated by cylinder sets

of the form A 1 x ... x Art x {0.1} x {0,1} x " -. We can identify 03BAn in the
obvious way with the a-field of all subsets of {0,1}~. Write M({0,1}") and
C({0,1}")), respectively, for the Banach spaces of finite signed measures
and continuous functions on ~0, 1 ~ n. Of course, M({0,1}") is isometric

to .~1 (~211) and C ~0,1 ~rt ) is isometric to (~2rt ). Write Ml (~0, I} 11) for
the subset of Af({0,1}") consisting of probability measures.
We see from (4.6) that for each w E f1 the map 

B, G E extends to a unique, positivity preserving, linear functional with
norm 1 on C( ~0, 1 ~’t ) ) (where we again stress that we are identifying
sets in lCn with subsets of ~0, 1 } 12 ). Furthermore, this functional assigns the
value 7n ( B ) to the function 1, B E B. Consequently, for each w e it
there is an element Un ( w) of L~(m,M({0.1}~)) = ~(m.C({0.1}"))’
such = for B E B and
G E and Un (w ) has a representative that takes values in Ml ( ~0, 
A monotone class argument shows that U,z is a L~(m,M({0.1}n)) -
valued random variable if we equip L~(m,M({0,1}n)) with the Borel
a-field arising from the weak* topology.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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The sequence (Un)n~N is consistent in the sense that, for m x P-a.e.

(e, w) E E and all n,’  n, if we we compose the natural projection from
M(~0, onto ll~l(~0, l~’z~) with then we obtain 

For n E N, e E E and w E 03A9, define Vn(e)(03C9) E M1 by setting

It is clear that Yz is a S-valued random variable.

By the consistency property noted above, for m x P-a.e. (e, w) E E x ~1
the sequence of probability measures converges in the

weak* topology on Mi as n  oo to the unique probability measure that
coincides with U~z ( e ) ( cv ) on Hence, by dominated convergence, for
P-a.e. w E [2 and every and § E C) we have that the sequence

is convergent. Therefore, the sequence

converges in E to a point V(w). In particular, V is a E-

valued random variable. Moreover, for P-a.e. w E [2 the function V (w) has
the property that for rn-a.e. e E E the value V (e) (w) E M1 is the unique
probability measure that coincides with Un(e)(w) on 
With Bi,..., Bf E B and G 1, ... , Gf E Q as above, set 03C8 =

L1(m‘~r) and x = ®i=1 1Gz E C~~&#x3E;. By construction, we have

Linear combinations of functions of the same form as 1/; (respectively, x)
are dense in (respectively, C~~&#x3E;), and so (4.3) holds, as required.

(iii) Uniqueness. It is immediate from Lemma (3.1 ) and a monotone class
argument that for each  E 3 and t 2: 0 there is at most one probability
measure satisfying (4.1 ).

(iv) Feller property. We now show that if F E C(~) ~ then ji ~

~ dv)F(v) is also an element of C(~). By Lemma (3.1), it suffices
to check the special case of F = 7~(-;(~), where ~ = ~ 0 x, with

1/; E and x E C~n~, but this is immediate from (4.2).
One consequence of the Feller property is, of course, that p -

~ dv)G(v) is Borel for G bounded and Borel; and so Qt(~, ~) is
a kernel on E for each t &#x3E; 0.

Vol. 33, n° 3-1997.
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(v) Semigroup property. Noting Lemma (3.1 ) and (4.2), the semigroup
property of the kernels {Qt}t~0 follows from the two observations that for
s, t &#x3E; 0 and ~r  ~r’  ~r" E we have

and, by the Markov property of ((n),

(vi) Strong continuity. Given what we have already shown, in order to
show that limt~0 QtF = F in C(E) for F E C(3), it suffices by standard
semigroup arguments (cf. the Remark after Theorem 1.9.4 in [2]) to show
that limt~0QtF( ) = for each  E S.

By Lemma (3.1 ), it further suffices to consider the case F = In -; ~),
where ~ _ ~~ 0 X with ~~ E n x E C~n~, and both ~
and x are nonnegative. By definition of ((n), the total variation distance
between the distribution of (( n) (t) under and the push-forward
of the probability measure by the is

bounded above by (that is, by the probability
that a coalescence has not occurred by time t). This probability converges
to 0 as t 1 0.

