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The Missing factor in Hoeffding’s inequalities
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ABSTRACT. - A celebrated paper of Hoeffding establishes sharp bounds
for the tails of sums of bounded independent random variables. An

elementary observation allows to improve these bounds to optimal order
under mild conditions. (The method we present also allows to improve
many other exponential bounds.)

RÉSUMÉ. - Un article célèbre d’Hoeffding établit des bornes pour la
déviation d’une somme de variables aléatoires indépendantes par rapport à
sa moyenne. Combinant la méthode d’Hoeffding avec la transformation
d’Esscher, on montre comment sous des hypothèses supplémentaires
minimes ces bornes peuvent être améliorées d’une façon essentiellement
optimale.

1. INTRODUCTION

Consider independent centered random variables (r.v.) 
(Throughout the paper, X will always dénote a centered r.v.) The study
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690 M. TALAGRAND

of the tail

certainly has a long history. In the case where the r.v. are

identically distributed (and E exp 03B1|X1|  oo for some a &#x3E; 0), H. Cramer

proved in 1938 that, if p2 = then, if x = o(nl/6), we have

Asymptotic expansions, however precise, do not diminish the need for
inequalities valid for all n, t. Such inequalities have been obtained in

particular by Yu, V. Prokhorov, G. Bennett, W. Hoeffding, S. V. Nagaev.
For the purpose of simplicity, let us discuss Hoeffding’s bounds. The thrust
of his paper is (in the i.i.d. case) to obtain bounds that depend only on
p2 = EX21 and on b = sup Xi . He obtains a bound

for a certain function H (that will be described in (1.5) below). The

sharpness of this bound can be tested in the case of the binomial law, i. e.

when P(Xi = 1- p) = p, P(Xi = -p) = 1-p, for some 0  p  1. In that
case p2 = p(l - p), b = 1 - p. For the binomial law, straight computation
using Sterling’ s formulae allows to evaluate &#x3E; t). In particular,

in

one then finds that, min(p, 1 - p), and some constant K,

for t » (On the other hand, (1.2) is optimal for t = b).
The bounds of [H], [N], are all obtained from the inequality

As pointed out by Hoeffding, (1.2) is the best that can be obtained from
( 1.4). The purpose of the present paper is to show how the technique used to
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obtain ( 1.1 ) can be combined with the calculations involving the use of ( 1.4)
to obtain under very mild extra conditions the missing factor exemplified by
(1.3) in inequalities like (1.2), yielding bounds of truly optimal order. The
method we present is very general. We feel however that we serve better
the reader by concentrating on two simple results rather than by trying to
be encyclopedic. (Adaptation of the method to other cases is routine.)
We consider the function

Thus 8(0) = 1/2, and it is easy to see that 8 decreases for x &#x3E; 0. It is

shown in [I-K] p. 17 and [K-J], p. 505 that

We consider the function

We denote by K a universal constant, that may vary at each occurrence.

THEOREM 1.1. - Consider independent centered r,v. and let

~2 - E( ~ Xi ) 2, p2 - ~2 ~n. Assume that XZ  b for all i  n, and

2~_12
~2

that |Xi| KB’  B for all i  n. Then, for 0  t  KB, we have

Comments. - 1) Since B(t/Q) is of order it dominates B/03C3 for the
range of t considered. In particular (1.6) yields

2) For t = o(~/~-~~), we have = + o(l).
This is the range where (1.1) holds. By contrast, Theorem 1.1 holds for

Vol. 31,n° 4-1995.
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much larger values of t. It implies in particular, that given c &#x3E; 0, there is
a constant K(c), such that if 0  t  then

3) For simplicity we have made the blanket assumption B,
although quite less is required. However, we do not know how to improve
Theorem 3 of [H] without further assumption.

4) Certainly one can obtain a rather small numerical value for K, but
numerical computations are better left to others with the talent for it.

THEOREM 1.2. - Consider independent r.v. (YZ)Zn such that 0 ~ 1.

Set tc = n-1 03A3 EYi. Then for K  t  / K, we have
in

Comments. - 1) The quantity exp /~(1 2014 ~), 1 - ) is

exactly the bound (2.1 ) of [H] . When the r.v. z have the common mean
tc, Theorem 1.2 is closely related to Theorem 1.1 as is seen by considering
Xi and using the pessimistic bound o-  {t). The point
of Theorem 1.2 is that the variables need not have a common mean.

