
ANNALES DE L’I. H. P., SECTION B

RAPHAËL CERF
The dynamics of mutation-selection algorithms
with large population sizes
Annales de l’I. H. P., section B, tome 32, no 4 (1996), p. 455-508
<http://www.numdam.org/item?id=AIHPB_1996__32_4_455_0>

© Gauthier-Villars, 1996, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section B »
(http://www.elsevier.com/locate/anihpb) implique l’accord avec les condi-
tions générales d’utilisation (http://www.numdam.org/conditions). Toute uti-
lisation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPB_1996__32_4_455_0
http://www.elsevier.com/locate/anihpb
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


The dynamics of mutation-selection algorithms

with large population sizes

Raphaël CERF

Universite de Montpellier,
Montpellier II, Departement des Sciences Mathematiques,

Case 051, Place Eugene Bataillon,
34095 Montpellier Cedex 05, France.

Ann. Inst. Henri Poincaré,

Vol. 32, n° 4, 1996, p. 455-508 Probabilités et Statistiques

ABSTRACT. - We build the mutation-selection algorithm by randomly
perturbing a very simple selection scheme. Our process belongs to the class
of the generalized simulated annealing algorithms studied by Trouve. When
the population size m is large, the various quantities associated with the
algorithm are affine functions of m and the hierarchy of cycles on the set
of uniform populations stabilizes. If the mutation kernel is symmetric, the
limiting distribution is the uniform distribution over the set of the global
maxima of the fitness function. The optimal convergence exponent defined
by Azencott, Catoni and Trouve is an affine strictly increasing function of m.
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456 R. CERF

RESUME. - Nous construisons l’algorithme de mutation-selection en

perturbant aleatoirement un mecanisme de selection tres simple. Le

processus obtenu entre dans la classe des algorithmes de recuit simule
generalises etudies par Trouve. Lorsque la taille de la population m est
grande, les differentes quantites associees a l’algorithme sont des fonctions
affines de m et la hiérarchie des cycles sur l’ensemble des populations
uniformes se stabilise. Si le noyau de mutation est symetrique, la distribution
limite est la distribution uniforme sur l’ensemble des maxima globaux de
la fonction fitness. L’exposant optimal de convergence defini par Azencott,
Catoni et Trouve est une fonction affine strictement croissante de m.

1. INTRODUCTION

Evolutionary algorithms are optimization techniques based on the

mechanics of natural selection [6]. Experimental simulations have

demonstrated their efficiency: they are robust, flexible and in addition

extremely easy to implement on parallel computers [5].

Unfortunately, there is a critical lack of theoretical results for the

convergence of this kind of algorithms. In a previous paper [3], the author
constructed a Markovian model of Holland’s Genetic Algorithm. This model
was built by randomly perturbing a very simple selection scheme. The
study of the asymptotic dynamics of the process was carried out with the
powerful tools developed by Freidlin and Wentzell for the study of random
perturbations of dynamical systems, yielding what seemed to be the first
mathematically well-founded convergence results for genetic algorithms.

It was proved that the convergence toward the global maxima of the
fitness function becomes possible when the population size is greater than a
critical value (which depends on all the characteristics of the optimization
problem). Surprisingly, the crossover did not play a fundamental role in this
model. The crucial point to ensure the desired convergence was the delicate
asymptotic interaction between the local perturbations of the individuals
(i. e. the mutations) and the selection pressure.

In this paper, we deal with the two-operators mutation-selection

algorithm. We introduce a new parameter (analogous to the temperature
of the simulated annealing) which controls the intensity of the random

perturbations. We study the asymptotic dynamics of the process when the

perturbations disappear. This new point of view in the field of genetic
algorithms allows to prove several results concerning the convergence of
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457MUTATION-SELECTION ALGORITHMS

the law of the process toward the maxima of the fitness function. We
focus here on the dynamics of the algorithm when the population size m
becomes very large.

Once more, we follow the road opened by Freidlin and Wentzell [4].
However we will use the concepts and tools introduced by Catoni in his
precise study of the sequential simulated annealing ([1], [2]); these were
put in a more general framework by Trouve, who carried out a systematic
study (initiated by Hwang and Sheu [7]) of a class of processes he baptized
"generalized simulated annealing" ([9], [10], [11]). Our algorithm belongs
to this class of processes and our study will thus heavily rely on Catoni
and Trouve’ s work.

This paper has the following structure. First we describe our model of the
mutation-selection algorithm. We show how it fits in the framework of the
generalized simulated annealing and give a sufficient condition to ensure
the concentration of the law of the algorithm on the global maxima of the
fitness function. The dynamics of the algorithm is best described through the
decomposition of the space into a hierarchy of cycles, which are the most
attractive and stable sets we can build for the perturbed process. We prove
a result valid for the generalized simulated annealing which reduces the
study of the dynamics to the bottom of the cycles (the uniform populations
in our situation). The key result for our study lies in the structure of the
most probable trajectories of populations joining two uniform populations:
a small group of individuals sacrifice themselves in order to create an ideal

path which is then followed by all other individuals. As a consequence, the
various quantities associated with the algorithm (such as the communication
cost, the virtual energy, the communication altitude... ) are affine functions
of the population size. We then prove that the hierarchy of cycles on the set
of the uniform populations stabilizes when the population size is large. The
structure of the limiting hierarchy of cycles depends upon the relative values
of the mutation cost and the variations of the fitness function. However,
the fitness function is constant on the "bad" cycles (i. e. those which do
not contain the minima of the virtual energy). Furthermore, if the mutation
kernel is symmetric and if the population size is greater than a critical value,
the limiting distribution is the uniform distribution over the set of the global
maxima of the fitness function. Finally, we investigate the critical constants
describing the convergence of the algorithm. The optimal convergence
speed exponent defined by Azencott, Catoni and Trouve ([ 1 ], [2], [9], [10],
[11]) (which gives the optimal convergence rate toward the maxima in
finite time) increases linearly with m. This fact shows that our algorithm is
intrinsically parallel: it involves only local independent computations.

Vol. 32, n° 4-1996.



458 R. CERF

2. DESCRIPTION OF THE MODEL

2.1. The fitness landscape
We consider a finite space of states E and a real-valued positive non-

constant function f (which will be called the fitness function) defined on
E. The set E is endowed with an irreducible Markov kernel cx, that is a
function defined on E x E with values in [0, 1] satisfying

The three objects E, f, a define an abstract fitness landscape. We are
searching for the set f * of the global maxima of f i. e.

By f ( f * ) we mean the maximum value of f over E i.e. 

Symbols with a star * in superscript will denote sets realizing the minimum
or the maximum of a particular functional. The points of E will be called
individuals and will be mostly denoted by the letters i, j, e.

2.2. The population space

We will consider Markov chains with state space E~ where m is the

population size of our algorithm; the m-uples of elements of E, i.e. the

points of the set E"2, are called populations and will be mostly denoted
by the letters x, ~, z. For x in E~ and i in is the number of
occurrences of i in x:

With f we associate a function f defined on E’n by

For x in Em, X denotes the set of those individuals of x which realize
the value 
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459MUTATION-SELECTION ALGORITHMS

If i belongs to E, (i) is the m-uple whose m components are equal to i and
U is the set of all such m-uples (which are called the uniform populations).
We sometimes identify an element i of E with the uniform population ( i ) .
Thus f * may be seen as a subset of U.

2.3. The unperturbed Markov chain (X~)
In the absence of perturbations, the process under study is a Markov chain

with state space Em. The superscript oo reflects the fact that this
process describes the limit behavior of our model, when all perturbations
have disappeared. The transition probabilities of this chain are

that is, the individuals of the population are chosen randomly (under
the uniform distribution) and independently among the elements of X~
which are the best individuals of X~ according to the fitness function f.
Notice that after a while, the chain (X~) starting from a population x is
trapped in a uniform population selected in x:

In fact, the absorbing states of the chain (X~) are exactly the uniform
populations U.

2.4. The perturbed Markov chain (X~)
The previous Markov chain (X~) is randomly perturbed by two distinct

mechanisms. The first one acts directly upon the population and mimics
the phenomenon of mutation. The second one consists in loosening
the selection of the individuals. The intensity of the perturbations is
governed by a positive parameter l so that we obtain a family of Markov
chains indexed by l. As l grows toward infinity, the perturbations
progressively disappear. The transition from Xn to includes two
stages corresponding to the mutation and the selection operators:

We now describe more precisely these two operators.

The mutation operator is modelled by random independent perturbations
of the individuals of the population X~. With the Markov kernel a (which
Vol. 32, n° 4-1996.



