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Attainable claims with p’th moments
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ABSTRACT. - The paper deals with the following question arising naturally
in Mathematical Finance: "What is the good notion of the space of attainable
claims in LP(P)?"

Fix 1  p  oo and a semi-martingale S = (St )tE+ which is locally in
LP(P). It is natural to define the space Kp of simple p-attainable claims
as random variables (H . S)oo where H are simple predictable integrands
satisfying suitable integrability conditions insuring that ( H ~ .8)00 E LP(P).
Then one may define the closure Kp of Kp in LP(P) and ask whether
the elements of Kp may be written as (J~ ’ S)oo for appropriate (not
necessarily simple) predictable integrands and study the duality relation
between the space Kp and the equivalent martingale measures Q for S
with 4Q E Lq(Q) where 1 --~ q = 1.

In the case of continuous processes S, the situation turns out to be nice
and Kp consists precisely of the random variables (H . S)oo such that H is
predictable and H . S is a uniformly integrable martingale with respect to
each equivalent martingale measure Q with ~ E 

In the case of processes with jumps the situation is more intriguing:
it turns out that Kp should be replaced by the space Dp which is the
intersection of the LP closures of Kp - and KP + This
"sandwich-like" definition of Dp may be interpreted naturally in economic
terms and this notion allows to prove a general theorem analogous to the
theorem for the continuous case.

A.M.S. Classification : 90 A 09, 60 G 44, 46 N 10.
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744 F. DELBAEN AND W. SCHACHERMAYER

We also give examples which are intended to convince the reader that the
concepts defined in the paper are indeed the natural notions for attainable
claims with p’th moments.

Key words: Attainable claims, pricing by arbitrage, mathematical finance.

RESUME. - Le present papier traite la question que l’on rencontre de
maniere naturelle dans la finance mathématique : « Quels sont les biens
contingents atteignables dans »

Prenons 1  p  oo et une semi-martingale S = localement

dans Il est naturel de définir 1’ espace Ksp des biens contingents p-
atteignables simples, comme l’espace des variables aléatoires (H . S)CX) où
H est un processus simple previsible, vérifiant une condition d’ integrabilite,
assurant que (H . On peut defini r la fermeture Kp de K;
dans et se demander si les elements de Kp peuvent etre écrits comme
(H . pour un processus prévisible, pas nécessairement simple, et on
peut etudier la dualité entre Kp et 1’ ensemble des mesures Q qui sont des
mesures de martingale pour S, avec ~ E Lq (~), ou P -+ q = 1.
Dans le cas d’un processus continu S, la situation est agreable et KP

est précisément l’espace des variables aléatoires (H . telles que H est

prévisible et H . S est une martingale équi-intégrable par rapport a toute
mesure equivalente de martingale Q avec ~ E Lq (IP).
Dans le cas d’un processus avec sauts la situation est plus intriguante:

l’espace Kp doit etre remplacée par l’espace Dp, qui est 1’ intersection

des fermetures dans LP de Kp - et Kp + Cette situation

« sandwich » de Dp peut etre interpretee de fagon naturelle en termes
économiques et la notion permet de démontrer un théorème analogue au
cas d’un processus continu.

Nous donnons aussi des exemples qui doivent convaincre le lecteur

que ces notions sont en effet les bonnes notions de biens contingents
atteignables avec moment d’ordre p.

1. INTRODUCTION

We consider an (~‘~-valued càdlàg semi-martingale As usual

in Mathematical Finance, S models the price process of d stocks and
economic agents are allowed to trade on these stocks. An easy way to

formalize this concept is the notion of simple integrand (we refer to [P

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



745ATTAINABLE CLAIMS

90] for the theory of stochastic integration), which is a linear combination
of processes of the form

where T2 are finite stopping times and the Rd-valued random variable
f is -measurable. We then may form the stochastic integral

and the random variable

The interpretation is that H defines the trading strategy of buying at
time T1 the amount of = ( f 1 (c.~), ~ ~ ~ , f d (cv) ) units of the stocks

