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Large deviation estimate of transition
densities for jump processes
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ABSTRACT. - We give asymptotic upper and lower bounds of large
deviation type for the transition density of a jump type processes on ~d,
which is composed of stable-like processes on the line and vector fields
on We use the theory of Malliavin calculus both for diffusion and for
jump type processes. In the case where there is no drift, the upper and
lower bounds coincide.

Key words: Jump process, large deviation, transition density.

RESUME. - Dans cet article, nous demontrons un theoreme de majoration
et minoration de la densite pour une classe de processus avec sauts sur

Nous utilisons dans ce but un calcul de Malliavin pour processus avec

sauts, et la theorie des grandes deviations.

INTRODUCTION

Consider m+ 1 vector fields Xo , Xj , j = 1,..., m, on I~d whose
derivatives of all orders are bounded. Consider the SDE
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180 Y. ISHIKAWA

where denote 1-dimensional compensated Levy processes with the
common smooth Levy measure g(()d( and 0394zj,s = zj,s - zj,s- for

j = 1,..., m. The Markov process corresponds to a semigroup
associated to the infinitesimal generator (integro-differential operator) of
jump type

f E °

It is known (cf. Leandre [24]) that, under a non-degeneracy condition on
the Lie algebra ,Xm), the semigroup admits a regular density
pt (x, dy) = pt(x, y)dy , t > 0, with respect to the d-dimensional Lebesgue
measure dy.
We study the estimation concerning pt (x, y) of the above type, by using

the large deviation theory. That is, consider, for each e > 0, the semigroup
associated with the generator

f E 
The law dy, ~) corresponding to this semigroup possesses the

density pt (x, ~/, ~) : dy, E) = pt (x, y , for each ~ > 0. We provide
in the framework of large deviation theory the asymptotic estimate of

as ~ - 0. This type of problem was studied by Freidlin and
Ventcel [14] when the vector fields Xj(x) are not degenerate (elliptic
setting) (see also [13], [29]). Here we shall carry out our study in a

hypoelliptic setting which is our feature. For this purpose we shall apply
the theory of Malliavin calculus of jump type (cf [5], [7], [24], [30], see
also [20], [21] and [34]).

Intuitively, for small c > 0 we can compare the jump process which
corresponds to with a diffusion process corresponding to the infinitesimal
generator B~ given by

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



181ESTIMATE OF TRANSITION DENSITIES

(see Section 1 for detail). The large deviation theory for diffusion processes
has been extensively studied, and we can observe the diffusion trajectory
above converges as E - 0 to a deterministic path exponentially quick (cf
e.g., [2], [ 14]). One may expect then that the density y, c) at y of the
law deriving from ~ will disappear exponentially quick as E - 0 with
some rate functions depending on x and y.
A crucial idea in our proof is the notion of skelton trajectories. A

skelton trajectory, denoted by ~s(h,), is a deterministic trajectory obtained
from vector fields driven by a short path h in the Sobolev space. Those
trajecories are supposed to approximate jump trajectories corresponding to
A~. Two quantities given by "Lagrangian" attached to a skelton trajectory
reaching y from x are expressed by functions d(x, y), dR(x, y). These
functions play similar roles as control distances between x and y and
provide the rate of convergence above.

In Section 1 we state our result as Theorem. The lower and the upper
bounds will be proved in Sections 2 and 3, respectively. Sections 4 to 6
are devoted to the details of proof.

This study may be viewed as a continuation of Ishikawa [17], along the
line in the introduction of Leandre [22]. It may be regarded as an extension
to the jump case of various results on the large deviation theory in the
diffusion case ([8], [14], [23] and [26]), since its way of argument relies on
those in the diffusion case. The proof for the upper bound (Proposition 3.3)
also depends on Leandre’s method and results in [24].

1. NOTATION AND RESULTS

(1) Basic processes.
Given ex E (1,2), let be a symmetric jump type process on R

(truncated stable process (cf. [ 15])) corresponding to the generator

with zj,o - 0, j = 1,..., m. Here ~ E C~(~),0  7/(()  is

symmetric, supp ~ = {03B6; |03B6|  c} and ~(03B6) ~ 1 in {03B6; |03B6| ~ c/2} for some
0  c  +00. We put g(~)d~ - r~(~) (~~-1-~d~, that is, g(()d( is the Levy
measure of having a compact support.