460 R. CERF

is initially given with the set E and the function f ), we build a family
of Markov kernels on the set E. Let a be a positive real number.
Define for i, j in E and l > 1

The quantity is the probability that a mutation transforms the
individual i into the individual j at the perturbation level I. The transition

probabilities from Xn to Yn are then given by

Note that the mutations vanish when I goes to infinity i. e.

where is the Kronecker symbol (the identity matrix indexed by E):

2.6. Yn -~ selection

The selection operator is built with a selection function [3]. We evaluate
the fitness of the individuals of the population Yn and we build a distribution
probability over Yn which is biased toward the best fit individuals and which
progressively concentrates on the set Yn as goes to infinity. We then select
independently m individuals from Yn to form the population Xn+1. Let c
be a positive real number. The transition probabilities from Yn to are

We have

i. e. the selections of individuals below peak fitness tend to disappear when
l goes to infinity.

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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2.7. The vanishing perturbations
The two operators play antagonistic roles: whereas the mutation tends to

disperse the population over the space E, the selection tends to concentrate
the population on the current best individual. Both are built through random
perturbations: random perturbations of the identity for the mutations, random
perturbations of the very strong selection mechanism of the chain (X)
for the selection. With this scheme of non-overlapping generations, it
is essential that the mutations vanish: otherwise, the current population
could be destroyed at any time through a massive mutation event with
a null perturbation cost, preventing the concentration of the law of the
process on the set of the global maxima of the fitness function. It is yet
questionable whether the vanishing mutations and the growing selection
pressure have a biological meaning. However, the optimization problem
leads to the following question: is it possible to exert a control over these
very rudimentary operators to ensure the convergence toward a state of
maximum fitness?

Formulas (1) and (2) yield

so that the process (X~) is a perturbation of the process (X~). A crucial
point is to give the same intensity to the two kinds of perturbations so
that they interact properly when l goes to infinity. More precisely, the
rate of convergence of the transition probabilities in formulas (1) and (2)
should be logarithmically of the same order (this is the reason why we
introduce two more parameters a and c). The parameters a and c are not
independent: we will in fact compare a/c to quantities related to the fitness
function f. Rescaling the function f with the parameter c has the same
effect as changing the mutation cost a. To avoid breaking the symmetry,
we keep both parameters a and c in the sequel. Finally, we are entirely free
for the choice of the control parameter l: here l goes to infinity. We could
also take In l or the temperature T = 

3. ASYMPTOTIC EXPANSION OF = = y)
For a fixed value of l, the expression of the transition matrix of the

chain (Xn ) is quite complicated. We will focus on the asymptotic behavior
of the chain, when l goes to infinity. The first step consists in estimating
the transition matrix of 

Vol. 32, n° 4-1996.



462 R. CERF

By the very construction of the process (X~), we have

For each y in Em,

where we note for x, y, z in Em

and y) is the Hamming distance between the vectors x and y i.e.

The above transition probability vanishes whenever a(x, y) z) = 0.
There are two different terms in the exponent. The quantity d(x, y) is

simply the number of mutations necessary to go from x to y and ad(x, y)
represents the perturbation cost necessary to achieve these mutations. The
second term originates from the fact that individuals of y with a fitness
strictly less than may have been selected to form z : such an event
will be called an anti-selection. The term c ~~ ( f (~) - represents
the perturbation cost necessary to achieve all the anti-selections.
We define next the communication cost Vi on E’~ x Em by

We put finally =03A303B1(x,y)03B3(y,z), the sum being extended over
the populations y realizing the minimum in z ) . With these notations,
we see that

Remark in addition that for each x, z in E~

We are now in the framework of the generalized simulated annealing studied
by Trouve ([8], [9], [10], [11]). That is, the transition probabilities of the
process (X~) form a family of Markov kernels on the space E~ indexed
by l which is admissible for the communication kernel qi and the cost
function Vi [9, Definition 3.1].
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4. CONVERGENCE OF THE

MUTATION-SELECTION ALGORITHM

We will use graphs over the set Em. By a graph over E~ we mean a set
of arrows x --~ y with endpoints in Em. Thus our graphs are all oriented.

NOTATION 4.1. - Let g be a graph on Em. The Vi-cost of g is

We recall that an x-graph is a graph with no arrow starting from x and
such that for any there exists a unique path in g leading from y to x.
The set of all x-graphs is denoted by G(x). For more details and notations
concerning graphs, see [4, chapter 6].

DEFINITION 4.2. - The virtual energy Wi associated with the cost function
Vi is defined by

We put also

PROPOSITION 4.3. - (Freidlin and Wentzell)

THEOREM 4.4 (convergence of the homogeneous algorithm). - Fix the
space E, the fitness function f , the kernel a and the positive constants a, c.
There exists a critical population size m* depending upon all these objects
such that 

’

This theorem has been proved in [3] and various upper bounds for the
value m* were given there; for instance

Vol. 32, n° 4-1996.



464 R. CERF

where

and R is the minimal number of transitions necessary to join two arbitrary
points of E through the kernel a i.e. R is the smallest integer such that

The preceding bound may be improved in several ways with more

complicated constants: however, since we will deal only with very large
population sizes, we do not care about a precise estimation of m* . Anyway,
it is obvious that m* depends strongly on the fitness landscape (E, f, a).
We restate now Trouve’s result for the convergence in the inhomogeneous

case, where the parameter 1 is an increasing function of n. We have then an
inhomogeneous Markov chain and we suppress the superscript
l: Xn stands for 

-

THEOREM 4.5 (Trouve [9, Theorem 3.23]). - There exists a constant Hl,
called the critical height, such that for all increasing sequences l (n), we
have the equivalence

Note that Hi may depend on m.

COROLLARY 4.6. - Suppose m > m* and 03A3~n=0l(n)-H1 = ~. Then

All the tools introduced by Trouve in ([9], [10], [11]) for the study
of the generalized simulated annealing may be used for analyzing the
mutation-selection algorithm. The particular interest of our process lies in
the presence of several control parameters among which the population size
m is of paramount importance. In the sequel, we will try to understand the
behaviour of the mutation-selection algorithm for very large populations.
The next section contains several results valid for the generalized simulated
annealing; they will allow us to reduce the study of the dynamics of
the process to the set U of uniform populations (whose cardinality is

independent of m).

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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5. GENERAL RESULTS ABOUT THE VIRTUAL
ENERGY AND THE COMMUNICATION ALTITUDE

Let us introduce some notations and definitions.
If S is an arbitrary set, denotes the set of paths in S, that is the

finite sequences of elements of S. A path s in S is noted indifferently

and its length is noted Isl ] (r in the above example). A path s in S is said
to join two elements ti and t2 if s 1 = ti and = t2; the set of all paths
in S joining the points ti and t2 is noted t2 ) .

NOTATION 5.1. - By D’n we denote the paths in E"2 which correspond to
possible trajectories of the process (X) i.e. the paths p in E"2 satisfying

The Vi-cost of such a path is

This definition coincides with the cost of a graph (see notation 4.1) if we
consider the path as a graph over E"2. Notice that for the empty path
(which has a null length), the cost is zero. If p belongs to D"2, we
put Vi(p) = oo. We put also for y, z in E’n

DEFINITION 5.2. - We define the minimal communication cost V for y
and z in E"2 by

and let z ) be the paths of z ) realizing the above minimum.
Notice that for all x in E’n, we have V (x, x) = 0. With this new

communication cost V, we associate a cost function for the graphs and
a virtual energy.

DEFINITION 5.3. - For a graph g on E"2, we define its V-cost by

Vol. 32, n° 4-1996.
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and we define the virtual energy for any element x of E"2 by

We put also W(Em) = min ~ W (x) : x E W * _ ~ x E E’n :
W(x) = 

We will now show that the minimal cost V contains all the relevant
information to carry out the study of the dynamics of the generalized
simulated annealing: the following results are not specific to the case of
the mutation-selection algorithms and are valid in the general framework.
Propositions 5.4 and 5.6 below are consequences of the more general
lemma 5.6 of [10]. However we give here direct proofs which do not
involve the hierarchy of cycles.

PROPOSITION 5.4. - The virtual energy W associated with the
communication cost V coincides with the virtual energy Wl associated
with the communication cost Vl i.e.

As a consequence, we have = and W* = Wl .

Proof - Since we have clearly W  Wi. The proof of the
reverse inequality W > Wi is similar to the proof of lemma 4.1 of

[4, chapter 6]. D

The fundamental quantity used to build the hierarchical decomposition
of the space into cycles is the communication altitude.

DEFINITION 5.5 (Trouve [9, Definition 3.15]). - The communication
altitude between two distinct points x and y of E~ is

For any x in E"B we put = Wl (x).
The communication altitude may equivalently be defined through the

cost function V.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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PROPOSITION 5.6. - Let for x and y two distinct points of E"2

For x in E’n, put A(x, x) = W (x).
Then A = A1.