2) When 0-2 is of order the Berry-Essen theorem allows to
get rid of the restriction t ~ K.
The point of Theorems 1.1, 1.2 is that for values of t up to order

cr2, we get both the optimal exponential term, and the essentially correct
factor in front of it. In the situation of Theorem 1.2, the worst case is

tc == 1/2. In that case, the exponent of the exponential term is very close
to -2t2/n for values of t of order up to n3~4 . This is essentially the range
where asymptotic expressions like ( 1.1 ) hold, so much of the strength of
Theorem 1.2 is lost when one replaces the last term by The

corresponding corollary is nonetheless worthy to state.

COROLLARY 1.3. - In the situation of Theorem 1.2 we have, for t &#x3E; K, that
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The paper is organized as follows. The basic observation is presented
in Section 2. The elementary estimates needed to take advantage of it are
presented in Section 3; and the Theorems are proved in Section 4.

2. THE APPROACH

For i ~ n, consider the function given by

Since, in this paper, we assume that Xi is bounded, 03C8i is infinitely
differentiable. We 

in
The basic inequality is as follows.

PROPOSITION 2.1. - Consider s &#x3E; 0, and t = ~’ ( s ). Then

where pz = and where h(s) is given by (2.4) below.
The term h(s) will be shown to be of lower order. The approach is now

as follows. Given t &#x3E; 0, to obtain a bound for P(~ Xi &#x3E; t), we apply
ia

(2.1) where s is chosen so that t = ~’(s). We then find a lower bound for
sand 9" (s) (and thus an upper bound for B(sp)). We then observe that

and we note that the quantity inf is bounded by the Hoeffding
M&#x3E;0

bounds, since it is how these bounds are derived.
To prove Proposition 2.1, we follow Feller [F], p. 554. We set S = 2: Xi.

i~n
We consider the r.v. 

"

so that ER = 1. (The Esscher transformation). Thus, we can consider the
probability Q such that dQ = RdP. Thus dP == 

Vol. 31,n° 4-1995.



694 M. TALAGRAND

We have

where the last equality follows by integration by parts. We now observe
that the r.v. Xi are still independent when Q is the basic probability. We
can thus appeal to the Berry-Essen theorem as in Feller, p. 542, to get

where a = J SdQ, h(s) = 6r(~)p ~(~), and where

Since

by differentiation we have

so that a = t. Plugging (2.3) into (2.2) and integrating by part again yields

Making the change of variable u = t + pv, the last term is seen to be
by a standard computation. To finish the proof, it suffices

to see that p2 = ~" ( s ) . This is seen by differentiating again the relation
(2.5). a

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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3. ESTIMATES

The basic lemma is completely elementary.

LEMMA 3.1. - Consider a (bounded) r.v. X with EX = 0, T2 = EX 2,
03B3 = EX3. Set p(s) = log EesX. Then

Proof. - a) By computation, we have cp"(s) = g(s)(Eesx)-2, where

(This might be the point to observe that g(s) &#x3E; 0 by Cauchy-Schwartz,
so that (//’(~) ~ 0). Thus

Thus, by Cauchy-Schwartz, we have g"(s) &#x3E; 0, so that g’(s) &#x3E; g’ (0) = q,
and g(s) &#x3E; g(0) + s-y = TZ + s~y.

b) Consider the function g(s) = E(XeSX). Then g~3&#x3E;(s) = &#x3E;

0, so that g"(s) &#x3E; g"(0) = "I, g’(s) &#x3E; g’(0) + -ys = T2 + and

g(s) &#x3E; Tzs + 7zs~2.
c) Consider the function f(s) = Then f"(s) = 

so that f’(s)  f’(0) = and the result

by integration. D

LEMMA 3.2. - Assume that for some number B &#x3E; 0, we have B for
all i  n and EX~  B2, E’X3 &#x3E; -BEX2. Then, if s satisfies t = 
we have

Vol. 31, n° 4-1995.
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Proof of (3.1). - We have

By Lemma 3.1, c, we get, setting a; = EX 2

so that

In particular, since log(l + x) &#x3E; x - x2/2 for x &#x3E; 0, we have

Proof of (3.2). - By Lemma 3.1, b, we have, setting ~y2 = ~X~

By Lemma 3.1, c, setting ((s) = (esB - sB - 1)/B~, we have

Thus, combining (3.4), (3.6), (3.7), we have

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Denote by f(s) the right hand side. Since ~(s)  (e - 2)~  s2 for
s  1/B, ~(~)  (e - 1)~ ~ 2s, one sees that if 0  s  so = 1/3B,
f’(s) &#x3E; 0, so that f (s) increases. Since q$1’ increases (as noted in the proof
of Lemma 3.1), it follows that if t = ~%’(s)  f (so), we have s  so, so
that ~(s)  s2 and s  Since f (so) &#x3E; Q2~6B, we have shown that
for t  we have s  (so that in particular sB  1/3).
Proof of (3.3). - By Lemma 3.1, a, we have

