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Brownian fluctuations of the interface in the
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ABSTRACT. - We consider the Ginzburg-Landau equation in an interval
of R, perturbed by a white noise and with Neumann boundary conditions.
The initial datum is close to the stationary solution (that we call instanton)
of the equation without noise. We prove that, as the variance of the noise
goes to zero and the length of the interval is proportional to the inverse
of this variance, then, the solution approaches an instanton which moves
as a Brownian motion.

Key words: Stochastic PDE’s, interface dynamics, invariance principle

Nous considerons 1’ equation de Ginzburg-Landau dans un
intervalle de R avec bruit blanc additif et avec conditions de Neumann a la
frontiere. La condition initiale est proche de la solution stationnaire (qu’ on
appelle « instanton ») de 1’equation sans le bruit. Nous demontrons que,
lorsque la variance du bruit tend vers zero et la longueur de l’intervalle
spatial est proportionnelle a l’inverse de cette variance, la solution est

proche d’un « instanton » qui se deplace comme un mouvement Brownien.
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1. INTRODUCTION

The semi-linear parabolic equation

and the version with a stochastic force on its right hand side, appear in
the physical literature as basic model equations for phase separation and
interface dynamics in systems with non conserved order parameter, see
Hohenberg and Halperin, 1973, [16], and Allen and Cahn, 1979, [2]. We

study in this paper the influence on the motion of the interface of a small
white noise added to ( 1.1 ).
We start by recalling a few results in the deterministic case when ( 1.1 ) is

defined in the interval 7~ ~= [-£-1, £-1), £ &#x3E; 0, with Neumann boundary
conditions. The solution of the corresponding Cauchy problem defines a
flow &#x3E; 0, in the space of functions that are twice continuously
differentiable in the interior of 7§ and have vanishing derivatives at the
endpoints. The flow T ~~~ has obviously two fixed, stable points, 
and an unstable one, Uo == 0. These are all the stationary, spatially
homogeneous solutions of ( 1.1 ), but there are many others which are

not spatially homogeneous. For small £ the most relevant ones, in the sense
of stability, are the two "instantons" J=~, with u: (x) a strictly increasing,
antisymmetric function of x, positive for x &#x3E; 0. In the limit as £ - 0,
u; - m pointwise, where

is a stationary solution of ( 1.1 ) in the whole R.
Fusco and Hale, 1989, [15], Carr and Pego, 1989, [4], and Fusco, 1990,

[14], have studied the stability of ~u~ under T ~~~ and the corresponding
problem for flows generated by semi-linear parabolic equations with more
general non linear terms. The analysis shows that are saddle points for
the flow with a one dimensional unstable manifold, that connects

~ to the stable points u+. ME is invariant under the flow T ~~~ and it

is locally stable in the sense that it attracts at exponential rate (uniformly
as E - 0) the orbits that start from a neighborhood of Analogous
conclusions hold 

The points in can be parametrized by x E 1; and are denoted by
These are essentially spatial shifts of the instanton in, (1.2), namely

for any 0  R  1, there is c &#x3E; 0 so that

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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The flow on ME is represented by two orbits ~~ (t), t E R, one, 
in {x &#x3E; 0~ and the other in {x  0~. The former, is an increasing
function of t and ~cE,x, ~ - converges to the stable point u- as

t - o and to 1~ as t - -oo. Analogous behavior is found in the other
half of where x  0. The motion along is very slow: the speed
at x E is bounded by with r = EX and c(r) &#x3E; 0.