S = ( ~~ 1, ..., Sd) and selling it at time T2 . At time t E [0, oo] the random
variable (H . describes the cumulated gain (or loss) up to time t and
(H . S)~ (c~) the final result, if an agent follows the trading strategy H.
We call the linear space spanned by the above random variables (H . 
the space of claims attainable by simple integrands or by simple trading
strategies.
The concept of simple trading strategies does not require any sophisticated

concepts from the theory of stochastic integration and allows the obvious
economic interpretation given above. But, of course, the natural question
arises, what happens if "one passes to the limit". Recall that even in

the most basic example of Mathematical Finance, the replicating portfolio
for a european call-option in the Black-Scholes economy, one has to go
beyond the concept of simple integrands and allow more general predictable
processes H as trading strategies.

There is a well-established theory of stochastic integration for a semi-
martingale S and there is a precise concept of S-integrable predictable
process H, so that the semi-martingale

is well defined (see e.g., [P 90]). But this notion is too wide to be useful in
Mathematical Finance. For example, if S is standard Brownian motion with
its natural filtration R. Dudley [D 77] has shown that any 
measurable random variable f may be represented as f = (H.S)~ for some
S-integrable predictable process H. Hence some additional admissibility
condition is needed to define a concept useful in Mathematical Finance.

Vol. 32, n° 6-1996.



746 F. DELBAEN AND W. SCHACHERMAYER

One possible way, which goes back to Harrison-Pliska [HP 81], is to

require in addition to the S-integrability of H that the process (H . S) is

uniformly bounded from below (compare [DS 94]).
This notion of admissibility has an obvious interpretation as a budget

constraint of the economic agents, avoids paradoxes coming from doubling
strategies (see [HP 81]) and allows a satisfactory duality relation between
admissible attainable claims and P-absolutely continuous local martingale
measures for S (see [DS 94]).

In the present paper we adopt a different point of view by using
approximation with respect to the norm of This approach goes
back - at least - to Harrison-Kreps ([HK 79], [K 81]) and arises naturally
- at least for p = 2 - in the context of optimization (compare [St 90],
[Schw 93], [MS 94b]). Fix p E [1, we want to investigate the question
which S-integrable stochastic integrals (H . S) make sense in the context
of the space and what the resulting subspace Kp of spanned
by the random variables (H . is.

An aspect of central importance will be the duality relation between
the space Kp of attainable claims and the martingale measures Q with

~ E This line of research is stimulated by ([K 81], [KLSX 91],
[KQ 92], [Ja 92], [AS 94], [DS 94]).

If S is a martingale under P it is clear what the natural notions are:

If 1  p  oo then we are led to consider those S-integrable predictable
processes H such that (H . S)t remains bounded in and, if p = 1,
such that (H . S)t is uniformly integrable. A celebrated result of M. Yor
([Y 78], for the vector-valued case see [J 79]), states that the resulting
space Ki formed by the random variables ( H ~ S)oo, where H runs through
the predictable processes such that (77 - S) is uniformly integrable, is

closed in It follows that Kp = Ki n is closed in 

in the case p = 2 this classical (and very easy) result was observed by
Kunita-Watanabe ([KW 67]).

But the problem at hand is more delicate if S is only assumed to be
a semi-martingale under I~ and - as usual in Mathematical Finance - a

martingale only under some measure Q equivalent to P. In this case one may
proceed as follows: one calls a predictable S-integrable process admissible
if (H . S) remains bounded in the space of semi-martingales (with
a uniform integrability condition added in the case p = 1) and define Kp
as the space formed by the respective random variables (77 - S)x. Then
the crucial question arises whether or not the space Kp is closed in 
(compare [Schw 93], [MS 94a], [DMSSS 94]). This will not be the case,
in general, and can be shown only under rather strong requirements on the

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



747ATTAINABLE CLAIMS

process S. Loosely speaking, one only gets nice results if S is not too far
from being a (local) martingale under P.