Proof - We have W = Wi and Y  Yl: clearly A  Al.
Conversely, let p belong to y). For each 1~, 1  k  let

pi -~ ~ ~ ~ -~ pnk be a path in E"2 joining p~ and such that

Consider the path p obtained by joining end to end all these paths:

Let k and h be two integers such that 1  k 1  h  nk. We have

whence

However, the left-hand side member of the above inequality coincides with

Taking the minimum over all paths of y), we obtain A1(x, y) 
A(x, y). D
Suppose we wish only to examine the trace of the dynamics on a

subset H of Em. We build a new communication cost VH on H by making
the set E"2 B H a "taboo" set. Once more, the following definitions and
results are not specific to mutation-selection algorithms.
Vol. 32, n° 4-1996.
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DEFINITION 5.7. - Let H be a subset of Em. We define a communication
cost VH by

(for the definition of Vi (p), see notation 5.1).
We define a virtual energy WH on H by

where GH(x) is the set of x-graphs over H and the VH-cost of a graph
g over H is

Finally, we define a communication altitude AH : if x and y are two distinct
points of H,

For any x in H, we put AH(x, x) = WH(x).
THEOREM 5.8. - Let H be a subset of E~ such that

Then WH = Wand AH = A on the set H.

Proof - Let g belong to GH(x), where x E H. By hypothesis, for each
y in H, there exists z in H such that V(y, z) = 0. Let 9 be an
x-graph over Em obtained by adding one such arrow for each point of
E"~ ~ H. We have V(g) = V (g)  VH (g) whence, by taking the minimum
over all x-graphs, W(x)  WH(x).

Conversely, let g belong to G(x), where x is in H, and consider the
graph 9 of GH ( x ) defined by: the arrow (y -~ z ) is in 9 if and only if y and
z are in H and there exists a path ~ = ?/ 2014~ ~ 2014~ ... 2014~ ~c~’~ 2014~~~~~
in E"2 such that

We have  It follows that WH (x)  W (x) and
the first equality WH = W is proved.

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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Let p belong to H{~~ (x, ~), where x, y are elements of H. For each
l~, 1  1~  ~p~, let pi ~ ~ ~ ~ ~ be a path in E"2 such that

p1 = p~~ == and

Consider the path p obtained by joining end to end all these paths:

Let k and h be two integers such that 1  k  ~p~, 1  h  n~. We have

whence

However, the left-hand side member of the above inequality coincides with

Taking the minimum over all paths of we obtain A1 (x, g) _
A(x, g)  AH(x, g)- °
The proof of the reverse inequality will use the following little lemma.

LEMMA 5.9. - Let x belong to E"2. There exists a graph g in G(x)
such that V(g) = W (x) and for each arrow (y -~ z) of g we have either
(y E E H, V (y, z) = 0) or (y E H, z E HU ~x~). In particular,
no arrow ends in a population of ~H U ~x~~.
Remark. - This lemma is a slight improvement of the first part of

Lemma 4.3 of [4, chapter 6].

Proof. - Let g be an element of G ( x ) such that V~ (g ) = W (x ) . First, we
proceed as in the proof of Lemma 4.3 of [4, chapter 6] to get rid of all the
arrows from E"~ B H to H. Let (y -~ z) be such an arrow. Let z’ be
in H such that z’ ) = 0. We replace the arrow ( g ~ z ) by (y --~ z’ ) . If
a cycle 2014~ ... -~ xr --~ y is formed, we replace the arrow (xr -~ y)
Vol. 32, n° 4-1996.
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by (xr -~ z). Since + V(y, z) the cost of the graph
does not increase. We obtain a graph g in G(x) such that V(g) = W (x)
and all arrows starting from E"~ B H end in H and have a null cost. We
now remove the arrows from H to U ~ x ~ ~ . Let (y --~ z ) be such
an arrow. Let z’ be the unique element of H such that (z -~ z’) E g. We
replace the arrow (y --~ z) by (y --~ z’). This operation does not increase
the cost of the graph since V(y, z’)  V(y, z) + V(z, z’) = V(y, z). The
resulting graph has the desired properties. D

Now let p belong to y).
Let k belong If p~ is in H, we put p i = p~ and rk = 1.

Suppose p~ is not in H and let pi be an element of H such that
= 0 and there exist populations pl, ~ ~ ~ , p° in such

that = Vl (p 1, p2 ) _ ~ ~ ~ = 0. Let g belong to
G(Pk) be as in lemma 5.9. We add the arrow (pk --~ pt) to g.

Let g be the graph on H defined by: the arrow (y -~ z) is in g if and
only if y and z are in H and there exists a path xl = g -a x2 --~ , ~ ~ --~
xr-1 -~ xr = z in E"2 such that

(In particular, we suppress from g all the arrows (y -~ z),y E

E- B {H U 
We have V(g) = W(pk).
Moreover, the graph 9 contains at most one cycle p2 ~ ’ ’ ’ -

pi (where the populations pj , 2  h,  rk, belong to H). This cycle
has been created by the addition of the arrow (pk -> pi ) in g which causes
the arrow -~ ~i ) to appear in g. Necessarily this arrow (pkk -~ pi )
comes from the sequence pi in g (recall that no arrow of g
ends in Em B {H U {pk~~) so that the arrow ~ is present in g. If
we now remove this arrow from g we obtain an element of whence

Y~~J~ - > or = 

and it follows that W(Pk) = + 

If there is no cycle, we put rk = 1 and the preceding equality is still valid.
Removing the arrow (p~ -~ ph+1) from g (1  h  rk) gives an element

of GH(p; ) so that we have the inequalities

Yet, there exists a sequence of populations prk +1, ~ ~ ~ , in H such that

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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and each cost appearing in the right-hand side is realized by a path in

E~ B H. That is

and there exist populations p1 , ’ ’ ’ , ps , pi , ’ ’ ’ , pt of H such that

To obtain such a sequence ~~k +1, ~ ~ ~ , pnk , we just take the successive
populations of H which appear in a path of the set (see
definition 5.2). Let p be the path obtained by joining end to end all these
paths in the following way:

For each k in 1~, we have

djt 1 ~ jL  Tk + 

(by inequality (3))

Thus

(we put = for k in 

However the left-hand side member of the above inequality is exactly

Taking the minimum over all paths of y) yields AH (x, y) 
A(x, y). D

Vol. 32, nO 4-1996.
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Coming back to the mutation-selection algorithm, we see that the set U
of the uniform populations verify

(more precisely: Vx E E"2 Vi E X V(x, (i)) = 0) so that the preceding
results may be applied to the set U. Our next task is to study the cost
function Vu, or equivalently (by propositions 5.4 and 5.6 and theorem 5.8),
the restriction of V to U, as a function of m. We will often omit the

parenthesis when speaking of uniform populations: for instance V (i, j) will
stand for V ( ( i ) , ( j ) ) . The crucial result is that, for m sufficiently large,

6. Y(i, j) IS AN AFFINE FUNCTION OF m

Before proceeding to the proof of the main theorem 6.12, we give several
notations and definitions. We will consider paths in the sets and

P(E). Paths of Em will mostly be denoted by the letter p and paths
of P(E) by the letter q.

DEFINITION 6.1. - We define a bracket operator [ ] from E~~~ _
E’~’~ , the set of all finite sequences of elements of E, onto P(E),

the set of all subsets of E, by

i.e. [x] is the set of all individuals present in the population x. The
bracket operator [ ] provides a natural projection from (the
set of all finite sequences of elements of E"2) onto P(E) ~~~ : with each path
p = (pl, ~ ~ ~ , pr) in Em we associate the path [p] == (~pl~, ~ ~ ~ , in P(E).
From now on, the population size m will vary and we will sometimes

consider simultaneously several paths, possibly with different population
sizes. Thus, if p is a path in E’n, we put m(p) = m.

NOTATION 6.2. - By D~ we denote the paths in Em which correspond
to possible trajectories for the whole process

i.e. such a path p includes the intermediate populations Yn, has an odd
length and satisfies
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The corresponding cost function V is defined by

if the path p belongs to D~ (here is the h-th component of the vector
p2k+1) and V(p) = oo otherwise (we recall that d(x, y) is the Hamming
distance between x and y).
We put also for y, z in E"‘

We denote by D’~*(,y, z) the elements p of D~"(~, z) such that V(p) =

DEFINITION 6.3. - We define two cost functions ~V~ and [V] on P(E)~~~;
for q 6 P(E)~~>,

(for the definitions of Vi and V, see notations 5.1 and 6.2).

NOTATION 6.4. - We put for i, j in E

DEFINITION 6.5. - Let q be a path in P(E). We say that the path
ei --> ~ ~ ~ in E is admissible for q if r = Vk E ek E qx
and

The set of all admissible paths for q is denoted by ,,4(q). For instance,
if p belongs to D, for each h in {1. - m(~) ~, the path p~ --~ ... ~ ~~h ~ is
admissible for [p] (here ph denotes the h-th component of the vector p~ ).
Vol. 32, n° 4-1996.
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NOTATION 6.6. - We define a function Q on the set by:
if q E [D], then f2(q) = oc; if q E [D], then we put

(we recall that 6 is the Kronecker symbol).
We use the function S2 defined on P(E)CN) to build a function Q on E x E:

Since the set P( i, j) is never empty and is included in [D] (see notation 6.4),
the quantity is finite. We denote by P*(i; j) the elements of j)
realizing the above minimum. 

