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ABSTRACT. - We consider a class of stochastic linear functional
differential systems driven by semimartingales with stationary ergodic
increments. We allow smooth convolution-type dependence of the noise
terms on the history of the state. Using a stochastic variational technique
we construct a compactifying stochastic semiflow on the state space. As
a necessary ingredient of this construction we prove a general perfection
theorem for cocycles with values in a topological group (Theorem 3.1).
This theorem is an extension of a previous result of de Sam Lazaro and
Meyer (cf [7], Theorem 1, p. 40). A multiplicative Ruelle-Oseledec ergodic
theorem then gives the existence of a discrete Lyapunov spectrum and a
saddle-point property in the hyperbolic case.
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Nous considérons une classe de systèmes linéaires stochas-
tiques différentiels gouvernés par des semimartingales a accroissements
stationnaires ergodiques. Nous permettons une dependence lisse de type
convolutive du bruit du passé de I’ £tat. Utilisant une technique variationnelle
stochastique, nous construisons un semi-flot stochastique compactifiant sur
l’espace des états. Un ingredient necessaire a cette construction est notre
preuve d’un théorème general de perfection pour les cocycles a valeur dans
un groupe topologique (Théorème 3.1). Ce résultat qui est une extension
d’un résultat de Sam Lazaro et Meyer (cf [7], Théorème 1, p. 40). Un
théorème multiplicatif ergodique de type Ruelle-Oseledec donne alors

1’ existence d’un spectre discret de Lyapunov et une propriété de selle

dans le cas hyperbolique.

1. INTRODUCTION

In [23] the first author developed a multiplicative ergodic theory for a
class of n-dimensional stochastic linear functional differential equations

with state space M2 := R" x ~2 ([-r, 0], (~n). The analysis in [23]
depended crucially on the fact that the diffusion term g (x (t) ) does not look
into the (past) history x (s), s  t, of the state. The present article is an

attempt to relax this limitation. (Note, however, the pathological example
in Mohammed [22], pp. 144-148.) Indeed we wish to extend the results
of [23] in two directions:

(i) We allow "smooth" convolution-type dependence on the history x (s),
t - r  s  t, in the noise coefficient.

(ii) The driving noise processes consist of a large class of semimartingales
with jointly stationary (ergodic) increments. Within this context, our results

appear to be new even in the non-delay case r = 0.
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71LYAPUNOV EXPONENTS OF LINEAR STOCHASTIC F.D.E.

More specifically we look at a linear stochastic functional differential
equation

In the above stochastic f.d.e. (s.f.d.e.), ~c is a stationary measure-valued
process such that each ~c (t, w) is an n x n-matrix-valued measure on ~-r, 0].
The random field K (t) (s) is stationary in t. The process N is a general
n x n-matrix valued semimartingale with jointly stationary increments. The
second noise process L is also n x n-matrix-valued, has jointly stationary
increments but admitting a representation as a continuous local martingale
plus a right continuous process of locally bounded variation. Assuming that
(~c, K, dN, dL) form an ergodic process and satisfy fairly general moment
conditions, we show that (I) has an almost sure Lyapunov spectrum

consisting of a discrete non-random set of Lyapunov exponents {03BBi}~i=1 C
R U {- ~}. If none of the Lyapunov exponents Ai is zero, we obtain a flow-
invariant exponential dichotomy for the stochastic flow X on M2 associated
with the trajectories ((x (t), xt) : t &#x3E; 0, (x (0), xo) = (v, ri) E M2~ of (I).
Our approach above requires the construction of a very robust and

compactifying version of the stochastic flow X of (I) on the Hilbert

space M2. As a basic ingredient of our construction we prove a general
perfection theorem for cocycles with values in a metrizable second countable
topological group. See Theorem 3.1. This result is an extension of de Sam
Lazaro and Meyer’s perfection theorem ([7], Theorem 1, p. 40). Our proof
uses techniques developed in [7].

Although the existence of a unique solution of (I) has been known for
some time (cf. e.g. [19], [24] and [26], p. 197), the problem of constructing
a flow X : 0~ x S2 x M2 -~ M2, with the appropriate cocycle and regularity
properties, appears to be difficult because of the pathological example

where W is the one-dimensional Wiener process.
This example is a serious obstruction to the existence of a stochastic flow

on M2 that is measurable and linear, let alone compactifying. This is due
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72 S.-E. A. MOHAMMED AND M. K. R. SCHEUTZOW

to the Gaussian nature of the driving noise and the infinite-dimensionality
of the state space M2 (Mohammed [22]). Needless to say our Theorem 3.1
and the perfection techniques of de Sam Lazaro and Meyer [7] will not
apply here.

In order to overcome the above difficulty we develop a new method
for constructing a sufficiently robust version of the flow X of (I). The
key idea is to show that the s.f.d.e. (I) is equivalent to a random integral
equation (IV) in § 4. The cocycle property, the compactness of the flow and
Ruelle’s integrability condition for the stochastic flow (Theorem 5.1) are
then read off from the random integral equation. This method of construction
of the flow is different from the one used by Mohammed in [23]. It has the
added advantage of being conceptually simpler and perhaps more efficient.
This technique also points the way towards possible applications to certain
types of stochastic linear P.D.E.s.

Once the regular version of the flow X is constructed, the existence
of the Lyapunov spectrum (Theorem 5.2) and the stable-manifold

theorem (Theorem 5.3) are established using Ruelle’s infinite-dimensional
multiplicative ergodic theorem (Ruelle [28], [27]). This part of the analysis
is closely parallel to the one used by Mohammed in [23].

In order to outline the scope of the theory we indicate below examples of
linear stochastic differential equations which are covered by the theorems
in this article. The reader may formulate the appropriate conditions under
which these results apply to the examples listed below. Note that in all of
these examples the state x (t) is a multidimensional process.

Example 1. - Linear o. d. e. ’s driven by white noise

For each t &#x3E; 0, a (t) and ai (t), 1  i  p, are n x n-matrices and

the processes (a, ai, dWi) are stationary ergodic and non-anticipating;
the Brownian motions Wi, 1  i  p, are independent and one-

dimensional. The case of constant coefficients a (t) - a, ai (t) = cr~

1  i  p, has been studied by several authors, e.g. Arnold, Kliemann
&#x26; Oeljeklaus [2], Has’minskii [10], and Baxendale [3]. The Lyapunov
spectrum of (1) has been discussed by Arnold and Kliemann [1] ] when a (t),
ai (t), i = 1, ..., p, are stationary ergodic processes which are independent
of Wi, i = 1, ... , p. Note that our results do not necessarily require that
a (t), ai (t), z = 1, ..., p, be independent of the noises Wi, i = 1, ..., p.
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73LYAPUNOV EXPONENTS OF LINEAR STOCHASTIC F.D.E.