Therefore the points in a neighborhood of are "first" attracted by 
and then move, "very slowly", along ME,

In this paper we study the stability of the manifold ME under the
small random perturbations of the flow Ty defined by the stochastic partial
differential equation

in 7~ with Neumann boundary conditions. 0152 is a white noise in space and

time. The theory of stochastic PDE’ s applies to (1.4), as briefly recalled
in the next Section, in particular we will refer to Faris and Jona-Lasinio,
1982, [ 11 ], Walsh, 1984, [19], and Da Prato and Zabczyk, 1992, [8]. Here
it suffices to say that for any continuous initial datum mo and almost all

the realizations of the noise, there is a unique, continuous function mt,
t &#x3E; 0, that solves an integral version of (1.4) with Neumann boundary
conditions in 7~. The solution obtained in this way defines a continuous
process mt, t &#x3E; 0, with values in C(7e), hereafter referred to as "the
Ginzburg-Landau process".
As a consequence of our analysis (but for brevity we will not state a

theorem) it can be seen that is stable also for the stochastic flow defined

by ( 1.4) in the limit of small E. In particular the points in a neighborhood of
if not "too close" to the boundaries ±~-1 are again attracted by M~,

but then, at variance with the deterministic case, they move "rapidly along"
In fact on times E-1 t, to be compared to the exponential times of

the deterministic case, the process becomes supported, in the limit E - 0,
by translates of the instanton m which then performs a brownian motion
on More precisely we consider an initial datum E 

satisfying N.b.c. in 4 and such that

and call mt the process that solves (1.4) with initial datum We

denote by PE the probability on the basic space, where the noise a and the
process mt are constructed. Our main theorem in this paper is the following:

Vol. 31, n° 1-1995.
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1.1. THEOREM. - For any 0  (  1 the following holds. Given any E &#x3E; 0,
|x0| I  ( 1 - 03BE)~-1, mt and pé as above, there is a continuous process 03BEt
adapted to mt such that for any T &#x3E; 0

Moreover let be the law on C(~0, T~, I~) of the variable xo.

Then converges weakly to a Brownian motion starting from 0 with
diffusion coefficient

Analogous results have been obtained by Dell’ Antonio, 1988, [7], for
the small random perturbations of a deterministic flow defined on a finite
dimensional manifold and with an attractive submanifold that plays the role
of The problem in R with the noise strength a function of x that
suitably vanishes as Ix I - oo has been considered by one of us, S.B.,
1993, [3], and, more recently by Funaki, 1993, [13]. In [3] the process is
studied for times much smaller than when the displacements of the
instanton are still infinitesimal. In the limit as E - 0 and with a proper
normalization, they are proven to converge to a Brownian motion.

In [ 13], a paper that we have received when completing the first draft of
this one, the analysis concerns much longer times. In our language Funaki
studies times t = 6’~~, with 8 positive and small. The displacement
çt of the instanton is renormalized as ~ := Space is renormalized
in the same way so that the instanton becomes in the new coordinates a

step function. Funaki proves that this step function moves in the limit as
E - 0 as a Brownian motion with a drift, which comes from the spatial
dependence of the noise strength. The different scalings and the different
norms used make this paper quite different from ours. We are indebted to
T. Funaki for his observations on our paper. In Section 3 we make some

more comments on his approach.

2. THE GINZBURG-LANDAU PROCESS

In this section we state the Cauchy problem for (1.4) in a form that is
particularly convenient for the proof of Theorem 1.1. The standard way, see

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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Walsh, 1981, [19], and 1984, [18], to give a sense to the Cauchy problem
for (1.4) is to consider the corresponding integral equation

where mo E C(T ) is the initial datum, is the Green operator for

the heat equation with Neumann boundary conditions (N.b.c.) in 4 and

xA is the characteristic function of the set A. The stochastic integral in

(2.2) defines a Gaussian process in space and time for which the following
properties hold:

2.1 LEMMA. - For any E &#x3E; 0 the process is continuous in both

variables and there are constants bo and bl positive such that for any a &#x3E; 0

The proof of Lemma 2.1 is given in Section 5. It uses some Gaussian

processes results, that can be found in [ 1 ] . Some useful estimates on the
covariance are taken from [18].
By Lemma 2.1 we can restrict to continuous in (2.1 ), in which case

an existence and uniqueness theorem holds, as a straightforward extension
of the proof in [ 11 ], 1982, for the case of Dirichlet boundary conditions.
In the sequel we will consider an equivalent representation of the process
obtained by using the reflection symmetry associated to N.b.c.