We are thus left with showing that

where we put G(e) = (~~ x). By the duality hypothesis,

and (4.7) follows.

(vii) Existence of a Hunt process. The existence of a Hunt process with
transition semigroup is immediate from general theory (see, for
example, Theorem 1.9.4 of [2]).
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Remarks. - (a) An inspection of the above proof shows that a similar
result will hold if the processes (5 are replaced in the definition of Qt by
certain other Markov systems of coalescing labelled partitions. This will
be the case provided that the new systems have the following properties.
Firstly, the consistency condition Lemma (2.1 ) should hold. Secondly, the
set of the labels at a fixed time should have the distribution of a subset of a

collection of independent copies of Z (so that an analogue of (4.2) holds).
Finally, the total variation distance between the distribution of the labels at
time t and that of a collection of independent copies of Z should converge
to 0 as t 1 0 (cf. the proof of strong continuity). For example, one could
have the components of the partition coalesce at a rate proportional to a
"collision local time" between the associated labels in a manner analogous
to that considered in [7].

(b) Fix kEN and let Gi,..., Gk be a partition of K into non-empty
sets that are both open and closed (that is, sets with a continuous indicator
function). Such a partition exists for all k. Let E = {(pi? 2014 . [0,1]~ :
pi + ... + pk = 1} denote the standard k-simplex. Define L : 
by Lv = (v(G1), ..., v(Gk)) and define a process with state-

space the subset of L°° (m, consisting of ~-valued functions by
Xt(e) = L(Xt(e)). It is easy to verify Dynkin’s well-known sufficient

condition for a function of a Markov process to be Markov and conclude

that X is a Feller process. The process X is the k-types analogue of our
infinitely-many-types model. In particular, when k = 2 the process {Xt}t~0
with state-space the subset of L° ( m) consisting of [0, 1]-valued functions
defined by Xt (e) _ (Xt (e) ) 1 is also a Feller process. The "cluster process"
of [7] is a particular instance of this latter construction.

Open Problem. - When Z belongs to the class of Levy processes
considered in [7], the sort of weak convergence arguments used there
in the two-type case show that the process X has continuous sample-
paths. The same result should hold (for similar reasons) when Z is a nice
enough process on R. It would be interesting to know general necessary
and sufficient conditions on Z for the path continuity of X.

5. THE STABLE CASE

Let ( ( Z1, Z2 ) , P ~zl ~z~’ &#x3E; ) be the Cartesian product of the right process
(Z, PZ) with itself. It follows from a variance calculation using (4.1 ) that
the Hunt process X evolves deterministically if and only if

E E2 : &#x3E; 0 : Zl(t) = o~ = O. (5.1)
Vol. 33, n° 3-1997.
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When (5.1 ) holds, for  E 2 we have that Xt for all t &#x3E; 0,
where ~ct E 2 is the unique point that satisfies, for p E ~l (7r1,) and x E C,

~) = 0 x), with pt the Radon-Nikodym derivative

A particularly interesting example of a non-deterministic evolution is the
case when Z is a symmetric stable process on R with index 1 C cx  2.
(Of course, Z is in weak duality to itself under m = Lebesgue measure.)
For the remainder of this section we will consider this special case. It is
not difficult to check using the scaling properties of Z and (4.1 ) that for
c &#x3E; () the law of the under coincides with the
law of under P~ ) (cf. the proof of Proposition 5 in [7]). In
particular, if 1 c~ ,~~, ,~~ E Ali, then the laws of and

under P’ coincide.

The group of translations on R induces a group of shift maps 
on 2 by (7;,~)(e) + .r). Suppose that J~I is a probability measure
on E that is stationary and ergodic with respect to this group of shifts.
An argument using the above scaling relations and the L2 ergodic theorem
shows that as c - oc the law of {X,.~(c.)}~o under [pA/f converges to
the law where ,~~ E Mi is defined by

E Ll(m) and x E C (cf. the proof of Theorem 6(i) in [7]).
In genetics terminology, the following Proposition (5.1 ) states that, at a

given time, m,-a.e. site has a population that is purely one of a countable
set of types.
On the other hand, if is as above and f3 is diffuse, then it follows from

Lemma (5.2) below and the pointwise ergodic theorem that the sequence
of random probability measures 

converges to /3 in the weak* topology on Mi, and so globally
no particular type is present with positive density.