Example 2. - Random delay equations driven by white noise

The coefficients ai, ~i are matrices (possibly stationary) and the delays di
are non-anticipating stationary bounded processes with non-negative values.
The equation is driven by several Wiener processes Wi. The dynamics of (2)
was studied in (Mohammed [22] VI § 3, pp. 167-186) within the context
of Markov processes on the state space C {~-r, 0], and under the

condition that each di is fixed in t and is independent of (Wi , ..., Wp).
A sufficient condition is given in ([22], Corollary 3.1.2, p. 184) which

guarantees asymptotic stability in distribution of the trajectory ~~t : t &#x3E; 0~
of (2). Observe that (2) reduces to (1) when di - 0, 1  i  m.

Example 3. - Diffusions with distributed memory

The matrix-valued processes a (t), 1  z  p, are stationary (ergodic)
while K (s) is just a deterministic matrix-valued function. The Brownian
motions Wi, 1  i  p, are one-dimensional. Although equations like (3)
fall under the class studied by Ito and Nisio [13] and Mohammed [22], so
far little is known regarding the almost sure asymptotic behavior of the
trajectory (x (t), xt) as t -~ oo.

Example 4. - Linear o. d. e. ’s driven by Poisson noise

The driving noises Ni (t) are one-dimensional Poisson processes and the
coefficients a (t), ai (t) are stationary ergodic matrix-valued, for 1  z  p.
For constant coefficients, a (t) = a, ai (t) * ai a.s. for all t &#x3E; 0, 1  i  p,
the Lyapunov exponents of (4) were studied by Li and Blankenship [16]
using classical results on random matrix products.

Example 5. - Linear functional differential equations driven by Poisson
noise

Here tc is a measure-valued process as in (I), ai (t) are stationary matrices
and Ni (t) Poisson processes, i = 1, ... , p. Under suitable conditions on
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the coefficients , ai, unique solutions to (5) are known to exist (Doleans-
Dade [8], Metivier and Pellaumail [19], Protter [24]). However, to our

knowledge, issues of almost sure asymptotic stability for solutions of (5)
have hitherto not been explored.

Example 6. - Linear fd.e. ’s driven by white noise

The coefficients H (t, ., ~; .), gi (t, ., .) are stationary ergodic processes
with values in L (M2, (~n ) and L (IRn) respectively. The Brownian motion
W (t) = (Wl (t), ..., Wp (t) ) is p-dimensional. The case of constant
coefficients corresponds to equations like (*) whose Lyapunov exponents
were studied in the article [23] referred to earlier.

It is evident that the s.f.d.e. (I) also includes as special cases various
(finite) "linear combinations" of all the examples mentioned above.

2. BASIC SETTING AND HYPOTHESES

We wish to formulate the basic set-up and hypotheses on the stochastic
f.d.e.

which will be needed in the sequel.
Throughout the article we will denote by B (H) the Borel a-algebra of

any topological space H.
We will also use the basic framework developed by de Sam Lazaro

and Meyer [7] and Protter [25]. Let (0, .~, P) be a complete probability
space. Suppose is a sub-a-algebra of .~’, and .~’ is the completion

under P. Let 8 (t, . ), t e I~ be a group of measure-preserving
transformations on H such that the map (03B8:Rx03A9 ~(B(R)~F0,F0-
measurable. Fix a sub-a-algebra A of F such that 8 (t, . ) -1 (A) C A
for t  0. We define a filtration by setting == =

B (t, . ) -1 (,,4), t E R. Thus 8 (t; . ) -1 (.~’s ) for all t, s E R.

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



75LYAPUNOV EXPONENTS OF LINEAR STOCHASTIC F.D.E.

We assume throughout that A is complete in .~’. This implies that the

filtration is right continuous (de Sam Lazaro and Meyer [7], p. 4).
Furthermore we assume that J’ = .~’~ . - V 0t, the a-algebra generated

tER

by U 
teR

We shall impose two sets of hypotheses on the coefficients of (I).
The first set of hypotheses, denoted by (Ci ), i = 1, 2, ... 5, guarantees
the existence of a continuous linear stochastic flow on the state space
M2 .- R" x L~ ([-r, 0], R") with the Hilbert norm

~EL~([-r,0],R~).
Observe that ] . stands for the Euclidean norm on R". The second set of

hypotheses = 1, 2, 3, 4, pertains to moment-type restrictions which
are designed in order for the stochastic flow to satisfy Ruelle-Oseledec
integrability condition (Theorem 5.1, § 5). These integrability hypotheses
are spelled out in § 5.

The space of all real n x n matrices is denoted by and is usually
given the Euclidean norm

The symbol .M ([-r, 0], shall stand for the space of all n x n-matrix
valued Borel measures on [-r, 0] (or Rn n-valued functions of bounded
variation on [-r, 0]). This space will be given the a-algebra generated by
all evaluations.

A solution of the stochastic f.d.e. (I) is a stochastic process x :

[-r, oo ) x SZ -~ such that x x SZ has cadlag paths, is 
and satisfies the stochastic integral equation

almost surely. Note that in (I) and (II) all n-vectors are column
vectors and the products are to be understood in the sense of matrix
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multiplication. Throughout the article we shall adopt the following
terminology (cf Protter [25]). An Rn n-valued stochastic process z (t),
t E R, is a semimartingale (resp. local martingale) if z (t) is 0t-
measurable for all t E has cadlag paths, z (0) = 0 and z |[0, oo)
has the semimartingale (local martingale, resp.) property with respect to the
filtration An Rn n-valued stochastic process z (t), t E R, is said
to be a helix or a per~fect helix if z (t) is 0t-measurable for all t E f~, z has
cadlag paths, z (0) = 0 and the following identity holds

for and all w E SZ. The process z is called a crude helix
if it satisfies all the above conditions except that the last helix property
holds a.s. for each fixed s, with the exceptional set possibly
depending on s, t, h.