By Lemma 3.1, c, and since sB  1, we have

so that

and

Combining with (3.5) and the fact that s  2t/03C32 yield the result. ©

Remark. - Rather than assuming B, one could obtain a weaker,
but sufficient result assuming only 2.
We are now ready for the main result.

THEOREM 3.3. - There exists a universal constant K with the following
property. Assume that for some number B &#x3E; 0, the r. v. x~ satisfies

Then, ~r2 / K B, we have

Vol. 3i, n° 4-1995.
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Proof. - Let t  sa2/6B, and let s satisfy t = ’lj;’ (s). Thus, by (3.2) we
have sB  1/3. We observe that

Thus, by (3.8), we have h(s)  
We now show that, if ~ ~/2~jB, we have

Indeed,

Thus, it suffices to prove the following lemma.

LEMMA 3.4.

Proof. - We observe that -B’(A) = 1 203C0 - 03BB03B8(03BB), so that

and the result follows by elementary estimates. D

Remark. - Actually lim -8’(~) = and lim -~ZB’(~) = 
It remains to observe that

But we have noted that 1/;" 2: 0, so that 9 is convex. And the minimum
of ~(t6) 2014 ut occurs at the point where the derivative is zero, i.e. for

~’ (u) = t. o

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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4. PROOFS OF THE THEOREMS

Theorem 1.1 is a direct consequence of Theorem 3.3, combined with

Hoeffding’ s result that

We now turn to the proof of Theorem 1.2. For simplicity we set

= ~,), 1 - First we recall that Hoeffding proves
that

Thus, recalling that Xi = 5l - EYi by Theorem 3.3, for some universal
constants Ko, Ki, we have that, for t  0’2/ Ko

We now show that

By concavity of the function x(1 - x), it suffices to show that 

EYi(l - EY2 ) . This follows from the fact that for - p  x  1 - p, we
have x2  p(l- p) +x(1 - 2p), so that, if -p  X  1 - p and EX = 0,
we have EX 2  p(l - p).
The main difficulty in the proof of Theorem 1.2 is that it can happen

that o-2  tKo, so that we cannot use (4.2). The way around this difficulty
is to show in that case that, unless t is very small, using (1.2) with b = 1
yields a better bound than (1.7). (Thus, in that range (1.7) is indeed weaker
than (1.2). The point, however, is that (1.7) involves only first moments.)
By direct computation, we observe the precious fact that

Vol. 31, n° 4-1995.



700 M. TALAGRAND

In particular

We fix t, and we assume o-2 C tKo, so that p2  tKo/no For x ~ t/n,
we have

Thus, by (4.4) and integration we get

and thus

On the other hand, for x  ~(1 - /~)/2, we have

Thus, by (4.5) and integration, we get for t  nu(1 - ~,)/2, that

Since 9(A) &#x3E; (~/27r(l + A))’B the bound given by (1.7) is larger than

while, by (4.6), the bound given by (1.2) is less than

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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It follows that, for some universal constant K, if t &#x3E; K, t 

then BZ  Bl. (Observe that then

Thus, we have shown that provided t 2: K, we can always assume
t  so that (4.3) holds. We now observe that (provided Ko is large
enough) the function .

increases for t &#x3E; Ko and a2 &#x3E; Kot. Indeed, we have

and the claim follows from Lemma 3.4. Theorem 1.2 is proved. D

We now prove Corollary 1.3. By (4.5), we have

so that, by integration

since (x + a)3 - a3 is minimum at a = -x /2. Thus, by integration

By (4.2), we have

Vol. 31, n ° 4-1995.
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If t 2: n7~8, this is better than the bound of (1.8) for n sufficiently large
(which we can certainly assume). Thus it suffices to consider the case

t  n7~8. For x  t/n, we have

Thus, by (4.4) again

Thus, by (4.5), and the argument of Theorem 1.2, it suffices to consider

the case t  Then (1.7) holds. By (4.9), we have

2~/?T; and, as shown in the proof of Theorem 2.1, we have
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