Vol. 33, n° 2-1997.



182 Y. ISHIKAWA

By > 0, we denote the perturbed process of corresponding
to the generator

with 0~’ = 1 ~ ... ~ m. We put = ~~ ~- = 1~-,~
and zs - (~~"~~,J. ~ = (~’"~,J~ > 0. We assume

{~U ~ I?’ " m ~ are mutually independent. The law of zs is denoted

by We remark the process has the generator Z~ of the form

where ~(()~ = ~2 3 g ( ~ ) d~, in view of the expression (1.2). The Levy
measure g~(~)d~ of is again a symmetric measure on ~0~ having the
compact support, c > 0. Since ~03C6(x) ~ c03C6"(x) as ~ - 0 for p E 
we observe is ~ cwj,s in law, where Wj,s denotes 1-dimentional Wiener
process (Brownian motion), j = 1,..., m (cf. [12], Theorem 4.2.5, [19],
Theorem VII-5.4). We may assume c = 1 without loss of generality.
We denoted by H(pj) the "symbol" of the process H(pj) -

log = 1,..., Tn, and we put H(p) == 
p = (Pi? " ’~P~)’ Let L (q) be the Legendre transform (the Lagrangian) of
H(p): L(q) = supp[(p,q) - H(p)]. L(q) is a smooth, convex, non-
negative function which satisfies for each R > 0 large there exists

mR > 0, MR > 0 such that L(q) ~ MR, grad L(q)1 ~ MR for all

)q~  R, and

Indeed, we can calculate H (Pj) directly to have c > 0,
for ~p~ ~ I large. Hence H(p) = and

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



183ESTIMATE OF TRANSITION DENSITIES

for Iqj I large (cf [I], Section 14). Since 1  0152  2 we have > 2,
and we have (1.4).

(2) Function spaces.
We denote by D(I) the space of paths on I = [0,1] to IRd such

that all the components are right continuous and have left limits. For

~( - ),~/( . ) E D(7), let us denote by d ( ~ ( ~ ) , ~ ( ~ ) ) the Skorohod metric,
and by ), y( . )) the sup-norm metric (see [10], Section 13.5). We
remark that (D(I); d) is a Polish space.

Let M~(7), p > 1, be the Sobolev space

Then . is a Banach space. On the set 

we also put the sup-norm ~03C6~~ = supt~I|03C6(t)|, p E W1,p(I). In
what follows, we put p = a~ 1 > 2, and denoted by the

product space W1,03B1 03B1-1 (I) x ... X W1,03B1 03B1-1 (I) with the norm ==

For h = E W 1’ ~ a -1, let be the deterministic path
in Rd defined by

Here Xi,. are C°° -vector fields on R~ that are bounded including
their derivatives. (Here and in the sequel we identify vector fields with
the vector valued functions.) We put (see (1.17)) the restricted Hormander
condition on X1, - ~ ~ , X~,z

We denote by ~~ the C°° map W1’a~1 --+ The map
is said to be a submersion at ho E if the Frechet derivative

at ho is onto from to p~d.
Given E !Rd we put quantities d(x, y), dR (x, y) as follows :

Vo).33,n°2-!997.



184 Y. ISHIKAWA

The function d( x, y) is finite for x, y E f~d (~ ~ x) by (1.7) (cf. [8],
Theorem 1.14). Further, if Xo - 0 then d(x, y) and dR(x, y) coincide,
since (1.7) implies the submersion condition (cf the remark in Section II
and the proof of Theoreme 1.2 of [23], and Section II of 24). In this case the
function (x, y) ~ d(x, y) is continuous (cf [8], Theorem 1.14). It follows
from Theorem 5.2.1 of [14] that level set ~(r) = {~; fo r} is

compact in (D(7), ~ 1100). Further we have the following
LEMMA 1.1 (Freidlin and Ventcel [14], (5.2.5) and (5.2.6)). - For any

a > 0, ’r/ > 0, ro > 0 there exists ~o > 0 such that for 0  ~ ~ ~o, h

satisfying f01 ro, we have

and

(3) Processes and semigroups.
Let be the process given by the following SDE

Here Xo and are as in (1.6), (1.7). We put ~~ ~
The law of xt(e) (under TIê) is denoted by P. It is known