Hypotheses (C)

(Ci) The process  : R x 03A9 ~ M ([-r, 0], Rn n) has a representation

where fi : SZ -~ M ( ~-r~ p~ ~ is ~° n 0°-measurable. Note that this
implies that  is stationary, (Ft )t~R-adapted and B (R) (g) 0°-measurable.
(C2) For each w E 0 and t &#x3E; 0, let  (t, w) be the positive measure on
[-r, oo) defined by

for all Borel subsets A of [-r, oo). Note that denotes the total variation
measure of  with respect to the norm on It is easy to check that,
for each w E H,

is also a positive measure on [-r, oo). Suppose that v (w) has a density
with respect to Lebesgue measure which is locally essentially

bounded for each fixed w E SZ. Note that (C2) is satisfied in the deterministic
case  (t, w) = 0, t ~ 0, w for a fixed 0 e ([-r, 0] , 
(C3) Assume that K : [0, oo ) x [-r, 0] has a representation
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77LYAPUNOV EXPONENTS OF LINEAR STOCHASTIC F.D.E.

where : 03A9 ~ L ~ ([-r, 0], Rn n) is ~F0, B (f-r, o], 
measurable. Further, assume that K: {(t, s) E R2 : t &#x3E; 0, - r  s - t 

0~ x S2 ~ defined by

is absolutely continuous in t for Lebesgue-a.a. s and all w E H, ~K ~t (t, s, W)
and K (t, s, w) are locally essentially bounded in (t, s) for every w EO;

and ~K ~t (t, s, cc;) is jointly measurable.

(C4) The process helix-semimartingale.

(C5) The process L: R x is a helix-semimartingale admitting
a representation

L=M+V

where M is a continuous helix-local martingale and V is a helix whose
sample paths are all right continuous and of bounded variation on compact
sets of + .

3. SOME PRELIMINARIES

Our strategy for a sample-wise analysis of the s.f.d.e. (I) is to free the
equation of stochastic differentials and replace it by an equivalent random
family of integral equations. In order to construct these random integral
equations we shall require some preliminaries. These are discussed below.
The main ingredient in our construction of the random integral equation

is a very general perfection theorem for cocycles taking values in a

metrizable topological group (Theorem 3.1 and its corollary below). This
result contains the perfection theorem of de Sam Lazaro and Meyer ([7],
Theorem 1, p. 40) as a special case. Our proof, however, uses similar

techniques to those in [7]. First we begin with the following definition.

DEFINITION 3.1. - Let the family (0, P, 8 (t, ~), t e R) satisfy
our general assumptions in Section 2. Suppose (H, *, e) is a topological
group with binary operation * and identity e. A map cp : R x SZ -~ H is
called a crude H-valued cocycle if the following conditions are satisfied:

(i) cp is (B (R) 0 .~’°, B (H) )-measurable.
(ii) For every s G R there exists a P-null set Ns c SZ such that

for all w g Ns and all t e R.
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The map 03C8 is said to be a (peifect) H-valued cocycle if it is a crude

cocycle and in addition (8) holds identically for all w E SZ and all s, t E R.
Setting s = t = 0 in (8) implies that ~p (0, w) = e for all E SZ, if
cp is a perfect (resp. crude) cocycle.

Remarks. - (i) If H is Ti (i. e. singletons are closed) and cp ( -, w) : 
is either right-continuous for almost all w E SZ or left-continuous for almost
all wE H, then Condition (ii) of the above definition is implied by

(ii)’ for every s, t G R there exists a P-null set Ns, t C 0 such that
(8) holds for all 03C9 ~ Ns, t.
To see this, set lVs := U Ns, t U N where Q is the set of all rationals

_ 

tEQ
and N is a null set such that c~ (-, w) is right (resp.-left continuous) for
all N. Then Ns is a P-null set. By the right (or left)-continuity of
cp and the uniqueness of limits in H, it follows that (8) actually holds for
all t E R and all 03C9 ~ Ns .

(ii) Suppose H is metrizable. Let p : R x SZ --~ H have almost all

sample paths continuous (resp. cadlag) and satisfy (8) of Definition 3.1
together with

(i)’ .) is (J’, B (H))-measurable for all t E ff~.

Then cp is indistinguishable from a continuous (resp. cadlag) crude
cocycle x SZ --~ H satisfying p’ (0, w) = e for all w 

We construct ~p’ as follows. For every t E Q there exists a map

(~(~-) : : SZ -~ H which is B (H) )-measurable and satisfies

cp (t, -) = cp (t, -) a.s. Therefore there is a set Hi E such that P (SZl) = 1
and S21 C {w (t, w) = cp (t, w) for all t e Q; cp (0, w) = e and
cp ( -, is continuous (resp. cadlag)}. Define

and all 

Since p’ has continuous (resp. cadlag) paths and H is metrizable, it

follows that p’ ( t , ~ ) is (.~’° , B ( H ) ) -measurable for all t E f~ . Furthermore

by the same reasoning one gets that p’ is ( B ( 0~ ) ~ ~° , B ( H ) ) -measurable.
Therefore p’ is a continuous (resp. cadlag) crude cocycle, indistinguishable
from cp and satisying cp’ ( 0, w) = e for all w 

(iii) Suppose H is metrizable and R+ x S2 --~ H satisfies (8) for

every s &#x3E; 0, all t &#x3E; 0 and all w fj. Ns , a P-null set. Then one can extend
cp to a map ~p" : R x S2 -~ H, defined on the whole line, in the following
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manner. Define 03C8" : R x 03A9 ~ H inductively by

for all integers k &#x3E; 1 and all w E S2.

It is easy to check that p" satisfies (8). If ~p satisfies (8) for all c~ E SZ
and all t, s &#x3E;_ 0, then cp" satisfies (8) for all w E S2 and all t, s 

If p has (almost) all sample paths continuous (resp. cadlag), then has

the same property. If p is ( B ( I ~ + ) ® .~’° , B ( H ) ) -measurable, then p" is
( B ® .~’° , B ( H ) ) -measurable. As a convention, we shall always extend
a crude helix on R+ to a crude helix on R in the above manner.

(iv) A helix (resp. crude helix) is a cadlag cocycle (resp. crude cocycle)
with values in the additive group of n x n-matrices -I-) . To see this
it is sufficient to check the helix property for s = 0 only.
We can now state our general perfection theorem.