PROPOSITION 5.1. - For It E 3 and t &#x3E; 0 fixed, the probability
measure x t ( e ) is a point mass for e E R. Moreover, there
exists a countable set S c K such that for m-a.e. e E R, Xt(e) = b~ for
some k E S.

Proof - Consider the first claim. Let g(2) be the countable field of
subsets of K? generated by sets of the form Gi x G2, where G1 and G2 are
cylinder sets in K. For G E ~~’&#x3E; put xc = 1G E C(2), and define xG E C
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by = Observe that ~3 E Ml is a point mass if and only
if (/3 ~ xc~ _ xc) for all G E ~~2~.

Let B be a countable ring of sets of finite m-measure that generates
the Borel a-field on IR. For B E Band E &#x3E; 0, define ~B E by
’~~s~~,?l~ _ C 

Observe that

It follows from (4.1 ) that

and, of course,

Thus,

Note also that 

by the Lebesgue differentiation theorem. By definition,

Therefore, for m-a.e. e E R we have

for all G E ~ ~ 2 ~ , as required.
Now consider the second claim. By the Pettis measurability theorem (see

Theorem II.1.2 of [4]), there exists a (random) m-null set N c R such that
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the set is separable in the norm (that is, total variation) topology
on M. A set of point masses is separable in the total variation topology if
and only if it is countable, and the result follows from the first claim.

Open Problem. - It follows from Fubini’s theorem that the behaviour
described in Proposition (5.1) for a fixed time t &#x3E; 0 occurs at a

set of times t &#x3E; 0 with full Lebesgue measure. It is natural to inquire if
the behaviour occurs at all times t &#x3E; 0.

LEMMA 5.2. - If M is a stationary, ergodic probability measure on ~,
then so is MQt for each t 2: 0.

Proof - be the group of operators on 
defined by

It follows from (4.1 ) that

for all ø E C~n&#x3E; ). Thus, by Lemma (3.1) and a monotone class
argument, Qt (F o Tx ) = (QtF) o Tx for all bounded Borel functions F, and
the stationarity of follows from the stationarity of .A/(. Turning to the
ergodicity claim, we need to show for all functions F, F’ E that

As the continuous functions are dense in it suffices by Lemma
(3.1 ) to take F = ~(.;~) and F’ = 7~(.;~) for ~ E 
and ~’ E L1 (m~n~ , n, n’ E N.

Note that for each z~ G R

As

it follows from (4.1 ) and (5.3) that for each /L e E

The result now follows from (5.2) and the ergodicity of 
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APPENDIX : LUSIN SPACES

LEMMA (A.1 ). - Suppose that m is a Radon measure on a Lusin space
E. There exists a bounded, continuous, strictly positive function f such that
f m(de) f(e)  oo.

Proof - By definition, each point x E E has an open neighbourhood Vx
such that m(Yx)  oo. As E is a separable metric space, Linde16f’ s theorem
implies that there exists a countable subcollection 
such that E = Ui Wi . The function 1wi is lower semicontinuous and so
there exists an increasing sequence of continuous, nonnegative functions

such that 1 yY2 = supjfij (cf. the remark at the beginning of
§A2 of [11]). It suffices to take f = where Cij &#x3E; 0 and

ci~ (1 V j m ( de) fi~ (e))  00.

LEMMA (A.2). - Suppose that m is a Radon measure on a Lusin space E.
The continuous integrable functions are dense in L1 (m).

Proof - Let f be the function guaranteed by Lemma (A.1 ). Consider
g E As ~~((g l~ nf) V (-nf)) - gill = 0, it suffices
to prove that (g A n f ) V (-n f ) is the limit in L1 (m) of a sequence
of continuous, integrable functions for each n E N. Any bounded,
Borel function is a limit in m-measure of a sequence of bounded,
continuous functions (for example, by a monotone class theorem such
as Theorem A0. 6 of [ 11 ] ) . be a sequence of bounded,
continuous functions that converges in m-measure to (g A n f ) V ( - n f ) .
Then V ( -n f ) ) - V ( -n f ) ) ~ ~ 1 = 0, as required.
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