. that under ( 1.7) is continuous for all s almost surely. Further we have

PROPOSITION 1.2 (Leandre [24], Proposition 11). - Suppose that tfiere exists
C > 0 such that for all j = 1, ~ ~ ~ , m,

Then, for all s and x, exists almost surely.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



185ESTIMATE OF TRANSITION DENSITIES

We remark that ( 1.13) is satisfied if the Jacobian matrices are

anti-symmetric, > 0 is sufficiently small. Under ( 1.13), defines

a flow of C°°-diffeomorphisms which is bounded in the sense that for all
p > 1 and all multi-indices (0152) 

,

for some constants and Cl ((cx), s, p, ~), which depend
only on (a), s, p, ~ and the uniform norm of derivatives of all orders

of (cf. Leandre [24], ( 1.9), ( 1.11 )).
For e > 0, let v = ~ be a [0,1] with compact

support such that it is equal to (2 IE in a neighborhood of the origin.
Let t - Kt (x, E) be the stochastic quadratic form associated to (~) ~
defined by

We remark

(cf [24] ( 1.13)). We have

PROPOSITION 1.3 (Léandre [24], Théorème 13). - Suppose that the

assumption ( 1.13) holds. In order that the law of (x) (to > 0) possesses
a C°° density, it is sufficient that for all p > 1,

We put = (Xi,... ~~)(.r),F,~) - (xl ’ ° ° ° ’ xm )l l’~) ~
g = 2, 3, .... Here [X, Y] (x) denotes the Lie bracket of X and Y

at x. We assume that there exists some integer N such that

It follows from Theoreme III.1 of [24] that ( 1.17) implies ( 1.16). We remark
( 1.17) is stronger than (1.7). We denote by the density of the

Vol. 33, n° 2-1997.



186 Y. ISHIKAWA

law pt(x, dy, é) of The semigroup corresponding to y , 
has the generator in (0.3). Our main result is the following

THEOREM. - Assume ( 1.17). As ~ tends to 0,

If in particular 0, then we have

The proof of ( 1.18), ( 1.19) will be given in Sections 2 and 3 respectively.
The last statement follows by the remark just above Lemma I .1.

The next lemma (continuity lemma) plays an important role in proving
the upper bound (Lemma 3 .5 ).

LEMMA 1.4. - Let ll, E «~? 1 and let (lr,) be the solution of ( 1.6). Fot-
ê > 0 let xs (~) be the flow defined b.v ( 1.12). Fix K > 0 and R. > O. Then
there exist ~0 > 0, r > 0 and C > 0 such that for any ~ E ( 0, EO)

Here r > 0 depends only on The proof of this lemma will
be given in Section 6. 

~ ’

2. LOWER BOUND

We denote by the curve defined in Section 1, and by the

mapping h In this section, we prove the following

PROPOSITION 2.1. - Assume that there exist.s tz, == ( h,1, ~ ~ ~ , E W 1. ~, (2 -’

such that ~l (h) _ ~ and that is a submersion at Then

Given q > 0. We have only to show

Annales cle l’Institut Henri Poincaré - Probabilités et Statistiques



187ESTIMATE OF TRANSITION DENSITIES

for small ~ ~ 0. Given h E satisfying the assumption, we denote
by the process defined by

By P we denote the law of Then we have a transformation of
measure P and P (Girsanov transformation for jump processes) as follows
(cf [ 14], p. 149); Let a(s) - ~(~). Then

Hence the law P is uniquely defined up to h. Further, we have

for f ~ C~0(Rd).
Let (in; n e N), f n E be a series of non-negative functions such

that fn - Let 03C8 E Co (Rd) be a cut-off function such that 0 ~ 03C8  1,
~ =E 0 in r~~ and 7/) EE 1 in ~}. By the Girsanov we have

Vo!.33,n° 2-1997.
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because L(q) == supp[(p,q) - H(p)]. Since ,yl(h) _ y, we have

We put M.(e,/t) = x + > 0 and = > 0.