THEOREM 3.I. - Let the family (SZ, .~°, P, 8 (t, .), t E l~) satisfy
our general assumptions in Section 2. Suppose (H, *, e) is a metrizable
second countable topological group with binary operation * and identity e.
Let ~ x H be a crude cocycle which has continuous (resp. cadlag)
sample paths.

Then there exists a map (~ x SZ -~ H with the following properties:
(a) cp is a perfect cocycle.
(b) cp has continuous (resp. cadlag) sample paths.
(c) cp is indistinguishable from p, viz.

Remarks. - (i) If H = (R, +), then the above theorem reduces to

Theorem 1 (p. 40) of de Sam Lazaro and Meyer [7].
(ii) Let ( SZ , F, F° , P, 6~ (t, .), t ( H, ~, e) be as in the theorem.

Let (G, .) be a second countable metrizable subgroup of the group of
automorphisms of H, such that the composition map

is continuous. Assume that ~ : : R x SZ --~ G is a crude cocycle with
continuous (resp. cadlag) sample paths. Let 03C8 : R x 03A9 ~ H be

Vol. 32, n° 1-1996.
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a B (H))-measurable map satisfying the following two
conditions:

(ii)" For every s E R, there exists a P-null set NS such that

for all w g Ns and all t E R.

(iii) cp has continuous (resp. cadlag) sample paths.
Then cp is indistinguishable from a map R x SZ --~ H which has

continuous (resp. cadlag) sample paths and satisfies (9) identically for all
w E SZ and all s, t e R.

To prove the above statement we proceed as follows.
Define a second countable metrizable topological group (G, 0) by

G := G x H with multiplication

for all gi E G, hi e H, i = 1, 2. Let cp : R x SZ -~ (9 be the map

for all (t, w) E R x H. Then cp is a G-valued crude cocycle which by
Theorem 3.1 is indistinguishable from a perfect cocycle $ = 
is easy to check that rp2 is the required version cp of cp.

Proof of Theorem 3.1. - By Remark (it) preceding the statement of

Theorem 3.1, we can assume without loss of generality that cp (0, w) = e
for all w E H.

Define the sets E and Ho by

and

Since H is second countable, the measurability hypothesis on 03C8 and 03B8

easily imply that the map

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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is (B (~2) ~ .~, B (H))-measurable. Now, using the facts that H is

metrizable and cp has cadlag paths, it is easy to see that E e B (R) 0 
The crude cocycle property (8) and Fubini’s Theorem give 03A90 ~ F0 and

P (S2o) = 1. Define

Then, again by Fubini’ s Theorem, it follows that 03A91 E and P ( SZ 1 ) = 1.
Since H is second countable and metrizable, it is homeomorphic to a

subspace of [0, where N is the set of all positive integers (Bourbaki [4],
p. 156). So we will assume that H c [0, and define cp : ff~ x ~0, 1~~
by

where the ess lim sup is taken component-wise. See Dellacherie and

Meyer [5], Chapter IV for the definition of ess lim sup.
If w E Ho and s E R, then by (8)

for a. a. u e R and all t E R. Replacing t by t - u, we get

for a.a. u e R and all t e R. Now take ess lim sup as u - 0+ in (11) and
observe that the left-hand side is right-continuous in u. Then we get

for all w E 03A90 ~ 03A91 and all s, t e R. This implies

In particular one obtains from (12) that cp takes values in H. If we

replace the "ess lim sup" in (10) by "ess lim inf’, we still get (12). So the
"ess lim sup" in (10) is actually an "ess lim".

By putting s = 0 in ( 12), it follows that cp and (/? agree on f~ x (Ho n SZ 1 ) .
Hence cp satisfies conclusions (b) and (c) of the theorem. For w E Hi and
B ( u, w) E Ho, we get from (12) the following relation

Vol. 32, n° 1-1996.



82 S.-E. A. MOHAMMED AND M. K. R. SCHEUTZOW

On the other hand, we have

for 03C9 e Hi and 03B8(u, w) e Ho.
Therefore (8) holds identically for all w e H and all s, t e R. Finallyfor each k ~ N define

Here again the ess sup is taken component-wise. It is clear that each 
is (B (I~) ~ B (H))-measurable. Since

for all t e R and all w and H is metrizable, it follows that
cp is ( B ( (~ ) ~ .~’° , B ( H ) ) -measurable. This proves requirement (i) of
Definition 3.1, and the proof of the theorem is complete..

Remark. - It is easy to see that one could have defined cp by ( 12) rather
than (10). The advantage of using (10), however, is that it gives a simple
proof of the measurability requirement (i) of Definition 3.1 for the map ~.

COROLLARY 3.1. - Let Ni : R x S2 ---~ R, i = 1, 2 be real helix
semimartingales. Then there exists a version of ~Nl , N2] which is a helix. If
either Ni or N2 has all sample paths continuous, then the helix version of
[N1, N2] can be chosen to also have all sample paths continuous.

Proof - It is proved in Protter ([25], p. 131) that and [N2] are crude
helices and hence [N1, N2~ is also a crude helix by polarization. Hence the
assertion follows from Theorem 3.1 except for the continuity statement. If
N1 or N2 is sample continuous, then, [N1, N2~ is a.s. sample continuous.
Picking a sample continuous crude helix version of [Ni ; N2~ the assertion
follows again from Theorem 3.1..

Recall that the driving cadlag process L splits up in the form L = M+ V
where M is a continuous helix local martingale. Corollary 3.2 below says
that the helix property of M induces a multiplicative cocycle property for
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the solution of the linear s.d.e.:

Let R+ x be a solution of the above s.d.e. It is well

known that (III) has a unique solution which has a version, also denoted by
the same symbol that is continuous and invertible for all w E SZ, t &#x3E; 0.

COROLLARY 3.2. - Suppose M is a continuous Rn n-valued helix local

martingale. Then there is a process ~p : l~ x SZ -~ such that

(i) ~+ is indistinguishable from the solution ~p of (III).
(ii) p is (Ft)t~R-adapted and (B (R) ~ F0, B 

(iii) p is a GL (n)-valued perfect cocycle.
(iv) For all w E SZ, the paths p (~, w) are continuous.