2.2 DEFINITION. - For any continuous function m in 4 we define its .

extension m to I~ by reflecting m through and then extending to I~ with

period 4E-1. That is

Reciprocally, we say that a function m E defined on the whole line

satisfies N. b. c. if it is the extension in the above sense of a function in T .

Vol. 31, n° 1-1995.
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We define

and refer to Zt as the "free process". We denote by Ht the Green operator
for the heat equation on the whole line, so that for any m E C(~ ),

2.3 PROPOSITION. - For any E &#x3E; 0, for any mo E that satisfies
N. b. c. in 4 and for any Zt(x) continuous in both variables and satisfying
N. b. c., there is a unique continuous solution mt of the integral equation

with Ht as in (2.6). Moreover mt = where solves (2.1 ) with 
and obtained by restricting Zt and mo to TE.

Proof. - We know from [ 10] that (2.7) has a unique continuous solution
which therefore satisfies N.b.c. in R. Then by (2.6) its restriction to 4
solves (2.1 ), whose solution is unique. D

We shall hereafter call the solution mt of (2.7) the Ginzburg-Landau
process. By Proposition 2.3, mt is a process adapted to the basic process Zt.
We study the Ginzburg-Landau process by following the approach proposed
in [3] which is based on a perturbative analysis of the Ginzburg-Landau
process around the instanton solution (1.2). We write

then the linearized Ginzburg-Landau evolution operator around mxo is

where V" is the derivative of

Observe that if mo satisfies N.b.c. then limo - is not small, even if

mo were equal to an instanton in 7~ However, by proving a barrier lemma,
Proposition 5.3, we will be able to "localize" the analysis and the relevant

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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norm will be a supremum restricted to 7~. In this way our perturbative
scheme will work also for initial data that satisfy N.b.c. in T .

Lxo is a self-adjoint operator in R) and m’x0 an eigenvector of
Lxo with eigenvalue 0. The remaining part of the spectrum of Lxo is in

the negative axis at non zero distance from the origin, [12]. Therefore the

semigroup gt,xo = t, is a contraction semigroup whose norm restricted
to the subspace orthogonal to decays exponentially in t. This is true
also in as it can be seen by using a Perron-Frobenius argument,
based on the strict positivity of the eigenvector The analysis has been
carried through in a paper involving two of the present authors, (A. DM
and E. P), and T. Gobron, 1993, [9], for a different case, where ( 1.1 ) is

replaced by a non local evolution equation. The proofs however extend
to the present case and for the sake of brevity are omitted. We thus state
without proof the following theorem.

THEOREM 2.4. - There &#x3E; 0 and c so that for any 03C6 E and

xo e R

where is the unitary vector in L2 (dx, (~) parallel to 

We will next give a heuristic proof of Theorem 1.1. As the initial

state is mxo, (forgetting for the time being of the finitiness of 7~). the
main contribution to mt at the very beginning comes from the noise.

We introduce then an orthonormal basis whose first vector is mxo and
decompose mt - mxo in this basis. Its coordinates are at short times

approximately independent brownian motions. At some later time the drift
in the equation becomes significant, but the deviations that are still small
are ruled, to leading orders, by the semigroup gt,xo generated by Lxo . Since
all the directions are exponentially damped except along after a time

TE, in the successive analysis TE = (1/10 should be regarded as
much smaller than 1/2) we will have, see Proposition 5.4,

with b~E the value of a standard brownian motion at time TE . We then

write, to first orders,

Vol. 31, n° 1-1995.
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By iterating this procedure we eventually reach a time when the

displacement from the initial instanton is finite. By (2.14) its law is that of
the limit Brownian motion of Theorem 1.1.