In the present paper we adopt a more general notion of admissible
stochastic integrals which is designed to insure under very weak assumptions
on S (the existence of an equivalent local martingale measure Q for S with
~ E L~(P)) that K p (as well as the space Dp to be defined below) are
closed in To define these notions we have to be more formal and fix

precisely the setting. Throughout the paper p E [1, oo] will be arbitrary (but
fixed) and q will denote the conjugate exponent, 1 p + 1 q = 1. On we

shall consider the norm topology, if 1  p  oo, and the weak-star topology
Ll), if p = oo. S will be an Revalued càdlàg semi-martingale based

on (0, .~’, ~) which is locally in in the following sense:
There exists a sequence (Un)  1 of localizing stopping times increasing
to infinity such that, for each n E N, the family ~ ST : T stopping time,
T  Un, is bounded in (and uniformly integrable in the case p = 1).
In the case p = 1 this notion is known in the literature under the name
"S is locally of class D".
A predictable Revalued process H which is a linear combination of

processes of the form

where Tl  T2 are finite stopping times dominated by some and where
f is in LOG (Q, ~) will be called a simple p-admissible integrand for
S. We denote by I~P the subspace of 

Similarly as in [DS 94] we let

and

denote the set of P-equivalent (resp. P-absolutely continuous) probability
measures on .~’ having q’th moments and such that S is a local martingale
under Q. Throughout the paper we shall make the assumption ,~! ~ ( ~ ) ~ 0,
which is natural in our context (compare [HK 79], [St 90], [DS 94]).
Vol. 32, n° 6-1996.



748 F. DELBAEN AND W. SCHACHERMAYER

One easily deduces from Holder’s inequality that our definition of simple
p-admissible integrands was designed in such a way that

In the easy case when n is finite it is a simple matter of linear algebra
to check that (1) defines a complete duality relation between K sand

(the subscripts p and q being superfluous in this case): Under
our standing assumption Jl~t e ( ~ ) ~ ~ the random variable f (resp. the

probability measure Q) is in K’ (resp. in iff = 0 for all

Q E (resp. for all f E KS) (compare [HP 81], [DS 94]). But, of
course, we cannot expect that this duality relation carries over in a naive
way to the case when n is not finite any more, the most obvious obstacle

being that K~ will not necessarily be closed in This leads us to

the central concepts of this paper.

1.1. Notation

In the above setting let

where the bar denotes the closure with respect to the norm topology of
for 1  p  ~o, and with respect to the a*-topology, for p = oc.

The interpretation of the elements in K~, is obvious: a random variable

f E LP is in Kp if it can be approximated by random variables (H . S) x
where H is simple and p-admissible. The space Dp (which clearly contains

has a more intriguing interpretation: a random variable f E LP is in

Dp if it may be approximately "sandwiched" between elements of K;;,
i. e. if there are simple p-admissible strategies H+ and H- such that

((77+ . f) - as well as ({H- ~ f )+ both are small with respect
to the topology on An economic agent will wish to approximate f
by either { H+ ~ S ) x or ( H - ~ depending on whether she wants to buy
or sell the contingent claim rnodelled by the random variable f. Although
the definition of D~, might seem weird at first glance, a moment’s reflection
reveals that it is quite natural from an economic point of view.
Theorem 1.2 stated below, which is one of the main results of this paper,

shows that the notion of Dp is such that there is a satisfactory duality
between Dp and and that the elements of Dp may be written as
(H . for a precisely defined class of integrands H.

de l’Institut Henri Poincaré - Probabilités et Statistiques



749ATTAINABLE CLAIMS

THEOREM 1.2. - Let 1  p  00, q its conjugate exponent, S a semi-
martingale locally in such that ~ ~, and f E The

following assertions are equivalent:
(i) f E Dp.
(ii) There is an S-integrable predictable process H such that, for each

Q E the process (H . S) is a uniformly integrable Q-martingale
converging to f in the norm of L 1 (Q).

(ii’ ) There is an S-integrable predictable process H such that, for each
Q E the process (H . S) is a uniformly integrable Q-martingale
converging to f in the norm of L 1 (Q).