Proof. - Using Remarks (ii), (iii) following Definition 3.1 together with
Theorem 3.1, it is enough to show that the solution cp of (III) satisfies the
crude cocycle property on R+ . Now this follows easily from uniqueness.
Indeed we may fix s, t &#x3E; 0 and let cp : (~ x S~ ~ GL (n) satisfy the s.d.e.

with respect to the filtration shifted by s. Using linearity in the initial

conditions, the uniqueness of solutions and the helix property of M, it

follows that

a.s. Now we use the first remark after Definition 3.1 and Theorem 3.1 to

get the assertion of the corollary. Observe that ~p is adapted, since cp is and
J’t is complete for every t 

We now consider the stochastic integral 03C8-1(u) dN (u). The

next result gives a version of this integral which satisfies the additive

property (14) below. This fact will be needed in the construction of the
flow of the s.f.d.e. (I).

COROLLARY 3 . 3 . - Assume Hypotheses ( C4 ) and ( C5 ) . Let p be the cocycle
constructed in Corollary 3.2. Define the process Z : I~+ x SZ ---~ by

for t &#x3E; 0 a.s.
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Then there is a process Z : (~ x SZ -~ with the following properties :
(i) Z and Z are indistinguishable.

(ii) Z is and (B ((f8) ® .~’°, B 

for all s, t e R and all w E S2.

(iv) For all w E H, the paths Z (., w) are cadlag.

Proof. - It is enough to show that Z satisfies (14) for every fixed s,

t E R+ a.s. with the exceptional set possibly depending on s, t. To see

this, observe that by the proof of Remark (iii) following Definition 3.1, we
conclude that Z can be extended to a process with a.a. sample paths cadlag,
defined on the whole of R and such that (14) holds for fixed s, t E f~,
a.s. Now apply Remark (ii) following the statement of Theorem 3.1 with
(H, *) = +) and G = GL (n), the general linear group of all n x n-
invertible matrices with matrix multiplication. This will give the required
"perfect" version Z of Z which satisfies all the conclusions of the corollary.

It remains now to check that

for all s, t E R+, a.s. Following Sharpe and Protter [25], define the "big
shift" acting on any 0, by setting

where is the indicator function of ~h, oo) . If y(t), t &#x3E; 0, is a

semimartingale and H : )R~ x SZ -~ ~ is predictable and y-integrable,
then it follows from Protter ([25], Theorem 3.1 (vi)) that, for every s &#x3E; 0,
8s H is O s y-integrable and

where H . y denotes the stochastic integral

This result obviously extends to matrix-valued processes. Now set H =
= N ~0, oo ) and use the fact that Z = N to deduce that the

right-hand side of (15) evaluated at s + t is Z (t, 8 (s, w)) . On the other
hand, the left-hand side becomes
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Using the cocycle property for cp, we can replace the integrand in ( 16) by
cp ( s , w) . Since N is a helix, then the integral ( 16) is equal to

a.s. This completes the proof of the corollary..

4. THE RANDOM INTEGRAL EQUATION

We are now in a position to formulate the random integral equation which
we advertised in Section 1. We shall first show that this integral equation
is pathwise equivalent to our s.f.d.e. (I). We then establish the existence
of a unique solution to the integral equation which depends linearly and
continuously on the initial data (v, ri) E M2. The cocycle property for the
trajectory X (t) :== (x (t), xt), t &#x3E; 0, then follows directly from uniqueness
of the solution to the integral equation.

Throughout this section we assume Hypotheses (Ci), i = 1, 2, 3, 4, 5,
and take cp : R+ x SZ --~ Z : R+ x H -~ to be the processes
constructed in Corollaries 3.2, 3.3 of the last section.

Let [M, N] denote the Rn n-valued mutual variation process of M and

N, viz. [M, N] = ([M, where

M = N = From Hypothesis (C4), (C5) and

Corollary 3.1, it follows that there is a B (R) 0 .~’°-measurable, continuous
helix version of [M, N~ . From now on, this version will be denoted by
the same symbol [M, N~ .

Denote by ~ the vector space of all Borel-measurable maps g :

[-r, oo) --~ R" such that g ~ ~-r, 0] belongs to ~2 ( ~-r, 0], R") and
g |[0, oo) is cadlag. For each 03C9 E SZ define the linear map I (03C9) : ~ ~ ~
as follows: For any g ~ ~ set

Vol. 32, n° 1-1996.



86 S.-E. A. MOHAMMED AND M. K. R. SCHEUTZOW

and

for t E R+.

Our first result in this section (Theorem 4.1 below) shows that the
random family of integral equations

is equivalent to the s.f.d.e. (I).
The existence of a unique (cadlag solution to the above

integral equation will be established in Theorem 4.2. We now prove:

THEOREM 4.1. - The s ; f : d. e. (I) and the random integral equation (IV) are
equivalent : Every cadlag solution of (IV) is a solution of
(I). Conversely, every solution of (I) has a version which satisfies (IV).
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Proof. - Fix (v, r~) E M2 and let x : [-r, oo) x ~n be a solution

of the s.f.d.e. (I) starting off at (v, r~) .
The Rn-valued process

is clearly an (Ft)t~0-semimartingale because x is Denote

by [M, H] the B.V. process

Applying the integration by parts formula (Metivier [20], Equation (26.9.3),
p. 185) to the process

t E R+, it is easy to see that x satisfies the linear s.d.e.

a.s.

Now our s.f.d.e. (I) says that x also satisfies the above s.d.e. (V). So by
uniqueness of solutions to (V) we get that

for all t e R+, a.s. (see also Jacod [14], Theorem 2).
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Inserting H from (19) into (20) and using the definition of Z
(Corollary 3.3), we get

Note that the last term in the above relation is obtained via the equality

Now in (21 ) integration by parts (Metivier [20], p. 192) and Hypothesis (C3 )
yield:
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Substituting the above relation into (21) and changing variables and the
order of integration implies that x satisfies the integral equation (IV) a.s.
for all t E ~+.

Conversely, let x be a cadlag process which solves the

integral equation (IV). Using (23) it is easy to see that x satisfies (21 ). If we
define H by (19) as before, then (20) holds. The latter relation implies that
x fulfills (V) and is therefore a solution of our s.f.d.e. (I). This completes
the proof of the theorem..
The following result is the main theorem of this section. It is crucial for

the existence of the Lyapunov spectrum of our s.f.d.e. (I). Basically it says
that the random integral equation (IV) has a unique solution which yields
a robust version of the trajectory (x (t), xt) of (I).