Then satisfies

where

We write ~(~h) : ~(~~), which also defines a flow of
C°°- diffeomorphism. We have properties as ( 1.17) also for h). That
is, for all p > 1 and all multi-indices (ex),

for some constants C2((~)~p~) and C2 ( ( c~ ) , s , p, ~ ), which do not

depend on x. Since ~, ~ as c - 0 (cf. ( 1.4)), we

have h) h) as ~ - 0 where h) is the Gaussian

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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(non-degenerate) diffusion process given by

By the assumption (1.20) possesses a C°° -density
0, h) (z) such that q1 (x, 0, h) (0) > 0, since it is Gaussian.

Then we observe

Let be the measure associated to 1 1-+ 
ir) t003B1j(s)dz~j,s)], t > 0. We can show the Malliavin quadratic
form ~(~,~,~)(.) associated to satisfies

for any compact set F C (cf. [24] ( 1.16), [23] (1.17)), and
hence posseses a C°° density h) (z) at z E Since

7/) ( v7 03B1j(s)dz~j,s) - 1 as ~ - 0, we have only to show

to get the lower bound.

To this end we have to show

as ~ - 0, for all f E and all multi-index 0152. Here we have

PROPOSITION 2.2. - Integration-by-parts formulae hold:

Vot.33.n ?- l ~W7.
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and we have

in law 

By this (2.7) follows. We prove this Proposition in Section 4. This

completes the proof of Proposition 2.1.

Remark 2.3. - Our procedure of passing ~ - 0 in (2.3) may be regarded
as "concentrating on small jumps" in view of (1.2), (1.3). Instead, there is
another way to pass to the diffusion process from the jump process; namely
0152 --+ 2 (see Bismut [9], p. 63, Remark 3 and [7], p. 187, Remarque 2).

3. UPPER BOUND

The object of this section is to prove the following
PROPOSITION 3.1.

Let p : [0, 1] be a C°° function, and let ~) be the measure
associated to

As in Section 2, we can show the measure 6;) possesses a C°° density
which we denote by Then = pP(~, y,, ~) if = 1.

Let ~ > 0 and q > 1. To obtain the point-wise upper bound, we may
assume supp p is compact by the argument above : F = supp p. Here

we have

PROPOSITION 3.2. - Let F C [Rd be a closed set. For any r~ > 0 there

exists co > 0 such that for 0  c  co

The proof of this proposition will be given just below. By this proposition
we have immediately, for 0  C  ~o ;

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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However, to obtain the upper bound for the density we have
to show further that

PROPOSITION 3.3. - For 0  ~  ~o, for all multi-index a and q > 1, there
exist C(a, q) and M(a, q) such that

Indeed, Proposition 3.3 easily leads

for all q > 1, and we have the conclusion of Proposition 3.1.
First we give the proof of Proposition 3.2, and after that of Proposition 3.3.

Proof of Proposition 3.2. - We first show

LEMMA 3.4. - Given any closed set E in (D(I ), p), for any r~ > 0 there
exists 0 such that

Then the conclusion of Proposition 3.2 follows if we put

which is a closed in (D(7),/)).

Proof of Lemma 3.4. - We may assume

(otherwise the assertion is trivial). Choose

Then E is disjoint from

Vol. 33, n° 2-1997.
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is compact (cf Section 1, [ 11 ], Proposition 3.1 ), there exists
c > 0 such that ~(~.(~),~(r)) > c for x. (~) E E. Since

is arbitrary, we have the assertion by the next lemma.

LEMMA 3.5. - Given any c > 0, r > 0 and r~ > 0, there exists co > 0
such that for 0  c  co,

Proof. - Let M(r,c) = {?/.(~);~.(~),t/.(~)) > c for alt t/.(~) such
that Then c ~ ~.(/t) e M(r,c)].
Since ~(r) = r} is compact ( in (P(7), ~ - ~)), there
exist /ti, - - -, hN ~ 03A6(r) such that 03A6(r) C ~Ni=1B(hi, 03B1) = U; B(h, a) =

h,’11>  cx}. Then 6 ~(r) and

By Lemma 1.4 (continuity lemma) with t = l,j~=r2014~+1, we have,
for some ~ 1 > 0, a > 0 and c > 0,

On the other hand, it follows from ( 1.11 ) that, for some 6-2 > 0,

Choose 0  c  ~2 ) . Then by (3.11 ), (3.12),

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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since K = r 2014 ~ + 1. Choose c > 0 small, and we have the assertion.