(iii) = 0 for each Q E 

(iii’) EQ(/) = 0 for each Q E 
Of course, the question arises, whether the concept of "sandwich-able"

contingent claims is vacuous in the sense that we always have Kp = Dp.
An example (for the case p = 2) given in section 3 below, shows that
this is not always the case, i. e. , there are situations where Dp strictly
contains Kp. From the economic point of view this leads to an interesting
(and paradoxical) interpretation: in example 3.1 there is a contingent claim
10 E L~(P) such that, for every simple 2-admissible integrand H we
have f0~L2(P) ~ 1 but, for c > 0, there are simple 2-
admissible integrands H+ and H- such S) - f0)-~L2(P)  ~
and ~~((H- ~ S) - fo)+~~~~’(~)  ~. Hence fo may or may not be

approximated in the L2-sense by simple 2-admissible integrands depending
on whether agents are allowed to "throw away money" or not. Note that this
phenomenon occurs although the process S does not permit any arbitrage
opportunities (remember: we assumed 0).
On the other hand, in section 2 we shall show that the above phenomenon

can only occur if S has jumps, i.e., for continuous processes S we always
have that Kp = Dp.
The paper is organized in the following way: In section 2 we proof

theorem 1.2 and the anounced result on continuous processes. In section 3
we construct two counter-examples.

2. RESULTS AND PROOFS

We now pass to the proof of the Theorem 1.2 stated in the introduction
above.

Vol. 32, n° 6-1996.



750 F. DELBAEN AND W. SCHACHERMAYER

Proof of Theorem 1.2. (i) ~ (iii’ ) : For Q E we have that Q
takes values::; 0 on Kp - and values > 0 on Kp + hence

Q vanishes on Dp.
(iii) O (iii’ ) As (iii’ ) ~> (iii) is trivial we have to show that (iii) ~> (iii’ ).

Suppose to the contrary that there is f E such that = 0 for
all Q E but such that there is Qo E ~ 0. Fix
Qi E (remember: ~ f~) and note E 

0, a contradiction.

(iii’) =~ (i) : If f ~ Kp - then the Hahn-Banach theorem provides
us with an element g of L+ ( ~ ) vanishing on Kp - so that, after

normalisation, it is the density of a non-negative probability measure R in
and such that Ep(fg) = ER(f) > 0.

The case f ~ is similar.

(i) ~ (ii’ ): Fix f E Dp and Q E first note that the identity
mapping considered as an operator from to L 1 ( ~ ) is well defined
and continuous. Hence we have that

which means that there is a sequence = ((Hn . in K;
such that

But from the martingale property and (iii) - which we have already proved
to being equivalent to (i) - we get for each n E N

which implies that

i.e., f is in the L1(Q)-closure of K;.
The rest of the proof follows an argument of C. Stricker ([St 90],

rem. III.2): We may identify / - as well as each f ~z - with a uniformly
integrable martingale by letting it 7t). We now are in
the position to apply the theorem of M. Yor ([Y 78], cor. 2.5.2, for the
vector-valued version see [J 79]) - to exhibit a predictable integrand H
with the desired properties with respect to Q.

Annales de 1 ’Institut Henri Poincaré - Probabilités et Statistiques
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We still have to show that H also has the desired properties with respect
to each R E We have to show that (H . 5~ t for

each t E R+, which will readily show that the R-almost surely defined
stochastic integral H . S is indeed a R-uniformly integrable martingale.
As R E A4q(P) we have that each (77~, ’ S ) is an R-uniformly integrable
martingale so that (Hn. S ) t = ~ ~ ( Hn ~ By the same argument as
above converges to f in L 1 ( R) and therefore 
is a Cauchy sequence in L 1 ( R) that converges to (H . S)t t in and

therefore also to (H . 6~ t in This shows that (H . S ) is indeed a

R-uniformly integrable martingale converging to f in L 1 ( R) thus finishing
the proof of the implication (i)=~ (ii’).