Let p be a path in E"~ and p a path in E"’ .
We say that p is included in p (noted p C p) if ~~~ = and

(we recall that pk (i) is the number of occurrences of i in the population p~).
A path p included in p may be obtained from the path p by destroying
some individuals in each population of the path in such a way that the set
of mutations occurring at odd times is preserved.

Let q be a path in P(E) . Among the paths p such that [p] = q, we single
out the paths which are minimal with respect to the above inclusion relation:

DEFINITION 6.7. - The path p in Dm is a minimal path realizing the path
q in P(E) if [p] = q and for each m in N* and each path p in D~, we
have the implication

(whence also Vk Vi E E = 

The path p in D is minimal if it is a minimal path realizing the path [p].
This definition has the following interpretation: the path p is minimal

if we can’t destroy a fixed number of individuals in each population of p
and still have a path belonging to D without altering [p] and the set of
mutations occurring in p.
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We have the following upper bound for the population sizes of minimal
paths:

LEMMA 6.8. - Let p be a minimal path realizing the path q in P(E). Then

Proof - Suppose

For each k, 1  2k  consider the pairs (ph , they
belong to the set q2k-1 x q2k whose cardinality is strictly less than m(p);
necessarily at least two pairs are identical. We choose an index h( k) such
that the pair (ph~~)1 present twice. Let p be a path obtained in
the following way:
. for each 1~, 1  2k  ~p~, we remove the individuals and 
from p2k-1 and p2k to obtain the populations p2k-1 and 
. to build Plql’ we remove from the population p|q| an individual which
is present twice (such an individual necessarily exists since C 

and the individuals of p|q|-1 are not all distinct).
Finally we have for this path p

thus contradicting the minimality of p. D

DEFINITION 6.9. - We define a function 0 on which associates
with each path q the value

By the very definition of SZ, all paths p satisfy the inequality V(p) >
so that the quantity is non-negative. More precisely, we

have the following
LEMMA 6.10. - For all paths p belonging to D,

Proof - Let p be a path of D. Necessarily, there exists a minimal path p
included in p which realizes the path [p]. We may rearrange the individuals
of the populations pl, ~ ~ ~ , so that p appears as the trajectories of the
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first m(p) components of the path p, that is pk = (pi, ~ ~ ~ , for each
k in { 1 ~ ~ ~ ~p~ ~. The condition that the set of mutations occurring at odd
times is preserved in the minimal path is essential for this operation to
be possible. Although this reordering might be quite complex, it does not
affect the cost of the path p. Yet

By the very definition of S2, we have for all h in ~1 ~ ~ ~ m(p)}

(remark that since p belongs to D, the path ph -~ ~ ~ ~ -~ p~h ~ is an
admissible path for [p]).

It follows that

Now p is a minimal path realizing [p], whence H([p]) > B(~~)
and finally

DEFINITION 6.11. - We define for i, j in E

and

(for the definition of ~* (i, j ), see notation 6.6).
Notice that m(i, j ), being the population size of a minimal path, is

smaller than E ~ 2 .
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We are now in position to state our fundamental

THEOREM 6.12. - For all pair (i, j ) of points of E, there exists an integer
M such that

Proof - Let z, j be two points of E. Let m be an integer
greater than m(i, j ) and let p be an element of satisfying:
[p] G P’~ (i, j ), p is minimal, Y(p) - m(p) SZ( ~~ ) = 8(2, j ) (see nota-

tions 6.2, 6.6, 6.11 ). Let e~ -~ ~ ~ ~ 2014~ ejpl be an admissible path for
b1 1 such that

i.e. this path realizes the minimum defining 
Consider the path p in Em defined by

obtained by adding m - m(i,j) copies of the path to the

path p. We have

whence clearly

Conversely, put

By the very definition of 52, which is a sum of terms of the form a and
c ~ f (~1) - f (jz)~, we have the implication
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Since in addition 0(q) is non-negative, we see that

so that M(i, j) is finite (and independent of 7ra: neither P( i, j), nor B,
nor n depend on m).
Let m be an integer such that m > rra(i; j) and rra > M(i,j). Let p belong
to j). Suppose S2(~p~) ~ S2(i, j). Then, by definition of M(i."j),
we have

However we know already (by lemma 6.10) that V(p) > B((p~) -f-7ra S2((p~)
and (by the first part of the proof) V( i, j)  B(i, j) + rn.52(i, j), whence
V(p) > V( i, j) and p does not belong to (see notation 6.2).

Henceforth each path p of satisfies = SZ(i, j), or

equivalently [p] E P*(i; j). For such a path p, we have also H(~p~) > B(i, j)
(by the very definition of B(i, j), see definition 6.11). Application of
lemma 6.10 yields the desired inequality V(p) > H(i, j) + from
which we deduce

Remark 1. - This theorem may be interpreted in the following way: for
m > M, each new individual added to the population follows the ideal
path e*1 ~ ... ~ ejpl which realizes the minimal cost SZ ( i, j ) . However, it
is necessary to have at least m(2, j ) individuals for such a path to become
possible i.e. the first m( i, j) individuals are used to build the path p having
an admissible path realizing the minimal cost 

Remark 2. - Another way to understand this result is the following: to
travel between the uniform populations (i) and ( j ), some events of positive
cost must necessarily take place i.e. specific sequences of mutations and
selections of individuals below peak fitness (these events are called anti-
selections). We distinguish informally two kinds of such events:
. the local events which affect only a limited number of individuals,
. the collective events which affect almost all the individuals.

As the reader would have guessed, 8 (i, j ) corresponds to the cost of the
local events whereas Q(z, j) corresponds to the cost of the collective events.

Remark 3. - We have no useful practical information about the values
m(i, j ) and M(i, j ) : they depend strongly on the structure of the fitness
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landscape (E, f, a ) . Although they may be very large in theory, it is likely
that in most cases they will be "reasonably" small: for instance if (i) and
( j ) are very close (i. e. the points i and j may be joined through the kernel
a with a short path) or if SZ (i, j ) is null.

Remark 4. - We have also V(i,j) > m SZ (i, j ) for each m in N. This
inequality is an improvement of lemma 12.1 of [3] which was the key to
prove the existence of the critical population size m* . In particular, it could
be used to obtain better bounds on m*. However, in this paper, we deal
only with large values of m.

Remark 5. - Of course, the coefficients SZ (i, j ) and 9 (i, j ) are of crucial
interest. We will derive numerous properties of these coefficients in the
sequel.
We know that for m sufficiently large, the cost function V ( i, j) is affine.

All the important quantities concerning our algorithm are defined through
V as the minimum or the maximum of a set of finite sums involving V. The
following elementary result shows immediately that this procedure yields
also functions which become affine when m is large.
LEMMA 6.13. - Let a finite family of affine functions. Put

Then for t sufficiently large, ~ is affine and coincides with one of the
functions ~i i.e.

COROLLARY 6.14. - The virtual energy restricted to U is an affine function
of m for m sufficiently large:

where

and

COROLLARY 6.15. - The communication altitude restricted to U is an affine
function of m for m sufficiently large:
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7. THE LIMITING DECOMPOSITION IN CYCLES

When the random perturbations are small, the dynamics of the process
is well described by the decomposition of the space into cycles (this
notion was originally introduced by Freidlin and Wentzell). Let us try
to give a brief survey of these objects. Suppose the process starts from
the uniform population (ei). It leaves (ei) after a finite amount of
time. Among all the exit trajectories, there exists one trajectory which
is the most probable one, which leads to another uniform population, for
instance (e2 ) . Again, from (e2 ), the process goes to (e3 ) . The set U of
uniform populations being finite, the process one day visits a uniform

population twice. For instance, from ( e3 ), it returns to (ei). We obtain
then a cycle, (ei) -~ ( e2 ) -~ ( e3 ) -~ ( e 1 ), and the process "cycles" over
it a very long time. Put now these three populations in a box. Again,
the perturbations will force the process to leave this box, and once more,
there exists a canonical path of exit which leads the process to another
uniform population, or more generally, to another cycle. Since there is a
finite number of such cycles, the process visits in the end a cycle twice: we
obtain then a "cycle of cycles" into which the process remains trapped for
a very very long time. Going on this way, it is possible to build a whole
hierarchy of cycles which exhausts the set of uniform populations and
yields a very accurate picture of the asymptotic dynamics of the process.
The good tool to perform this hierarchical decomposition of the space E"2

into cycles is the communication altitude. For the construction of cycles and
the various related quantities, we refer the reader to ([9], [10]). Nevertheless,
our notion of cycles differs slightly from Catoni and Trouve’s one. Whereas
they consider as a cycle any set from which the process can’t escape but
without having forgotten its entrance point (when the perturbations are

small), we merely consider the cycles as the most attractive and stable sets
we can build for the perturbed process. We thus eliminate some cycles
appearing in Trouve’s work: not all singletons are cycles (only those which
are local minima of the virtual energy) and our cycles are all strict in the
sense of Trouve [9, Definition 3.20]. As a consequence, the unperturbed
process will never leave a cycle. We believe that this point of view is closer
to the initial notion introduced by Freidlin and Wentzell.