There are several points in the argument to be fixed, one for all the error
when going from (2.13) to (2.14): the first term neglected is proportional
to ~b2T~m’’x0. If we simply sum up all these errors and iterate till time 
we get a finite contribution. In fact, since bTE  according to (2.14)
we need NE iterations to have a finite displacement of the instanton, where

(having supposed that the increments are independent).
Since the sum of the errors is NEETE, the sum is also of the
order of 1.

The circumstance that helps us in this case is that mo is normal to 
in L2 (IR, dx), so that the above error is killed by the exponential decay in
Theorem 2.4 at the next step of the iteration. We deal with this and the
other problems implicit in the above heuristic argument in some unified
way, as explained in the next Section, and conclude this one by writing the
equation for mt in terms of the semigroup generated by Lxo .
We denote by ut := mt - mxo and we expand around mxo .

Then using that mxo is a stationary solution to the deterministic equation
in R, we rewrite (2.7) as

Recalling that gt,xo = we have

where

The proof of (2.16), that is omitted, makes formal the following heuristic
argument: we rewrite (2.15) in differential form

and then observe that it is "solved" by (2.16).

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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The representation (2.17) shows that t,x0 is bounded and continuous in
any compact time interval in the same set where this holds for Zt, hence

by Lemma 2.1, with probability 1. Some estimates on the distribution of

like those in Proposition 5.4, are more easily established by writing
an almost surely equal version of t,x0 as the stochastic integral:

We omit the proof of (2.19) that makes formal the following argument,
where we rewrite (2.17) in differential form:

which then becomes

that yields (2.19).
We summarize the above discussion in the following Proposition.

2.5 PROPOSITION. - Let E &#x3E; 0 and mo and Zt as in Proposition 2.3. Then,
given any Xo E 7;., mt solves (2.7) if and only if ut = mt - mx0 solves

(2.16) with as in (2.17), or, alternatively, as in (2.19).

3. FLUCTUATIONS OF THE INSTANTON

In this section we reduce the proof of Theorem 1.1 to several propositions,
that will be proven in the next sections.

An important role in the whole proof is played by the notion of center: the
center of an instanton is the position where the instanton has the value 0.
For a general function we set:

3.1 DEFINITION. - The function m E has a center x° if, using the
notation (2.8),

Vol. 31, n° 1-1995.
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In the next Proposition we will see that if a function is close to an
instanton then it has a center. We will then proceed by showing that
the Ginzburg-Landau process satisfies with large probability this closeness
condition at all the times involved in Theorem 1.1. The notion of center
will then be crucial in the proof of Theorem 1.1 as it is in the proof of
Funaki, [13]. This is therefore a good point for some comments on the
notion of center and on the Funaki’s approach.

Recalling Theorem 2.4 the center xo of m can be interpreted as the center
of the instanton mxo to which the orbit starting from m converges when
the evolution Tt, defined by ( 1.1 ) in the whole R, is linearized around mxo .
From this perspective it looks more natural to define the center directly in
terms of the flow Tt : the new center yo, generally different from xo, is such
that myo . The advantage of working with yo is that is a

martingale when mt is the the Ginzburg-Landau process (in the whole R),
as observed by Funaki. In fact, by its definition, does not vary when

moving in the direction of the drift. This suggests a proof of Theorem 1.1
based on a martingale convergence theorem, which is indeed accomplished
in [ 13] . The starting points in [ 13] and in the present paper are quite similar,
because the process will be proven to stay always very close to an instanton,
hence the two notions of center yield variables very close to each other.
It is therefore amazing to see how such a small difference develops rather
different strategies and in the end proofs that are essentially different.

3.2 PROPOSITION. - There are 8 &#x3E; 0 and, given any ~’ and ( such that
0  1’  (  1, there are c and EO so that for any 0  E  EO and any

]  ( 1 - 0~ the following holds. Let m E  2, and

Then

( 1 ) m has a center 03BE in T ,

and 03BE is unique in  (1 - ~’~-1}.
Let

then

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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Then m* has a unique center ~* ( 1 - (’)£-1} and

(4) If m satisfies N. b. c. in 4, then m has a unique center in ~ .