(ii’ ) ~> (ii) is trivial and

(ii) ~ (iii) is obvious.

Q.E.D.

Remark 2.2. - (a) In the case 1  p  oo we can also formulate the

equivalent characterisation

(ii") There is an S-integrable predictable process Ht such that, for each
Q E (or, equivalently, for each Q E the process (H . S)t t
is a Q-martingale converging to f in the norm of H 1 (Q).

It suffices to remark that the identity mapping from to is
in fact a continuous operator into 

Indeed, if f E LP(P), is the associated

martingale and f * = supt|ft| I is the maximal function, there is a constant

Cp such that and therefore  

(b) Note that in the theorem above we did not assert that the process
(H ,S)t converges to f in There is simply no reason for this assertion
to hold if 1  p  oo: it is easy to construct examples of (continuous)
processes, satisfying the assumptions of the theorem and such that (H ~ S)t t
does not converge to f in 

(c) Questions leading to more demanding counter-examples are the

following: Can one replace in (i) above Dp by which seems at

first glance a much more natural object than Dp? Or: Can one replace
the requirement "for each Q E in (ii) by the requirement "for
some Q E .~f q ( ~ )"? 
We shall see in section 3 below that the question to both answers is no,

in general. However, we shall presently show that the answer to the first
question is yes for the case of continuous processes.

Vol. 32, n° 6-1996.
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THEOREM 2.2. - Suppose that S _ is a continuous process, let
and suppose that ~ 0.

Then Kp = Dp.

Proof - Suppose first that 1  p  oo. Let f E Dp ; by theorem 1.2
there is an S-integrable predictable process H such that ((H ~ S)t)tE+ is
a uniformly integrable martingale with respect to each Q E and
such that almost surely

The definition of Dp implies the existence of sequences (H+~n)~ 1 and
of simple p-admissible integrands such that, for

we have that (( f - and (( f - tend to zero in

LP(P). By the argument used in the proof of theorem 1.2 we deduce
that, in fact, ( f - and ( f - tend to zero in L~(Q),
for each Q E It follows from the martingale property that, more
generally, for each Q E and each (not necessarily finite) stopping
time T, we have

We have to show that, for E > 0, there is a simple p-admissible integrand
H~ such that

For C’ E R+ let

so that

Let 8 > 0 to be specified below and find C = C ( b ) > 1 such that

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Some warning seems in order here: There is no reason that (H . S)Tr
converges to (H . S)oo, as C -~ oo with respect to the norm of 
(compare, e.g., Example 3.1 below). We have to be more careful and to
use the continuity of S in a nontrivial way.

Let

and define, for n E N

We deduce from (1) that ( h+’ n ) r°°_ 1 and ( h- ~ n ) ~ 1, converge to h in Ll(Q)
and therefore in measure. For r~ > 0, again to be specified below, we
therefore have that, for n = sufficiently big,

Fix n such that the above inequalities hold true and define the 
measurable sets A+ and A- by

so that A+ and A- are disjoint subsets of {T c  oc } covering this set up
to a set B = {Tc  oc} B (A+ U A-) of P-measure at most P(B)  27~.

Define the predictable integrand H

and define the stopping time T as the first moment after Tc when
(H . 5~ t = 0. We want to show that

if 8 = > 0 and y = r~(C,’(b). E) > 0 are sufficiently small, where

As

Vol. 32, n° 6-1996.
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it will suffice to show that each of the three terms on the right hand side
is less than ~/3. As regards the last one note that

if ~ = ~(C(03B4),~) is small enough.
As regards the first two terms in (3) we only estimate the first one (the

second being analogous): we split the set A+ into A+ n {T  00} and
A+ n {T = For the former set we may estimate

which is smaller than E/6 if b = b(~) > 0 is sufficiently small as f E 
For the second set we may estimate

In the last line we have used the fact is less than or equal to 1 on

{T = oo}. If we choose 8 = b(~) > 0 small enough and n = big
enough the above expression is smaller than ~/6.
Summing up we have shown (2): given E > 0 choose 8 = ~(e) > 0, then

C = C( 8) > 0, r~ = > 0 and finally n = E No. However,
we are not yet finished, as H is a simple p-admissible integrand only after
the stopping time Te. But it is standard to approximate (7~ - S)Tc by
the stochastic integral of a simple p-admissible integrand 77 supported by
[O.Tc] ] such that S)tl is bounded by C and

For. the convenience of the reader we isolate this argument in the subsequent
Lemma 1.3.