DEFINITION 7.1. - Let A E On the set

we define an equivalence relation Rx by
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PROPOSITION 7.2 (Trouvé [9, Proposition 3.21]). - The set of cycles in E"2
associated with the cost function Vl and the kernel ql is

where 7Za is the quotient set of the equivalence classes of Wa for
the relation Rx.

Unfortunately, the set of cycles C (Em) increases dramatically with m.
Since we are mostly interested in the way the mutation-selection algorithm
visits the set U of uniform populations (which are the attractors of

the unperturbed process: the bottom of the cycles contain only uniform

populations), we will study the projection of the cycles on U.
We define a projection Tv from the set onto P(E) (or

equivalently P(U), since we may identify U and E) by

and we put

Since the set U of the uniform populations verify

we are in position to apply theorem 5.8: the communication altitude and
the virtual energy on the set U may be evaluated by considering only
paths in U, with either the cost function Vu or V. As a consequence, we
have the following

THEOREM 7.3. - The set of cycles in U associated with the cost function
Vu i.e.

coincides with the set which is the projection of the cycles in
Ern on U.

Notice that the cardinality of the set U is equal to lEI and does not depend
on m. The hierarchy of cycles over U is thus built by taking equivalence
classes of comparison relations on U induced by the communication altitude
which is an affine function of m (by corollary 6.15). Yet, the relative order
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of a finite family of affine functions does not change any more when the
variable is sufficiently large.

COROLLARY 7.4. - There exists an integer M such that for all i 1, j 1, i 2 , j2
in E, we have

Let M* be the smallest integer such that the limit behavior described by
the preceding results is achieved for m > M*; that is V, W, A are affine
functions of m and the relative positions of these affine functions does not
change any more on [M* , oo[. The preceding results yield the

THEOREM 7.5 (stabilization of the cycles of U). - When m is greater than
M*, the set C(U) of cycles in U does not depend any more on m.

Proof - Let A = ~ A(i, j ) : i E E, j E E ~ . The cardinality of A is
less than IEI2.
Put A = ~ al, ~ ~ ~ , where s is a function of m and 0  ai  a2 

...  as-i  as.

Let N : E x E ~--~ N be the function defined by

Consider the equivalence relation 7k defined on the set

by z Tk j ~ A(i,j) ~ ak ~ N(i,j) ~ k. We have

so that in fact C(U) depends only on the functions N (2, j ), the integer s
and the equivalence relations (T~ ) : corollary 7.4 shows that these objects
do not vary when m > M*. D
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To analyze the hierarchy of cycles, we need some information about the
communication altitude, and first about the coefficients S2 ( i , j ) , SZ ( i ) , 03C8 ( i, j ) .
This is the purpose of the next two lemmas.

LEMMA 7.6. - Let i, j be two points of E. The coefficient SZ(i, j) vanishes if
and only if there exists a path el --~ ~ ~ ~ -~ er in E joining i and j such that

Proof. - Let q be an element of j) (see notation 6.4) such that
= 0 and let be a path of A(q) such that

Necessarily

whence f (q2x)  f (q2k+1). Moreover, since [q2k+1] C [q2k], we have
also f (qzk+1)  f (q2k). It follows that f (q2k) = f (qzk+i), 1 G 2k  ~q~
and the individual e;k+1 belongs to q2k+1 (also e! G (1). Since for each
k;, 1  21~  e;k-1 = e2k, we have f (q2k-1)  f (qzk) and the

is increasing. In particular

Now, there exists a path which is admissible for

q and such that

(this path is the path which leads to the creation of the individual j ).
This path necessarily satisfies

We suppress the elements ek of this path such that ek = ek-1 to obtain a
path with the desired properties.
The reverse implication is easy: we build a path p which contains an

individual following the path ei -~ ~ ~ ~ -~ er given by the hypothesis of
the lemma and we just let the remaining individuals evolve "naturally" i.e.
there are no mutation and no selection of individuals below peak fitness
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apart from those of the path ei --> ~ ~ ~ -> er (this is explicitly done in the
proof of lemma 9.1 below). D

The next lemma will be used in the proofs of corollary 7.8 and

proposition 8.2.

LEMMA 7.7. - Vi E f* Vj E E SZ(i) = 0 and S2(,j) = 

Proof. - Let i belong to f *. For each ji in E B f *, we choose a point j2
such that  f (j2) and there exists a path ei -> ~ ~ ~ - er in E

joining ji and j2 satisfying

Let g be the i-graph built with all these arrows ji -> j2 and the

arrows j -> i, j E f* B {i}. Lemma 7.6 shows that

whence S2(z) = 0 and the first part of the lemma is proved.
Let j belong to E. Since + SZ(i,,j) > we have S2(j)  S2(i, j).
To prove the reverse inequality, first notice that n satisfies the triangular
inequality

(to prove this inequality, we just put end to end paths joining (j1) to (e)
and paths joining (e) to (j2) to obtain paths joining (ji) to (j2) and then
take the infimum defining S2).
Yet each j-graph contains a path ei ---> ~ ~ ~ --~ er joining i to j whence

and finally SZ ( j ) = SZ (i, j ) . D

COROLLARY 7.8. - The rate of increase of the communication altitude is

Proof. - We already know that is affine for m sufficiently large
(by corollary 6.15). It remains only to prove that
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Since A(i, j) > max ~W(i),W(j)~, we have

Now pick a point i* in f * and consider the path i -~ i* ~ j . Lemma 7.7

yields
~ / .: ’B

and the result of the corollary is proved. D

We focus on the limiting decomposition. From now onwards, the

population size m is assumed to be greater than M*.

THEOREM 7.9 (structure of the cycles). - Let 7r be a cycle of C(U).
Suppose 7r is not included in W*. Then either SZ is constant on 7r or the set

(which contains f * ) is included in the cycle 7r.

Proof. - Let 7r be a cycle of C ( U) not included in W * . There exists a
real number such that 7r is an equivalence class of n U for

the relation (for all m > M*). Suppose f2 is not constant on 7r, so
that there exist j and e in 7r such that

Since A(e, j)  necessarily

Let i be a point of E such that H(z)  SZ ( j ) . We have, as m -~ oo,

so that for m sufficiently large A( i, e)  and i belongs
to the cycle 1r. D

Finally, we prove a general fact concerning the "bad" cycles.

THEOREM 7.10 (cycles disjoint from W * ). - The function f is constant
over the cycles of C (U) not intersecting W*.
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Remark. - The cycles not intersecting W * are the "bad" cycles which
slow down the convergence of the process toward W* (the critical height ~Il
is the maximal height of exit of these cycles ([9], [10], [11])). The above
result shows that these cycles are in a way "transverse" to the "good"
cycles which intersect W*.

Proof. - Let 7r belong to C(U) be such that 7r n tV = 0. Let i, j be two
points of 7r and let e1 -~ ~ ~ ~ -~ er be a path in E joining i and j such that

(4) = max W ( e k ) + V( ek, e,~+] ).

Once more, for m > M*, the quantities involved in the above formula
are affine functions of m so that the path e 1 -~ ~ - ~ --~ e.r. actually realizes
the value A( i, j) for all values of m in [M~oo[ [ (the minimizing path
should a priori depends on m). Necessarily, all the points of this path are
in the cycle 7r, so that by theorem 7.9,

Identity (4) implies also

whence

and by lemma 7.6

Finally, we have f( i)  f ( j ) and by symmetry it follows that f( i) = f ( j ) .
Thus f is constant over the cycle 7r. D

Translating this result on Em with the projection Tu, we obtain

COROLLARY 7.11. - The function f is constant over the cycles of C (Em)
not intersecting W*.

Remark. - When the process starts from a uniform population (z), it

explores very intensively the neighbourhood of i until a point j of greater
fitness is found. The cost to find such a point j corresponds to the mutations
and anti-selections necessary to lead an individual from i to j while the
remainder of the population waits in i. Then the process moves to the

uniform population (j) and the mechanism starts again from scratch at j,
until a global maxima of f is finally reached. With high probability, the

process will thus visit f * before coming back to (2). Therefore, as soon as
a cycle contains two populations with distinct maximal fitness, it contains

also points of f * .
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8. INFLUENCE OF THE MUTATION COST

We consider first the case where the mutation cost (more precisely the
ratio a/c) is very high compared to the variations of the fitness function f.