Proof of Proposition 3.3. - The proof is rather delicate and is carried out
in a similar way as in [24], but it is more tedious in our case. We shall
devide it into four steps.

(Step 0). - Let Ki(-) ~ K1 (x, ~) ( ~) denote the stochastic quadratic
form at t = 1 associated to ~s (~) (( 1.14)). Let ( f i, z E I ) be a family
of functions : R - R with some index set I. For q > 0 small we write

= if = 0 uniformly in i, and = if

(/~(~)/~) = °i (1) for all p > 1. In case that is a random variable

,fi (w, r~), W E !1, we say as above if there exists a subset S~1 of probability
1 such that = 

In view of the integration-by-parts formula ([5], Section 4), we have

Hence

where

with

(cf [7], (4.50), (4.91)). Hence it is sufficient to show, for all p > 1 and
e E 

where 1. + 1. = 1.

To get (3.15), fix p > 1, e E Here we introduce a new parameter
q = ~(~-) ~ ~. Note that -~ oo as c -~ 0. We shall show

for some integer N.

(Step 1 ). - Choose arbitrary integer k  2014~2014. Since

Vol. 33, n° 2-1997.
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(cf. [24], ( 1.11 )), in order to get (3.16) it is sufficient to show, for some
r > 0,

where e ’~e.
To get (3.19) it is enough to show

for some ri > 0, r2 > 0, r1 > r2 where dvs (u) = is the

Levy measure of given (i.e. ds x is the compensator
of AKg(e) with respect to dP). Indeed, since

is a martingale (given we have

de l’Institut Henri Poincaré - Probabilités et Statistiques
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By (3.20), R.H.S. is inferior to

since x ~r2-r1 ~ oo as ~ - 0. Hence we have (3.19).

(Step 2). - Next we show (3.20). For each vector field .¿~ we put the
criterion processes

for s E ( ~; + 1 )~y ’~r-r~~ . By e. k, ~, 7]) we denote the Levy
measure of Y, e, k, é, 7]). To get (3.20) it is sufficient to show that,
for given ~ > 0 there exist integers 7l, == n(~), n1 = n1 (7]), such that

Indeed, consider the event > c > 0; s E 
1)~~~]}. Then we can show

for 77  for some 11 > 0 (cf. [24], (3.16), (3.18)). Here we can
choose r > 0 such that C~r~-a~’~2 > (~y-1’~rr~)-~r~l for q small, so that

Vol. 33, n° 2-1997.
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for some rl > 0, r2 > rl. Following (3.22), the probability of the

complement of this event is small (= ( 1 ) ), hence (3.20) follows.

(Step 3). - To show (3.22), note that it is equivalent to

The process Cr(s, Y, e, k, ~, r~), where Y is a vector field, has the following
decomposition

for t E ( I~.yl’~r r~, ~ ~; + 1 )-y’~~ ~l ) ~ Here

denotes the compensated sum so that this term is a martingale,
and gc (() is the Levy measure of Section 1 and the beginning of

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Section 4 below). If we denote the mapping

then ~(0) = ~-~e, (~-M) ’[~y](~_~))~ Hence we have to
estimate the term Cr(~[y,X~e,~~) to estimate 
Note that if we assume

then we can show there exist -y’ > 0,~ > 0 such that

for ~ ~ (c03B3-1)03B3’1 and

for s E (k + 1)~y~’’r~~ (cf [24], (3.28), (3.29)).
Let N be the maximal degree of degeneracy of Z.~(Xi, - " , on IRd