Modifying H on [0. Tc] l in the indicated way we obtain the desired

simple integrand HE for which

thus finishing the proof.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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The case p = oo is easy: simply note that, for Q E

.~li (~), Ll (Q~))), may be identified with

Q.E.D.

LEMMA 2.3. - Let continuous local martingale with respect
to a probability measure Q and H a predictable integrand such that H . ,5’

is bounded by 1 in absolute value.

Then there exists a sequence of oo-admissible simple integrand
5’ such that Hn . S is bounded by 1 in absolute value, for each n E I~, and
such that (H~’t , converges almost surely to (H . 

Proof - By the very construction of the stochastic integral there is a

sequence (Hn)~ 1 of simple integrands such that (Hn - converges to

(77~ - ~)oc in the norm of L2 (~). As S is locally bounded one easily verifies
that we may assume (by stopping) that the integrands 77~ are oo-admissible
(see the definition in the introduction). By Doob’s inequality the maximal
functions ( (H - Hn ) - S)) tends to zero in L2 (~) and therefore in measure.
By passing to a subsequence we may suppose that ((H - S)~ is less
than n-1 on a set of Q-measure bigger than 1 - 2-~t. Define the stopping
times Tn = inf {t : S)t ~ I > 1 + n-1 ~ and the integrands

The sequence satisfies the requirement of the lemma.

Q.E.D.

3. TWO COUNTEREXAMPLES

This section is devoted to the construction of two counter-examples.

EXAMPLE 3.1. - We construct a uniformly bounded discrete adapted
stochastic process S = defined on (F)~t=0, P) with the

following properties.
( 1 ) There exists an equivalent martingale measure Q for S with density

function ~ E ~).
(2) K2 is strictly contained in D2.

Vol. 32, nO ° 6-1996.



756 F. DELBAEN AND W. SCHACHERMAYER

Construction of Example 3.1. - We work N. Denote, for t E No,

In order to keep track of the right order of magnitude of the sequences
constructed below we shall use the following notation: For sequences

(at)o and positive numbers we write bt if there are

constants c, C > 0 such that cat  bt  Cat for all t sufficiently big.
F will denote the sigma-algebra of all subsets of f2 and we shall

define measures P and Q on let (formally) = -1 and define

recursively, for t > 0,

and = 4 and, for t > 0,

Let us try to explain the idea behind this definition: we start with letting
= 4~(A°) = 2-1 so that ~(C°) _ = 2-1. For each t E No

the set Ct is broken into

The mass of Ct is divided amongst these 4 sets such that

Annales de l’Institut Henri Probabilites et Statistiques
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In the case of P the mass of Ct is distributed among the 4 sets above with

the weights ~2-~2t~2~, 2-(2t+2~~ 2-1(1 - 2-(2t-~l))~ 2-1(1 _ 2-(2t+1~~) and
in the case of Q with the weights ~2-~t+2~, (1 - 2-2 - 2-(t+2)), 2-3, 2-3~.

Clearly the measures P and Q are equivalent and ~ is uniformly
bounded.

Now we define a sequence of functions on H by

In view of (1) we have

Let, for t E No,

and define the function f on S2 by

As for each cv E S2 the values ft(w) are eventually zero the above sum
converges everywhere on n. It is elementary to calculate explicitly the
values of f:

where

Vol. 32, nO 6-1996.