PROPOSITION 8.1 (upper bound of S2 with selection). - Define

We have

and

Remark. - Notice here something very queer: the quantity plays
also an essential role in the theory of the sequential simulated annealing,
although this algorithm is always studied as a minimization procedure.

Proof - Let ei = i 2014~ e2 --~ ~ ~ ~ --~ er = j be a path in E such that
a(ek, e~+1) > 0 for all k in ~1 ~ ~ ~ r - l~. Put qi = 

and q2r - 2 = ~el, ~ " , ej, = 1.~~.
Clearly, the path q : q1 --~ ~ ~ ~ --~ q2r-1 belongs to P( i, j) (see

notation 6.4).
Let ~ej~)1«2r-1 be a path in E such that ei = el, e2 = ei,

and = j. For this path, which belongs to A( q) (see definition 6.5)
and which involves no mutations, we have

from which we deduce  
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Suppose now a > Let the pair (q, realize the

minimum in (where q belongs to [D] (see notation 6.4) and

is an admissible path for q).
Since  a, necessarily

and

Since the path e* realizes the minimum of the above quantity among all
the paths admissible for q, we have in addition

so that

Yet e;k-1 = e2x whence > f(qzk-1) and f(qzk) - .f(qzx+i) >_

~.~(qzx-i) - f (qzk+1)~+ (if s is a real number, s+ denotes the

maximum max(s , 0)). 
Let r be an index such that f (q2r-1) = f(q2k-1 ) .
We have (even if 2r - 1 = ~q~)

whence

Necessarily, there exists a path e admissible for q such that

(this path corresponds for instance to the creation of the individual j).
Clearly
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(just delete all the elements ek of the path such that ek = ek-1

to obtain a path admissible for evaluating j)) However

which, together with inequalities (5) and (6), imply S2(i, j) > j). 0

PROPOSITION 8.2. - Suppose a > c~ f ( f *) - f (i)~, where i is a point of
E. Then

In particular, if a > cA, then (we recall that A = max { f (i) - :

i,j E E })

Remark. - When the cost of the mutations is much higher than the cost

of the anti-selections, the coefficient S2 is obtained by applying an affine
transformation on the fitness function f.

Proof. - Let i belong to E and e to f *. We have w (e , i) _ ~ f ( f *) - f (i)~
and the inequality a > c~ f ( f *) - f (i)~ implies by proposition 8.1 that

S2(e, i) = c( f( f*) - f (i)~ . Finally, it follows from lemma 7.7 that

~~i) _ ~ ~f ~f *~ - f ~z)~ ~ ° D

COROLLARY 8.3. - Let 7r be a cycle of G(U) included in the set

Either f is constant on 7r or 7r contains the set

(whence f* is included in 7r ). In particular, if a > c0, then the function f
is constant on all the cycles not containing f*. The other cycles verify

Proof. - This corollary is an easy consequence of theorem 7.9 and

proposition 8.2. D
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COROLLARY 8.4 (cycles of E"2). - Suppose a > c0. Let 7r belong
Either f is constant on 7r or the set

is included in ~r (whence f* C ~r).

Proof - It is enough to remark that

and to translate the preceding corollary on Em with the projection Tu . Q

We consider now the case where the mutation cost (more precisely the
ratio a/c) is very low compared to the variations of the fitness function f.

PROPOSITION 8.5 (upper bound of Q with mutation). - Define

where the infimum is taken over the set of paths e 1 ~ ... ~ e2r+1 in E

joining z and j (the length 2r -~- 1 is also variable ) and satisfying
. dl~ E ~l ~ ~ ~ r~ either e2~ = e2,~_l,
or a(e2~_1, e2~) > 0, f (e2,~_1) > max f (eh);

27~-1h2r-~-1

. for each k in { 1... r}, f(e2k+1) > and there exists a path
jk : j/ ~ ... ~ jknkk of length nkk in E joining i and e2k+1 (i.e.

jk1 = z; jnk = e2k+1) and k - 1 integers nk1, ..., nkk-1 such that
=) 1  ni  ...  n~-1  n~ and

Finally, for each h in ~l ~ ~ ~ n~ - l~, > 0.

We have

and

Remark. - To obtain an upper bound for we will build a

path in E"2 joining the populations (i) and ( j ), containing only 
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collective events, which are mutations. The path ei -~ ~ ~ ~ -~ e2r+1 is
the collective path followed by almost all individuals. The indexes k such
that e2k correspond to the collective mutations (that is almost
all individuals mutate from e2k-1 to e2k): such an event is justified if
and only if f (e2~_1) ~ f(eh ) . Since our path should not
contain collective anti-selections events we impose also f (e2~+1) > f(e2k ) .
Finally, the path jk corresponds to the sequence of mutations leading to the
appearance of this creation should not interfere with the collective
behavior of the other individuals (i. e. it should involve only local events)
and the condition required on jk (i.e. the existence of the subdivision nk
and the linked inequalities f ( jt )  f( e2h+l)) exactly tells that e2k+l may
be created from i by a path of individuals whose fitness is always less than
the maximal fitness of the current population. With the elements in hand,
the only delicate problem to build the path is to stay the right amount of
time in each state e2k+1 before leaving in order to let enough time to the
path j~ to be completed without disturbing the collective evolution of the
population. This is the object of the (quite intricate) construction done in
the first part of the proof. Finally, this result, which describes the situation
dual to proposition 8.1, will not be used in the sequel, and the following
(painful) proof may well be skipped. Its main interest is to give some
insight into the structure of the trajectories of the populations.

Proof - Let ei = z -~ ~ ~ ~ 2014~ e2r+1 = j be a path in E verifying
the conditions imposed on the paths used for defining ~ and let

be the associated paths and subdivisions.
Put no = 1, n 1 = define by induction for h in {2’’’ r - 1}

and finally nr = +n~ - n~_1. We define now a path p of length 2nr -1
in First, we let p 1 = ( i ) . For h and s such that 0  s  h  r, we put

and

For hand s such that 1  h  s ~ r, we put = e2s+2 and
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For the (r + l)-th individual, for each s in ~0 ~ ~ ~ r - 1~,

Finally, for each h in {1... r + 1 ~, = e2r~-1 = ~ . We then consider
the path ( e ~ ) 1 [ ~ [ 2n r -1 followed by the last individual: e ~ = 
1  1~  2nr - 1. We have

from which we deduce the inequality 0 ( i, j) G 

Suppose now c6 > Let (q, be a pair realizing the
minimum in (where q belongs to ~D(i, j)~ and e* is a path in E
admissible for q). Thus

and since c6 > j) > SZ(i, j), necessarily for each k, 1  2k  ~q~,
we have E q2k (whence in particular > and

~(q21~+1) _ f(q2k).
Let us show that the path satisfies the conditions imposed on
the paths defining the infimum in ~ ( i, j ) . Let k be an integer such that
1  2k  Suppose Then > 0. Suppose
by absurd there exists an index h, 2k - 1  2h + 1  Iql, such that

We define now a new pair (q, e* ); we put

and we choose a sequence (e*) such that
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The pair (q, e*) satisfies the conditions related to the definition of the

infimum in S2(i, j) and

which contradicts the fact that (q, e*) realizes the value SZ(i, j).
Thus

The remaining condition, i. e. the existence of the paths (jk) and the
subdivisions (nh ), is a consequence of the following facts:
. the path q belongs to [D]
. for each k, 1  2k  the individual belongs to q2k.
To find the path jk, we just look at the sequence of mutations which
leads to the creation of the individual in the sequence of populations
ql - ... -~ g2A; Since e* satisfies the conditions imposed on the paths
defining the infimum in ~(i, j), we obtain 0 ( i, j) > whence

finally O( i, j) = a ~(i, j). D

The remarkable fact is that for a > cA, the structure of the cycles is

essentially determined by the level sets of the function f (the kernel a just
plays a role within the level sets). We have the opposite phenomenon when
Ra  cD (where R is the minimal number of transitions necessary to join
two arbitrary points of E through the kernel a, see section 4). The structure
of the cycles is then essentially determined by the kernel cx and the fitness
landscape (E, f, a). However, since there is no easy way of describing this
dynamics (SZ(i, j) is then equal to j)), we do not state the results
dual to corollaries 8.3 and 8.4.

Example. - Consider the fitness landscape of figure 1.