THEOREM 4.2. - Let Hypotheses (C) be satisfied. Then for each c~ E SZ
and (v, ri) E M2, the integral equation (IV) has a unique cadlag solution
x (., w, (v, ri)) : [-r, oo) ~ R". Define the map X : l~+ x SZ x M2 -~ M2
by

for t E c.~ E SZ, (v, r~) E M2. Then the following is true:
(i) For each (v, r~) E M2, ~ x (t, ., (v, r~) ) : t E ff8+ ~ is the unique

solution of the s. fd.e. (I) starting off at (v, r~).
(ii) For every c,~ E SZ and (v, r~) E M2, the path X ( - , w, (v; ri)):

I~+ -~ M2 is cadlag.
(iii) The map X (t, c,~, -) : M2 -~ M2 is continuous linear for all t E f~+

and w E Q.

(iv) The map (t, c,~) v--~ (t, w, (M2 ) from ~+ x S2 to R is

( B (R+)~F0 B (R))-measurable and locally bounded in t for each w E Q.
(v) The map X : ~+ x S2 x M2 ~ M2 is ® ~

B ( M2 ) , B ( M2 ) ) -measurable.
(vi) For each t &#x3E; rand w E SZ, X (t, w, .) : M2 ~ M2 is compact.
(vii) X (t2, 8 (tl, c.v), .) o X (tl, c,~, -) = X (tl ~ t2, c,~, -) (25)

for all w E SZ and tl, t2 E (I~+.

(viii) For every w E SZ, t E (v, r~) E M2 the map s -

X (t, o (s, w), (v, ~)) from R to M2 is right-continuous.
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Remark. - The X (t, cv, ~ ) from R+ to L (M2 ) will not be
right-continuous in general.

Proof of Theorem 4.2. - We establish a unique cadlag solution
x (., ., (v, r~) ) : [-r; oo) X ~ --~ R" for the integral equation (IV) using
the classical technique of successive approximations.

Fix w E SZ and 0  T  oo till further notice. Define a sequence of
successive approximations

as follows:

and

(v, r~) e M2, k &#x3E; 1. It is clearly seen, by induction on k, that
~~ (., w, (v, ~l)) for k &#x3E; 1 and (v, ~l) e M2.

Using Hypotheses (Ci)-(C3) it is easy to see from (18) that there exist
positive numbers Ci, C2, C3 (depending on w, T, K, N and L) such that

for all g ~ ~ and 0  t  T.

Now let a : R+ R+ stand for the non-negative cadlag increasing
process

Suppressing 03C9 E S2 and (v, ~) E M2 for the time being, we shall show that

1~ &#x3E; 1, for all 0  t  T, where C.~ . - C4 (T, w) := C2 + C3 . To prove
(29) we use induction on k &#x3E; 1. Note first that it holds trivially for k = 1.
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Suppose now that (29) is true for some k &#x3E; 1. Then it follows from (28)
that, for 0  t  T,

where we have used the inequality

Note that (31) is easily checked by using integration by parts and the fact
that a is non-negative and increasing. This proves (30).
Now let B : := { (~;, r~) e M2 : r7)~~;~Tz  1 } be the closed

unit ball in M2. Furthermore, let E be the space of all bounded maps

f : [0, T] x B -3 R" such that for each (v, ~) e B, f (~; (v, 7j)) is

cadlag and for each t E [0, T], f (t,, .) is continuous on B. We equip E
with the Banach norm

We no longer suppress ( v , r~ ) , but rather think of xk as a function

x~ ( ~, w, .) of (t, (v, ~) ) E R+ x M2 into It follows immediately from
(28) and (29) that for each 1~ &#x3E; 1

It follows from (30) that

Hence {xk (., cv, .) }~k=1 converges to a limit x (., w, .) E E. This limit
extends by linearity to a map x ( ~, w, .) : R+ x M2 --~ I~n such that for
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each t E (t, w, .) : M2 --~ is continuous linear; and for each
(v, r~) E M2, x ( ~, w, (v, r~) ) : (~+ ---~ R" is cadlag. Clearly x solves the
integral equation (IV).
To prove uniqueness of the solution of (IV), fix w E SZ and let y and z E E

be two solutions such that (y (0), ?/o) = (z (0), zo) and put x := y - z. By
a similar computation to the one used to get (30), we obtain

for all k &#x3E; 1. Letting k ~ oo, we get x - 0.
Let the flow X : R+ x SZ x M2 -~ M2 be defined by (24). From the

definition of M2 and the fact that x ( ~, w, .) E E, it follows that

Hence (iii) and the local boundedness statement in (iv) follow. Assertion
(ii) of the theorem follows from the fact that x is cadlag and the map
t E ~2 (~-r, 0], R") is continuous.

Let us now prove all measurability assertions. Looking at (18) it follows
by induction that for fixed t, (v, r~) the x~ (t, w, (v, ’~))
is n B(n))-measurable. Since x is the pointwise limit of the

x enjoys the same measurability property. In particular, (i) follows.
Using the fact that t ~ x (t, w, (v, r~) ) is right-continuous, it follows that
(t, 03C9) ~ x (t, w, (v, ~)) is (B (R+) ~ F0, B (Rn)-measurable for every
(v, ~) e M2.

Observe first that for fixed t E R+, f, (v, r~) E M2, the map

03C9 ~ | ( X (t, w, (v, ~) ) - f (.)~M2 is B (R))-measurable. This follows
from the definition of the M2-norm and Fubini’ s theorem. In view of the
separability of M2, the above statement implies that w - X (t, w, (v, r~) )
is B (M2 ) )-measurable.

Since X (t, w , (v; r~)) is right-continuous in t (and M2 is metric), it follows
that (t, cc;) ~ X (t, w, (v, r~) ) is (B (R+) ~ .~’°, B (M2))-measurable for
fixed (v, r~) E M2. Let ~ ei be an orthonormal basis of M2. Then

implies (v) since every term in the sum is ( B (R+) ~F0~B (M2), B ( M2 ) ) -
measurable.

The measurability statement in (iv) follows from the above and the fact
that M2 is separable.
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To prove (vi) we fix T &#x3E; r and 03C9 e SZ . If we define Xk :
R+x 

for u e (~+ (v , E M2, then it is clear that each X ~ (~, w, ~ : M2 ~ M2
is continuous linear and

Hence it suffices to show that Xk (T, w, .) is compact for every ~ &#x3E; 1.