758 F. DELBAEN AND W. SCHACHERMAYER

Note that f E and that, for all t E No,

where ( ~ , ~ ) ~ denotes the inner product in L2 ( ~ ) . Indeed, letting Fn denote
the n’th partial sum of f

and noting the biorthogonality of (ft)o we have, for n > t,

On the other hand

Combining these two equalities we obtain (3).

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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For later use we observe that

Also note that

Now define, for t E No.

where the real numbers Mt and mt will be chosen such that the relations

hold true. Clearly these equations are satisfied iff Mt and mt solve the
two linear equations

We can rearrange these equations to get

which yields, in view I

Now we are ready to define the process S : let 5o = 0 and, for t > 0,

Clearly is a uniformly bounded process and it follows from (2)
and (6) that S is a Q-martingale with respect to its natural filtration 

Vot.32,n" 6-1996.
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Note that each Fn is a simple integral on the process S, hence F7t E K2
and we obtain from (5) that

On the other hand we claim that for

we have that

which will readily imply that

and therefore, combining (7) and (9),

To prove (8) note that

Finally we shall show that f is orthogonal to K2 , whence in particular

Indeed, as for each t > 0 the support of St is contained in an

atom of the space K2 of simple integrals consists of the linear span of
and (gt)o and therefore we obtain the assertion from (3) and (6).

The construction of the example now is completed.
Q.E.D.

Remark 3.2. - It is instructive to relate the above example to theorem 1.2.
The representation

is a representation of the random variable as a stochastic integral (H . 
on the process S. From theorem 1.2 in conjunction with (7) and (9) above,
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we deduce that the process (77 - S)t t is a uniformly integrable martingale,
with respect to each equivalent martingale measure R on Q satisfying
d~ E L~(P), converging to f = (H . S)CX) with respect to the norm of

in particular for Q we have that f closes the Q-martingale (H ~ S)t,
a fact which also may easily be calculated directly.

But how is the situation with respect to the measure P? It happens that in
our example the process (77 - S)t is in fact an L1-bounded martingale with
respect to P; but this martingale is not uniformly integrable with respect
to P and f does not close it in 

We now pass to the second example answering negatively the second
question asked in remark 2.2. It is closely related to the example given
in [Sch 93] as well as to the simplified version of this example given in
[DS 94b]. In the present context it turns out to be more convenient to
follow the track of the construction in [Sch 93], if we are only interested
in a discrete time example.

Example 3.3. - We construct a uniformly bounded discrete adapted
process (Xt)o on a filtered probability space and
an equivalent measure Q on .~’ with the following properties:

(1) X is a martingale with respect to P as well as with respect to Q;
(2) ~ E L2(~°);
(3) There is a predictable process H such that ( ( H ~ X ) t ) t ° o is a

uniformly integrable martingale under Q converging (almost surely) to

(H . E L2 ( ~ ) , but such that ( ( H ~ is not a uniformly
integrable martingale under ~ .

Construction. - Consider the example in section 2 from [Sch 93] from
which we freely use the notation (the use of the notation X and P above
instead of the usual S and P was chosen in order to avoid confusion with
the notation from [S 93]): define X by Xo - 0 and, for t, > 0,

We leave Q as in the original example, but we slightly modify P to define
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Then we have

Note that X is a bounded local martingale (and therefore a uniformly
integrable martingale) with respect to Q as well as with respect Let

Ht = 4t so that

which is a uniformly integrable martingale with respect to Q but not with
respect to P.

Claim 1: (H . = Goo E L2(P).
Indeed, for w E Ct we have 2t and while for

w E Dt we have 1 and 2-t.

Claim 2: dQ d E L2(). Indeed, for 03C9 E Ct, we have dQ d ~ 1 and, for
w e Dt, we have 4-t i.e., ~ is even uniformly bounded.
The construction is complete.

Q.E.D.

Remark 3.4. - The example 3.3 is in discrete time; however, using the
techniques from [Sch 93] or using the construction from [DS 94b] it may
be translated into a continuous process in finite continuous time. On the
other hand example 3.1 is resistent to such a translation as we have seen in
theorem 2.2 above that, for continuous processes, we have Kp = Dp.
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