(i. e. the subalgebra consiting of the Lie brackets up to order N spans the
whole space at each point, cf (1.17)). Let Y be an arbitrary vector field
in this subalgebra. We have the following
LEMMA 3.6. - If there exist integers n = n(r~), nl = nl (1]) and a stopping

time T = T(k; e, ~, 1]) E (k + such that

Vol. 33, n° 2-1997.
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then there exist another integers n’ = ~zl = and another

stopping time T’ = T’(~;. e, ~, ri) such that

and

Here we put eT - ~(~~zr 
Granting this lemma for a while (the proof will be given in Section 5),

we observe that, for 7~ = 1~... ~ N,

implies
there exist rL’ = n’ ( ~r~ ) , = and T’ such that

and satisfy (3.33). Iterating (3.31 )’ ===} (3.32)’, we have, for a vector field
Y which has the order N on its Lie brackets,

Annales cie l’Institut Henri Poincaré - Probabilités et Statistiques
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implies
there exist integers n" = nl’ = and T" such that

and

We remark that the assumption (3.34) is verified for some Y, n = 
and nl = 7~1 (r~) by the assumption (1.17) in view of (3.27), and that
(3.34) implies (3.28). Hence we have (3.35) which implies (3.22)’-granting
Lemma 3.6, and we finish the proof of Proposition 3.3.
We will give the proof of Lemma 3.6 in Section 5. This completes the

proof of Proposition 3.1.

4. PROOF OF PROPOSITION 2.2

The proof of this proposition is also a bit long.
[A] Integration by parts of order l.

Let v(() be the function appearing in (1.18), that is, ~(() ~ ~/c
small. The symmetric Levy process = (cf Section 1 )

has a Poisson-point-process representation = where

Vol. 33, n° 2-1997.
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is a Poisson counting measure on R associated to with the

mean measure

(cf. (1.3)). We denote by P~ the law of = 1, ~ ~ ~ , m.
Recall that (cf. (2.3)) the process is given by

We follow [5], Section 6. Let v = (~i, -" vm ) be a bounded predictable
process on [0, to We consider the perturbation

Let be the Poisson random measure defined by
(4.2)

We put ~ = ~ J’ and denote by P~ its law, j = 1, ... , m.

Set = {I + and

Then Zt (~, h) is a martingale, and P~7~ has the derivative

where denotes the a-field generated by = 1,..., m (cf. [5],
Theorem 6-16, Bismut [7], (2.34)). 

’

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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Consider the perturbed process u/ (c, h) defined by

Then = = and
we have 0 = E By the chain rule,
for ~~~ small, we have

We have for A = 0

First, by Corollary 6-17 of [5], we may differentiate Zt with respect
to A to obtain

Here

and {--.} in R.H.S. - (2 + (-1 - as ~ - 0, since

(|03B6| ~)-1-03B1 for 1(1 small (cf Section 1). Since ----> 

in law, h) - ( 1 - 0152) ’L7=1 t0vj03B4wj,s in law.

Next we compute Ht = H03BBt(~, ~) ~ ~u03BBt ~03BB. u03BBt is differentiable a.s. for
~ ~ I small, and its derivative at A = 0, Ht = is obtained as the

Vol. 33, n° 2-1997.
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solution of the following equation

[5], Theorem 6-24). Namely, ~ is given by

(cf Bismut [7], (2.47), (4.62), [5] (6-37)). Here denotes the

compensated sum (cf. [7]), and cpt denotes the push-forward 
(~(e, h) )Y (x), that is, cpt = ( a‘~t (~, h) ) . We will also use the following
notation; denotes the pull back

where

(cf remark just below ( 1.15)). We remark Ht is the Frechet derivative

of to the direction of v;. Observe that as ¿ - 0 tends

in law to

Annales de l’Institut Henri POIIiC’Cll’C’ - Probabilités et Statistiques
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where pt : x - Indeed, since v has a compact support and
v(() = is in a neighbourhood of 0, we may assume

_ ~ (~Oz~ s)2 = (Oz~,s)2. In view of that - 

in law, and that 
> 

= = As, we have (4.9) (cf [6] (1.13),
(2.14)). Remark that we can regard Ht as a linear functional : (~d -~ R
by (using the above notation)

(4.10)

Further the process may be replaced by the process with values in
Tx(Rd), which can be identified with the former one by the expression
v~ _ That is, v~ = 5;(q).
We put

in what follows, so that vj is predictable. Using this expression, Ht defines
a liner mapping from Tx ( (~ d ) to defined by

We shall identify with this linear mapping. (In the sequel we
shall use the notation h)) for
simplicity.)