In Proposition 5.2 we will prove that with large probability the Ginzburg-
Landau process that starts from an instanton has sup norm bounded by 2
at all the times t that are involved in our analysis, hence the condition

 2 in Proposition 3.2.

3.3 DEFINITION. - We define the function as the center of m whenever
m satisfies the conditions of Proposition 3.2 with some ( &#x3E; 0 and we then

say that is "proper". In the other cases we set = 0 and say that

is not proper. We will also use the shorthand notation

A set where is proper that will often appear in the sequel is the
set C~, with ( and E positive, where

Then, according to Proposition 3.2, for any 0  (’  ( there is EO such that
for all E::; EO, any m E has a center in (1 - ~’)E-1~.
We prove next that if m E CE,(, then, after a "short time", (that only

grows as b &#x3E; 0, that may be chosen arbitrarily small) it gets "much
closer than E1~4" to the instanton with center 

3.4 PROPOSITION. - For any 0  (  1 and 0  a  1/4 there are
positive constants C and b, b  1 / 10, and given n, cn, so that the following
holds. Suppose that ma E and that it satisfies N. b. c. in 4. Let xo be the
number corresponding to mo, see (3.9). Denote by mt the Ginzburg-Landau
process starting from mo and call ~ - then

Vol. 31, n° 1-1995.
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Using the above result we are going to prove the following Lemma:

3.5 LEMMA. - Let (, a, band mo be as in Proposition 3.4. Then there is
c’ and, given n, cn so that, setting s~ = 

Proof. - Let k* be the first integer such that &#x3E; and C’

and c~ the values of C and cn in Proposition 3.4 when ( is replaced by
1’ = 10 - 2 ~, (a, b and ~ as in the statement of the Lemma).
We are going to prove by induction on k  1~*, that there is c’ so that

that implies (3.11 ).
By Proposition 3.4

By (3.3) we then get (3.13) with k = 1, by choosing properly c’.
We next suppose (3.13) true for 1  ~  k* and we prove it for k + 1.

We call m* = ?T~, ~ = ç(m*) and suppose that m* is in the set on

the left hand side of (3.13). Then we can apply Proposition 3.4 with (’
instead of ( because

for all E small enough. Therefore (3.14) holds with m; the process starting
from m* and we have

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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By (3.13), that holds for k (by the induction assumption), (3.15) and (3.3)
we then get

(3.13) is thus proved for all 
Recalling the statement below (3.13) we are only left with the proof

of (3.12). Using (3.13) and Proposition 3.4 with (’ instead of ( we have
for 

We then derive (3.12) from (3.13), (3.17) and (3.3) so that the Lemma
is proved. D

By Lemma 3.5 the Ginzburg-Landau process converges to an instanton
as £ - 0, thus becoming a one-dimensional process which describes the
motion of the center, (this under the assumption that the process starts close
enough to an instanton and till times much longer than E-1). (3.12) also
gives bounds on the values of 03BEt but they are far from sharp, as shown
in the next Theorem:

3.6 THEOREM. - Given any ( &#x3E; 0 and e &#x3E; 0, let mt be the process that
starts from see ( 1.5), with |x0]  ( 1 - ()£-1. Define

and let PE be the law on f~) of Xt . Then pE converges weakly as
E -t 0 to P the law of the Brownian motion with diffusion D = 3 4 that

starts from 0. 