We will even prove the stronger result that

is compact from M2 to D([0, T], R"), equipped with the sup-norm. We
prove this by induction on k. The case k = 1 is obvious. Suppose that the
inductive hypothesis holds for some k &#x3E; 1. Pick a sequence { }2E~
in B . By the inductive hypothesis we can choose a subsequence (which
we denote by the same symbols) such that xk (t, w, (vi, converges

uniformly on [0, T] as i ~ oo. Define fi := ~~ (. , w, (v2, ~2))~~0, oo) and
7(~ f) := I ~~~ ~9) in case r~ E ~2 ~~-r, ~~, fED x)~ ~~)
and g ~ ~ is equal to ~ on [-r, 0) and equal to f on R+. Then

By (28) and the inductive hypothesis the first term on the right-hand side
of (34) converges to zero uniformly on [0, T] as i, j ~ oo.

It is easy to see from (18) and (C2), (C3) that for r~ E L~ ([-r, 0), n),
t &#x3E; 0,

where sup esssup Fi (t, s,  oo and
-rs0 

lim sup esssup IFi (t + h, s ) - Fi (t, ~ ( = 0
~io 

for i = 1, 2.
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This implies

for i = 1, 2; and so Arzela-Ascoli’s Theorem implies that there exists
a subsequence such that 0) ( t ) converges uniformly on
[0, T]. This proves (vi).
Next we prove the cocycle property (vii) for (X, 0). Fix 0, w E 0

and (v, r~) E M2. Let ?/’ (’, w) : [-r, oo) -~ z = 1, 2, denote the paths

Note that the cocycle property (25) will follow immediately if we show that

To prove the above relation (37), first observe that

We shall next prove that y2 satisfies the integral equation (IV) with w
replaced by viz:

Since ~1 also satisfies (39) with the same initial condition X (tl, w, (v, r~)),
uniqueness of the solution to the integral equation will give (37) and hence
(25). Because of the relation

(39) will follow from

Checking (40) is a routine calculation using (18) and Hypotheses (Ci), (C3),
(C4) and (C~). We leave it to the reader. This proves (vii).
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Finally we prove (viii). Using (28) and (32) we get:

Therefore

for some 65 (T, cv)  oo. From (18) one can deduce that Cl, C2 and C4
can be chosen such that

We will provide explicit upper bounds in Section 5. Obviously
sup 8 (s, c,~) )  oo by the helix property of c~. Therefore C5
oST

can also be chosen such that (43) holds for i = 5. Now for t &#x3E; 0, s e R,
?/ E M2, W E SZ and h &#x3E; 0, we have

Using the cocycle property (25) and right-continuity of X (., 0 (s, w), y)
we see that the last term goes to zero as h 1 0. By (42) and (43) for i = 5
and the fact that ~ ~ X (h, 0 ( s, w), 0 as h 1 0, the first term
on the right-hand side of (44) also goes to zero as h 1 0. This prove (viii),
and the proof of Theorem 4.2 is complete.

Remark. - The continuity of X (t, w , . ) : M2 ~ M2 in the 
is guaranteed by Hypothesis (C2). On the other hand, if the state space

M2 is replaced by the space D :== D (~-r, 0], of all cadlag paths
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r~ : [-r, 0] --~ with the supremum norm ~ ~ r~ ( ~ ~ . - sup then
-rSo

Hypothesis (C2) may be considerably relaxed and Theorem 4.2 will hold
with M2 replaced by D.

5. LYAPUNOV EXPONENTS

In this section we prove the existence of a countable set of Lyapunov
exponents

for the stochastic flow of the s.f.d.e. (I) which we constructed in

Section 4 (Theorem 4.2). Such a Lyapunov spectrum corresponds to

almost sure exponential growth rates for trajectories { (x (t), xt) : t &#x3E; 0 ,

(x (0), ~o) _ (v, r~) ~ of (I) starting off at possibly random initial states
(v, r~~ . The existence of the Lyapunov spectrum is achieved using Ruelle’s
infinite-dimensional discrete version of Oseledec’s multiplicative ergodic
theorem (Ruelle [28], [27]). In the hyperbolic case, when all the Lyapunov
exponents are non-zero, we establish an exponential dichotomy for the flow
which is invariant under the cocycle (X, g). The continuous-time limit (45)
is shown to exist by noting the compactness of X (r, w, .) (Theorem 4.2)
and then discretizing (45) using multiples of the delay r:

A key step in identifying the limits (45) and (46) is to establish the

integrability property

where ]] . &#x3E; is the uniform operator norm on L (M2 ) (cf Lemma 4,
§ 4 in [23]). Much of the work in this section is directed towards realizing
the above integrability property. Observe that Theorem 4.2 (ii), (iii), (v)
and (viii) imply that the sup in (47) is ?-measurable since the sup can be
taken over a countable subset of [0, r] x [0, r] x B, where B is the unit ball
in M2. To begin with, we shall impose the following moment hypotheses
on the driving processes in the s.f.d.e. (I):
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Hypotheses (I)

(I1 ) If v is the measure defined in Hypothesis (C2), suppose that

(12) E sup  o0

0t2r t-rst

(13) Write the semimartingale N in the form N = where the local

martingale A~~ == and the locally bounded variation

process Y° _ (YZ° )i ~-1 satisfy

for all 1  i, j  n. Note that ~Y° ~(2 r) is the total variation of Y°
over [0, 2r].

Note that the helix property of M and (14) imply (t) E (SZ; R) for
all t E R. Our moment conditions (I) are certainly not best possible. Also
it will be clear from the proof of (47) that one can relax condition (14) at
the expense of sharpening any or all of (Ii), (12) and (13).
Our first goal is to establish the integrability property (47) under

Hypotheses (C) and (I). Note that (47) is implied by

By slight abuse of notation we will write c~ (w) := a (r, w) and Ci (w) :=
Ci (r, w) for i = 1, 2, 3, 4, where Q (t, w) .- t + w) as before and Cl,
C2, C3, C4 are the "constants" appearing in (28) and (29). We assume that
Ci, C2, C3 are chosen "best possible". Recall that C4 (w) = C2 (c,~)+C3 (w).
It is clear from (18) that Ci (c,v)  sup It follows from (41)

O:S;t:S;r

that a sufficient condition for (48) to hold is
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and

There is no need to worry about the measurability of the sup in (50). All
we really need to show is that the sup can be estimated from above by
an L~-function.