Let Kt = h) be the stochastic quadratic form on ~d x R~ which
is essentially the same as what appeared in Section 2 :

We put, for 0  s  t, Ks,t = Ks,t(.,.) be the quadratic form

That is, Kt = Ko,t. We remark that by the similar reason as above, Ks,t
tends in law as E -~ 0 to defined by
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It follows from (2.6) that

for any compact F C By the inverse mapping theorem we can
guarantee the existence and the differentiability of the inverse of Ht (~, h)
for |03BB| small, which we denote by Ht ’ -1 : Ht ’ -1 = [H03BBt](~,h)]-1.

Using the identification above, we can carry out the integration-
by-parts procedure for = Recall we have

E[F~(~,/~) . Z;]. Taking the Frechet derivation ~ IÀ=o
for both sides yields

Here a~ Ht ’-1 is defined by

e G R~, where is the second Frechet derivative of 

defined as in [5], Theorem 6-44. We put DHt = ~R~~=o. then

= This yields

where

Since tends in law to

in view of (4.7) (cf. [6], (4.30)).
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Lastly, we compute Ht-l DHtHt-l. Observe that DHt satisfies the

following SDE

(cf [5] (6-25), the proof of Theorem 6-44). By the argument similar to
that in [6], p. 477, we have
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Here

for any compact set F C W1~ aa 1 , j = 1,..., m. Indeed, we have

(t, s, ~, h) II E LP, p > 1 by (4.13), the uniform
LP -boundedness of ( a~~ ~ ~ cp.~ (~, h) ) and a~~ ~ ~ ( a~ cpu (~, ))-1 (2.4). Further
by the assumption on v (() ((1.18)), we have E LP , p > 1

(cf [7] (4.22)), which implies (4.19) for cases z = 1, 2. The case for z = 3
follows since the factor tends to 0 in law while others

remain bounded.
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Hence H-1tDHtH-1t tends in law as c - 0 to

We put

and

which are in LP p > 1 (cf [6] (1.4)). Here the term for M~ ’~1~ (t, s, é, h)
tends to 0 as c - 0 by Fatou’s lemma.
Combining (4.16), (4.20) (t = 1)
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where

On the other hand, recalling the definition of Us (0, h) (cf (2.5)), we
have the integration-by-parts setting for diffusion processes, by Bismut [6]
(4.14) with Y = D~, that

where

This leads our assertion of order 1.

[B] Integration by parts of order 2.
We identify the second derivative Df(x) with the tensor (matrix)
M ~ q), p, q E ~‘~.

We devide the interval [0,1] into [0, ~) and 2 , I], to avoid iteration of
integration by parts on the same interval (integration by parts by blocks,
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cf [7], Section 4-g)). By the result in [A] and by the strong Markov
property of h), we have

where Ex denotes the conditional expectation with respect to trajectories
starting from x. Here

where we put
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for 0  ti  ~2 ~ L Here we have similarly as in (4.19)

for any compact set F C = 1,..., m. We let E - 0, then
R.H.S. of (4.26) -

Here
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and

which are in LP, p > 1.

Combining these yields that tends as é - 0 to
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On the other hand, in view of Remark 14 of [7], p. 227, we obtain

where

and we have the assertion of order 2.

[C] Integration by parts of order n.

Calculations for higher order of derivatives are similar. That is, to

compute for the n-tensor we devide [0,1] into

[0, ~) U [~, 4 ) U [~) U -. U 2 2n 1 1 1, I], and execute the integration by
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parts on each step. We put for 0  ti  ~2 ~ 1

and let 77~1~2;~) ~ 00,2~1,1~0,2?!). Then the procedure of
estimation of of order 1 leads that

(4.33) 
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where In is a linear combination of products of expectations (cf [30],
Section 2.e). Since

(cf (2.5)), and since

for 0  ti  ~2 ~ 1 and for any compact set F C the limiting
procedures are justified, and we have the convergence of order n.

This completes the proof of Proposition 2.2.

5. PROOF OF LEMMA 3.6

Lemma 3.6 follows from the following two lemmas, which we cite from
Leandre [24].