There are essentially two candidates for the ideal path between the
points i and j ; either the whole population stays in i while an explorer goes
alone to reach j and then a massive anti-selection brings everybody in j
(anti-selection cost of cr) or the whole population goes successively to ei
(null cost), to e2 (anti-selection cost of to e3 (mutation cost a) and

finally to j (null cost). Notice that the structure of the second path is much
more intricate than the first one. It requires that two explorers leave i: one
will go to j while the other will successively go to ei and e2. The moves
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of the explorers and of the population should be carefully synchronized,
so as to minimize the global cost. The best path depends upon the value
of the mutation cost (if a > c(r - -y) the path 1 is less expensive). When
the mutation cost is low, the way the algorithms wanders in the fitness
landscape depends strongly upon the mutation kernel a.

9. THE LIMITING DISTRIBUTION

The aim of this section is to study precisely the limiting distribution
when l is infinite and the mutation kernel a is symmetric. We first give
several results necessary to establish the main theorem 9.7. We start by
studying the coefficient 0(I, j).
LEMMA 9.1. - Suppose S2 (i, j ) = 0. Then

where the infimum is taken over the paths el -~ - - - --~ er in E (of variable
length r) verifying e 1 = i, er = j and for each k in ~ 1 - - - r - 1 ~,

Remark. - The infimum does not change if we suppress the condition
ek+i: the infimum is attained with a path satisfying this additional

condition.
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Proof. - Let ei --~ ~ ~ ~ - er be a path in E joining i and j satisfying the
above conditions. Let be a sequence such that

and let p be the element of j) (see notation 6.2) defined by

and (er, er~. We have = 0 so that

Conversely, let q belong to 7~*(i, j): thus = 0 and the sequence

Iql, is increasing (see the proof of lemma 7.6). Let p be
an element of D(i, j) (see notation 6.4) such that ~~ = q. Necessarily,
there exists a path (ek), 1  k  ~p~ in ,A(~~) (see definition 6.5) such that

e2k+1 and (e2k-1, e2k) 1  h  m(p) } for each
k, 1  2k  Yet

Since the sequence ~f (qk)~1k~~~ is increasing, we have f (p2k) >
max f(el) so that

1~2~-+1 ’ ’

Let e 1 ~ ~ ~ ~ --~ er be the path obtained by deleting from the path
e1 ~ ... ~ e|p| all the individuals ek such that ek = We have

which together with inequality (7) yields the desired result. D

COROLLARY 9.2. - Suppose the kernel a is symmetric i.e.

and let i, j be two points of E such that f( i) = f ( j ) and SZ(i, j ) = 0.
Then S2( j, i) = 0 and 8(i, j ) = 9( j, i).
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Proof - In this situation, the symmetry of a together with lemma 7.6
yield SZ (,j, i ) = 0.

In addition, the quantity

becomes symmetric with respect to i and j. Thus 8 (i, j ) = 8 ( j, i) . D

We now state a general lemma about graphs.

LEMMA 9.3. - Let i belong to E and let g be a graph on E such that for
each j in E ~ ~i~ there exists a path j = el -~ e2 --~ ~ ~ ~ --~ er = i in g

leading from j to i. Then there exists an i-graph g which is contained in g i.e.

Proof - We build the graph 11 by removing arrows from g. First, we

suppress all arrows starting at i. We then consider successively each point
of E* B ~i~. Let j be such a point. By hypothesis, there exists at least a path
j = ei -~ e2 --~ ~ ~ ~ --~ er = i in g leading from j to i. We remove all

arrows starting at j distinct from (el --~ e2). We continue this procedure
until each point of E B ~i~ is the starting point of exactly one arrow. D

We now prove two lemmas which describe very accurately the paths
joining the points of f * in minimal graphs (these are the paths which will
appear in the formula expressing the limiting distribution).

NOTATION 9.4. - For a point i of E, we denote by G U ( i ) the elements of the
set Gu (I) (i.e. the z-graphs over E) whose V-cost is minimal. Equivalently,
an element g of Gu(i) belongs to G) (I) if and only if V(g) = W ( i ) (see
definition 5.3).

Remark. - Let g belong to We have clearly Vu (g) = V(g) =
WU(i) = W(i) and for all arrows (ji ---~ j2) of g, = Tl (j1, j2).
LEMMA 9.5. - Let i belong to f* and g to GU (i). Suppose the

arrow (j1 ~ j2 ) belong to g, where j1 and j2 are elements of f*. Then any
path e 1 = ji -~ ~ ~ ~ -~ e.r. = j2 in E realizing the value
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is such that

Proof. - Let i and g be as in the hypothesis and suppose the result is
false: there exists an arrow ( j 1 -~ j2 ) in g, where ji , j2 belong to f *, and
a path ei --~ ~ ~ ~ --~ er in E joining ji and j2 such that

and

We have then

We build from g a graph g in the following way:
. if e h = i, we replace the arrow ( j 1 - j2) by ( j 1 ~ i ) ;
. if i, we replace the arrow (j1 -~ j2) by the arrows jl -~ eh -~ j2
and we remove the arrow starting at e h .

Since V(eh, j) is strictly positive for any j distinct from eh, we obtain
in both cases a graph g such that V {g)  V(g) and for each point j
in E ~ ~ i ~ , there exists a path e 1 = j -~ ~ ~ ~ -~ er = i in g leading
from j to z. Lemma 9.3 shows that g contains an i-graph g, and necessarily
Y{g)  V(g), which is absurd since g belongs to GU{2). D

LEMMA 9.6. - Let i belong to f* and g to (see notation 9.4). Suppose
the arrow { j 1 ~ j2 ) belong to g, where j1 and j2 are elements of f*.
A path p in E"2 belongs to (see definition 5.2) if and only if.
there exists a path el = jl -~ ~ ~ ~ ~ er = j2 in E realizing the

value o { j 1, j2 ) verifying
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and two integers 0  tl  t2  ~ p ~ such that

Proof - Any path p satisfying the above conditions belongs
to has a cost 8 ( jl , j2 ) and thus belongs to (see
definition 5.2).

Conversely, let p be an element of Put

Necessarily, there exists a path el = jl -~ ~ ~ ~ -~ er = j2 in E satisfying
.., . _ _

To obtain this path, we just look at the sequence of mutations which leads
to the creation of j2 in the path p. We suppress the elements ek of this
path such that ek = to obtain a path e 1 = ji - ... -~ èr = j 2 in E
satisfying the additional condition èk -=I èk+l.
Thus the cost of the path p satisfies

(necessarily, Q([p]) = = 0 so that Vk ~ {2... r-1} (pt1 +k ) _f ( f * ), see for instance the proof of lemma 7.6). However, the cost of p is
precisely 8 (~ 1, j 2 ) : thus the path e 1 - ... - er realizes the value ()(jl,j2).
The preceding lemma 9.5 implies that eke f * for k in {2... r -1 ~, so that

for k in {2... r - 1 ~ . It follows from inequalities (8) that r = r
and the paths e and e coincide (whence in particular for k
in {1... r - 1}). Furthermore the only events of positive cost in the path p
are those concerning this individual path: that is there are no mutations
nor selection of bad individuals apart from the individual which follows
the path e 1 - ... --~ er. Thus
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and the path p satisfies the required conditions. D

We always suppose that m is greater than M* . We are now in position
to prove the

THEOREM 9.7 (limiting distribution). - We have W* c f*. Suppose that
the kernel a is symmetric. Then W* = f* and the limit distribution v°° is
the uniform distribution on f*:

Proof - The inclusion W * c f * is given by theorem 4.4 (which was

proved in [3]). Suppose that the kernel a is symmetric. i.e. Let i and j be
two points of f * . Let g be a graph belonging to : V(g) = W ( j ) .
There exists a unique path e 1 = i -~ e2 ~ ~ ~ ~ ~ er = j in g leading from
i to j. Since = 0, necessarily

Since i is in f *, we have in fact

Let be the i-graph obtained from g by reversing the arrows of
this path in the following way: er = j - er-i 
corollary 9.2, V is symmetric on f *, so that V(g) = (g)). It follows
that W ( j ) and by symmetry we conclude that W(i) = W ( j ) i. e.

the virtual energy is constant on f * and W * = f * . Thus is a one-to-one

map between and Moreover, 03A6ij°03A6ji = In addition,
the operator reverses only arrows between points of f * . Put

(for the definition of ql, see section 3). It turns out that the limiting
distribution is a rational fraction of the numbers q( i, j).
LEMMA 9.8. - The limiting distribution v°° of the Markov chain Xn is

concentrated on the uniform populations corresponding to the points of W *
and for 2 in W* we have
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Proof - Let be the stationary measure of the Markov chain Xn i. e.