Our first lemma asserts that Hypotheses (14) and (Cs) are sufficient to
guarantee the existence of all higher order moments for the stochastic flows

LEMMA 5.1. - Let M satisfy Hypotheses (Cs) and (14). Then for each
0  T  oo and every integer p &#x3E; 1,

and

Proof - The existence of the moments (51) is proved in (Protter [26],
Lemma 2, p. 196). Using the fact that is the unique solution of the
matrix s.d.e.

(Leandre [17]), it also follows from ([26], Lemma 2, p. 196) that the

moments (52) exist for all p &#x3E; 1.

The finiteness of the moments in (53) follows immediately from (51),
(52), the cocycle property for cp and Holder’s inequality..

Proof - The lemma follows directly from

and the helix property of 
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LEMMA 5.3. - Let M, N satisfy Hypotheses (C4), (Cs) and (14) and let
p &#x3E; 1 be such that

Then

Proof. - By Kunita-Watanabe’s inequality (Protter [26], p. 61) and the
helix property of [Mik], [Nkj] ] we have a.s.

for 1  i, j, k  n and 0  t2  r. Using (55), (14) and the helix property
of M and N this implies (56)..
The following lemma gives an integrability property for the process Z

given in Corollary (3.3):

LEMMA 5.4. - Suppose M satisfies Hypotheses (Cs) and (14). Let N°, Yo
be the processes mentioned in (13). Suppose that

for all 1  2, j  n and a given p &#x3E; 1. Then

Proof - From Corollary (3.3).

Taking E on both sides of (60), applying Holder’s
otl, 

inequality and using Lemma (5.1 ), it is easy to see that (59) will follow from

So all we have to show is
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and

for 1  i, j, k  n. Applying Burkholder’s inequality to the left-hand side
of (62) (see Dellacherie-Meyer [5], Chapter VII) and then using Holder’s
inequality and Lemma 5.1, we see that (62) follows from (57). Similarly
(63) follows from (58). This proves (61) and hence (59)..
The next lemma establishes the integrability condition (50).

LEMMA 5.5. - Assume Hypotheses (C) and (I). Then

Proof. - Let w E H. Substituting 8 (t2, w) for w in (18) and using the
cocycle property for (/? (Corollary 3.2), the stationarity of K (Hypotheses
(C 1 ), (C3)) and Hypothesis (C2), the reader may check that

where

Using the integrability conditions (13) and (14), we see that the assumptions
of Lemma 5.1, Lemma 5.2 for p = 4, Lemma 5.3 for p = 2 and Lemma 5.4
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for p = 2 are satisfied. Now multiply (64) by sup a (0 (t2, .)) and apply
r

Holder’ s inequality to see that E sup {C2 ( 8 (t2, .)) a (0 (t2, .))}  oo .
r

Further, using (18) and (28), we get

Applying Lemma 5.1 and Lemma 5.2 for p = 4 we get

This proves (50)..
Observe that (49) follows from Lemma 5.1, and (50) follows from Lemma

5.5. So we have proved the following theorem.

THEOREM 5.1. - Assume Hypotheses (C) and (I). Then

Once the integrability property (47) is established we can now state the
following multiplicative ergodic theorem for the stochastic flow (X, 8)
of (I). The proof of the theorem is analogous to that of Theorem 4 in
Mohammed ([23], § 4) for the white noise case L = W, N = 0. In the
case when 8 is ergodic, the theorem gives a discrete set of non-random
Lyapunov exponents for X. The reader may supply the details of the

argument by consulting the proof of Theorem 4 in [23] (pp. 117-122). See
also Lemmas 6 and 7 ([23], pp. 113-117).

THEOREM 5.2. - Suppose 8 is ergodic and let the stochastic fd. e. (I) satisfy
Hypotheses (C) and (I). Then there exist

(a) a set S2* E .~ such that P (SZ*) = 1 and 9 (t, .) (S2*) C SZ* for all
t E 

(b) a fixed (i.e. non-random) sequence ~ ~i ~°°_1 of real numbers,
(c) a random family {Ei (w) : i &#x3E; 1, w E 03A9*} of closed finite-

codimensional subspaces of M2,
satisfying the following properties:
(i) if the Lyapunov spectrum {03BBi }~i=1 is infinite, then  03BBi for all

i &#x3E; 1 and lim ~i = - oo; otherwise the spectrum is a finite set ~ -

with N &#x3E; 1 a non-random integer and 03BBN = - oo   ... 

A2  Ai.
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(it) for each w E S2 * ,

(iii) for each c~ E S2* and (v, ~~) E Ei (w),

and

(iv) for each 2 &#x3E; l, the family ~ Ei (w) : cv E S~* ~ is .~’-measurable into
the Grassmannian of M2 and is invariant under the cocycle (X, 8), i.e.

(v) for each i &#x3E; l, codim Eg (w) is fixed independently of w E S~* .
As in [23] we say that the s.f.d.e. (I) is hyperbolic if its Lyapunov

spectrum does not contain 0. By a straightforward adaptation of the

argument in Corollary 2 of [23] (pp. 126-130) we get the following version
of the stable-manifold theorem (viz. an exponential dichotomy) in the

hyperbolic case:

THEOREM 5.3 (Exponential Dichotomy). - Let Hypotheses (C) and (I) hold
and 8 be ergodic. Assume that the s. fd.e. (I) is hyperbolic. Then there exist

(a) a set E J’ such that P (SZ* ) = 1 and 8 (t, .) (SZ* ) = for all
t E f~,

(b) a measurable splitting

with the following properties:
(i) U (cvj, S c,~ E S~*, are closed linear subspaces of M2, dimU (cvj

is finite and fixed independently of cv E 
(ii) The maps 03C9 ~ U (03C9), 03C9 ~ S (c,vj are F-measurable into the

Grassmannian of M2.
(iii) For each 03C9 E and E there exist t1 = tl &#x3E; 0

and a positive 03B41, independent of (cv, v, rij, such that
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(iv) For each cv E and (v, r~) E S (cv), there exist t2 = t2 (cv, v, r~) &#x3E; 0

and a positive b2, independent of (cv, v, such that

(v) For each t &#x3E; 0 and cv E 

Remark. - Under the hypotheses of Theorem 5.2, the Lyapunov
spectrum of (I) does not change if the state space M2 is replaced by
D := D ([-r, 0], with the supremum norm ~ ~ ’ ~ ~ ~ _ In fact the

existence of the limit

implies the existence of

and both limits agree for (v, r~) E M2. To see this the reader may note
the inequalities:

for 03C9 E 0* and (v, ~) e M2.
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