LEMMA 5.1 (cf. Leandre [24], Lemme 111.2). - Let a process
which has the following canonical (Doob-Meyer) decomposition

with = Here we assume
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LEMMA 5.2 (cf. Léandre [24], Lemme III.3). - Assume that there exists
a process which has the decomposition (5.1 ) satisfing (5.2), (5.3).
Assume further that the criterion processes == (t), Cre,~,~(t)
satisfy the following : there exist 0152 > 0, ~y > 0, t1 > 0, n > 0 and c > 0
such that if

then the Levy measure of satisfies

 (Ct-l )~(1.
If for all p > 0 there exists some integer nl such that

then, for all p > 0 there exists n’ = n’ (r~) sueh that

where = inf{t > 0; 
Let

where Z is a vector field in Z~(~i,’ -’, X rn), and we apply those lemmas
for ( Y, Z) such that et Xj 

= é by using the Cam p bell-Hausdorff
formula. We shall show that assumptions (5.2), (5.3), (5.6), (5.7) are satisfied
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later. Lemma 5.1 follows from the Burkholder-Davis-Gundy inequality, and
we omit the detail. See [24] and [3.25], p. 240.

Lastly we check conditions (5.2), (5.3), (5.6), (5.7). By (3.25), we can put

t E (0,1]. Observe that

and

 +00. Hence

for all p’ > 0, p > 1. This leads (5.2).
Next we put

Then == = ~ x dt, where is

the sum of transformed measure of by
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Hence

Hence +00. This leads (5.3).
We put as above, and

Then (5.6), (5.7) follows from (3.29), and (5.9)-(3.34) respectively.
Q.E.D.

6. PROOF OF LEMMA 1.4

In this section we give the proof of Lemma 1.4 along the idea of
Leandre [27] (cf. also Azencott [2]). Recall the definition of and

{~)} : :

Now rewrite
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Since the vector fields Xo, Xi, - " , Xm are C°° and bounded, we have
only to estimate the first term, due to the Gronwall lemma (cf [12],
Appendixes 5). We can rewrite the first term as

by the integration by parts formula. We write here [~ =

([~ ,X~(~(~))]~) as a vector. We write 

In what follws we write = (w(1),t, ’ ’ ’ , by coordinates.

Consider the ball B(R) = {x E Ixl (  ~}, and let T be the exit
time of from B(R) . Let Ti = be the exit time of from

the interval Let 0 be the h~  r}.
The process
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is an exponential martingale. Here denotes the mapping

Fix s,i, and we If ]  Ki then ]  Cr~
on I  r}" where C = CK1 does not depend on s, i.
Then 1 - ~~3 ~  C~ ~2 ~~ 2 for )A~j ~ ~2 . Hence, for e > 0 small
and r > 0 small,

since g~(~) _ with g(z) ~ for ~z) small, and
since supp g~ is bounded.

We apply the martingale property and the upper bound of exponential
type (cf [28], Lemme 17) to with T  1, we have in view of (6.6)
and that supp g~ is bounded

for A’ > 0. Choose A’ = 2 log I)... I and A = then

This implies, since 1  0152  2,

Vol. 33, n° 2-1997.



220 Y. ISHIKAWA

Next we study the term w~2~,t. We remark that ~w~2~,., w~2~,.~t  Cct
for some C > 0. We can apply again the upper bound for the exponential
type, so that

for A E R. We put A = ~log(~). Then

for C > 0 small, c > 0 small and for some K’ > 0.

Since the vector fields are smooth and bounded

including their derivatives, the remaining term

remain small on 0 if we choose r small.

Combining this with (6.10), (6.12) implies (1.24). This completes the
proof of Lemma 1.4.

7. CONCLUDING REMARK

Our aim was to provide a framework of large deviation in case of jump
processes. Unfortunately, we can not proceed (contrary to the diffusion case)
from estimates ( 1.18)-( 1.20) to the short time asymptotic as

t - 0. This is because the driving processes do not have the scaling
property, and hence ~,1 ) . (As for the short time
asymptotic for the type of jump processes treated in this article, see [16],
[18].)
The reason for this is that we have confined ourselves in Section 1 to the

simple case where the support of the Levy measure of the driving process
is compact. Although this condition may not be indispensable, we have not
been able to confirm Lemma 1.4 when the support is not compact.
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