Let be the Markov chain of successive visits of (X~) to the set U
(UXn is the chain induced by Xn on U). By identifying the sets U and E we
may consider that the chain takes its values in E. Let Ti be the first
entrance time of the chain (X~) into U i. e. r~ = min { n > 0 : X~ E U ~ .
We have

Let vl be the invariant probability measure of the Markov chain (~’X7L).
We have the representation formula

(where denotes the expectation for the chain starting at ( j )).
(i) the above formula reduces to ~l((i)) = Since

(U) tends to one as l tends to infinity, we see that

The measure vl may be expressed through Freidlin-Wentzell graphs [4,
chapter 6].
For i in E, we have

Yet we have the expansion

where Vu is the cost defined on U by making the set U taboo (see
definition 5.7) and
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the sum being carried over the set

By passing through the limit as I - oo, we obtain that for i in W*

Let g belong to and let ( j 1 ~ j 2 ) be an arrow of g.

Since VU(j1,j2) = (see the remark after notation 9.4) we
have C Conversely let p be a path belonging
to D’n* ( j 1, j2 ) and suppose p rt. DïJ* (jl, j2). Then there exists an index k,
1  k  ~p~, such that pk = (e), where e C E. Thus V(p) > V(ji, e) +
V ( e, j 2 ) . We replace the arrow ( j 1 --~ j 2 ) by the two arrows ( j 1 -~ e)
and (e - j2) in the graph g and we obtain a new graph with the same
cost which is not any more an i-graph. By lemma 9.3, this graph contains
an i-graph g. Since each transition between two distinct uniform populations
has a positive cost (such a transition requires at least a mutation) and we
have to delete some arrows to build §, we have V (g)  V(g) which is
absurd.

Thus for each arrow ( j 1 - j2) of a graph g of we have

and also = q(jl, j2) (which is of
course false for an arbitrary pair ( j 1, j2 ) ). This fact yields the desired
formula for the limiting distribution VOO. D

The end of the proof of theorem 9.7 rests on the

LEMMA 9.9. - Let i belong to f* and g to GU (i). Suppose the

arrow ( j 1 ~ j2 ) belong to g, where j1 and j2 are elements of f*. Then
R’(W , ~2) = q(~2, W ).
Assume the lemma is true. It follows that

whence

and the above quantity is the same for all points of f * : the limit distribution
is thus uniform on f * . D
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Proof of lemma 9.9. - Let i, jl, j2 be as in the hypothesis of the lemma.
Let p be an element of D’n * ( j 1, j 2 ) (see definition 5.2). By lemma 9.6,
there exists a path ei = ji --~ ... -~ er = j2 realizing the value o ( j 1, j2 )
and satisfying

and two integers 0  ti  t,2  (p~ I such that

With the path p we associate the = p defined by
. Vs 1  s  - t2 ps = (.72 )
For each s such that tl + 2  s  tl -~-r- l, there exists a unique index a (s)
such that p~(s) = jl . We define
. Vs (p) - t2 + 1  s  (p~ -t2-~-r-2

Let 03C4j1j2 be the transposition of E which exchanges the points j1 and j2.
= (~~ ... in E-, we put 

We define
. v. 
and finally
. VS !?! - ~i  ~  !?! p. = 
The path p is built by reversing the path ei = ~i -~ ... -~ er = j2 and by
reproducing (with ji and j2 exchanged) the portion ofp which contains only
the individuals ji and j2. Since the kernel ~ is symmetric, the path ~(p)
belongs to and its cost is 0(ji , j2); corollary 9.2 shows that 9
is symmetric on f*, so that is actually an element of 
Finally, the very definition of 03A6 yields the following facts:
. ~p ~ Dm*(j1,j2) 03A6(03A6(p)) = p.

is one-to-one between and 
~ Vp e 
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(where denotes the k-th population of the path 
As a consequence, we have

and the lemma is proved. D

10. THE CRITICAL HEIGHT Hi

For the definitions and the properties of the quantities He (~r) and H?-,.L (~)
(the height of exit and height of mixing of a cycle 7r), we refer the reader
to Trouvé’s work ([9], [10], [11]).

PROPOSITION 10.1. -- For each cycle 7r ofC(Em), we have

Suppose a is symmetric. Then the critical height Hl is bounded as a function
of m and for m large we have

Proof - Let 7r be a cycle and let F(x) be the points of 7r whose virtual
energy is minimal. For each x belonging to F( 7r), we have

Since in addition is included in x n U, we obtain the first inequality.
The second inequality is an immediate consequence of the first one, the de-
finition of Hi = sup { He(03C0) : x E C(Em), 03C0 n W * = } ([9, Defini-
Vol. 32, n° 4-1996.



504 R. CERF

tion 3.22]), and the fact that Supm~N* maxi~f* minjEf* V (2, j)  o0

(see [3, Corollary 11.1]). D

We now restate Trouvé’s convergence result, which is an extension of a
result by Hajek for the simulated annealing.

THEOREM 10.2 (Trouvé [9, Theorem 3.23]). - Suppose a is symmetric
and m is large enough to have W* = f*. For all increasing sequences l( n)
going to infinity, we have the equivalence .

A remarkable fact is that we may adapt the sequence l(n) in order to
be trapped in f * .

THEOREM 10.3. - Define He = E Em : ~x~ n f* ~ ~ ~ ) (for [ ],
see definition 6.1). Suppose c~ is symmetric and m is large enough to have
W* _ f* and Hl  He . For all increasing sequences l (n), we have the
equivalence

Proof. - The two above conditions on the sequence l ( n) exactly express
that

. the chain (Xn) has a null probability of being trapped in a cycle
disjoint from f * i.e.

. the chain has a positive probability of being trapped in the set of

populations containing an individual of f * i. e.

Remark. - Since m min(a, cb* ), where b* = min ~ f ( f * ) - f (i) :
i ~ f * }, the hypothesis of the theorem is fulfilled when m is large, and
any increasing sequence I(n) satisfying
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will achieve the desired behavior.

Example. - Figure 2 shows graphically the critical height for both the
simulated annealing and the genetic algorithm.

The above values of Hi concern one simulated annealing algorithm and
a genetic algorithm with a large population (so that Hi is equal to its

limiting value and does not depend any more upon m).

11. THE OPTIMAL RATE OF CONVERGENCE

For the meaning and the properties of the optimal convergence exponent
and the logarithmic convergence exponent we refer the reader to ([1], [2],
[9], [10]. [11]).

PROPOSITION 11.1. - Suppose a is symmetric. The optimal convergence
exponent 03B1opt is an affine strictly increasing function of m for m large. The
rate of increase of 03B1opt is
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Proof - The definition of aopt is [9, Definition 3.22]

For 7r in C (Em) with 7r n f * = 0, we have

so that is an affine strictly increasing function of m. The result of
the proposition follows easily. D

We restate now Trouve’s result for the optimal convergence rate, which
generalizes Catoni’s work.

THEOREM 11.2. - There exist two strictly positive constants l~l and R2
such that for all n

Proof - In order to apply Trouve’ s result to the mutation-selection

algorithm, we need only to check that condition Ci (see [10], [11])
concerning the transition probabilities is fulfilled; but these are precisely
obtained as sums of fractions involving the powers of l. D

Remark. - The fact that the optimal convergence exponent 03B1opt increases
linearly with m shows that the mutation-selection algorithm is intrinsically
parallel: it involves only local independent computations. We have here a
quantitative measurement of this parallelism.

Example. - Let us come back to the fitness landscape of figure 2. In

this situation, the optimal convergence exponent of the sequential simulated
annealing is 03B1opt = The optimal convergence exponent of the
genetic algorithm satisfies

Consider now m independent simulated annealing algorithms running
over this fitness landscape. We keep track of the best point found by the m
algorithms. The optimal convergence exponent of this process is m b/b13,
which is better than the exponent aopt of the genetic algorithm with
population size m (m being large). We suspect this result is true in the
general case.
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12. THE LOGARITHMIC CONVERGENCE EXPONENT

We consider here the best rate of convergence which can be achieved
with sequences of the form l( n) = n’~, ~ E The exponent alog, when

computed on the space Em, is bounded. We have

Consider a state x of the form (i,..., i, j ) where i E W * and j g W *,
a(i, j) > 0.

Clearly W (x)  W (W * ) + a + c ( f (i) - f ( j )) .
However, it is not fair to compare with this 03B1log in this situation.
In fact, we are much more interested in the rate of convergence of

than of P([Xn] C f */Xo = x). For l(ra) - nljl , we obtain [10,
Theoreme 1.49]

where K is a positive constant and is defined by

PROPOSITION 12.1. - The exponent 03B1log is an affine increasing function
of m with

Proof - Let x in Em be such that J(x)  f ( f *). Let ix be an element
of ~.
We have V(x, (ix)) = 0 whence W~((z.r)) ~ W(x). Thus

The reverse inequality is straightforward, so that in fact
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For any point j in f * , we = 0 (by lemma 7.7)
whence = 0 and

For i not belonging to f * , the coefficient Q(z) is positive and its minimal
value over E B f * is precisely min(a, cb* ). D

The exponent alog is the right object to compare with aopt. Nevertheless,
it may very well happen that

and thus

It is actually the case for the fitness landscape of figure 2 whenever a > c8*.
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