Theorem 3.6, (3 .10) and (3.11 ) prove Theorem 1.1. To prove Theorem 3.6
it is convenient to work in discrete times. With b &#x3E; 0 as in Proposition 3.4,
we define

and

Vol. 31, n° 1-1995.
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The reason of this choice of TE will become clear in the proof of Propo-
sition 3.8 below. We set

Of course for all T = Etn. We call ~°E the law on 0~)
of Y; and we will first prove that, as E - 0, it converges weakly by
subsequences. We will then show that the limit points are supported by

R) and finally that they are all equal to the same measure P. We
will also prove that the increments of Xt in the single intervals ]
vanish as E - 0, thus completing the proof of Theorem 3.6.
We call 0t the a-algebra generated by the process Zs, s  t, recalling

that mt is adapted to 0t, and state the following two key Propositions. In
the first one we state criteria for tightness and support properties of the
limit measures and in the second one that they are satisfied.

3.7 PROPOSITION. - Given any T &#x3E; 0, the family of laws E &#x3E; 0, on

tight if there is c so that for all E

where

with

If (3.22) holds and if

then any limit point P of pE is supported by C(~0, T~, IR).
Finally, if (3.22) and (3.26) hold and if

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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D = 3 , then any limit point P is equal to P, the law of the Brownian
motion with diffusion D that starts from 0.

3.8 PROPOSITION. - Under the same assumptions as in Theorem 3.6, the
conditions (3.22), (3.26), (3.27) and (3.28) are satisfied for all E small

enough.

Thus Propositions 3.7 and 3.8 prove that !pE converges weakly to P. At
this point very little is missing for proving Theorem 3.6, namely that the
increments of X: in any of the intervals are infinitesimal, see the
remarks following Theorem 3.6. By (3.11 ) and (3.12), if I  ( 1 - 
there is (’ &#x3E; 0 so that, for any T &#x3E; 0,

We then fix any interval [tk, tk  take mtk in the set on the

left hand side of (3.29) and consider the process for a time TE starting from
such By (3.12), the probability that the corresponding increments of
~t are bounded by c’ El/4-1/10 is larger than 1 - The intersection of

all these events with tk  has also probability larger than 1 - 
(with different coefficients). Theorem 3.6 and Theorem 1.1 are thus proved,
once all the above Propositions are also proved.

4. PROOFS OF THE PROPOSITIONS OF SECTION 3

In this Section we prove the Propositions stated in Section 3 using
properties of the Ginzburg-Landau and of the free processes that will be
proven in Section 5.

Proof of Proposition 3.2. - By assumption the function

is continuous in R and

Vol. 31, n° 1-1995.
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Let

then ç is a center of m if and only if C(~ - xo) = 0. Since for all y

we have

F and H are in F is odd, increasing and

Moreover, there is c so that, for all y such that Ixo + yl  (1 - ~’)W1,

and, analogously,

We fix arbitrarily 7 &#x3E; 0, then there are x, 6 and 60 positive so that for
all 6  60 and all  28 the following holds. Firstly if Iyl  ~y, then

Ixo + (1 - ~’)E-1, (because (1 - ~)E 1 and (’  (). Moreover

We are going to show that for all E small enough C(y) has a zero, yo, in
Iyl  ’7 and no other one in Ixo + ~/! ~ ( 1 - ~’ ) E -1.

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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By (4.8), = F(’)’) + H(-y) &#x3E; 0 and since, analogously, C( -’)’)  0,

by the continuity of C(y) there is a zero in Iyl  ~. By (4.9) it is unique
in Iyl  ~y and by (4.8) in Ixo + yl  (1 - (’)£-1. To refine the location of
the zero we observe that F(0) = 0 so that, by (4.9),

Thus, by (4.6),

hence  y+, which proves (3.3). Moreover

We then have

hence (3.5).
Calling h*(~) _ m*(x) - we have  26, hence (4.8) and

(4.9) and the conclusions thereafter are also valid for h*. Since C(yo) = 0,
we have

By taking 8 small enough we get

We can then apply (4.9) and using (4.10)

so that (3.7) is proven.
The last statement in Proposition 3.2 (about the uniqueness of the center

in the whole ?e) follows after replacing the first inequality in (4.6) by

Vol. 31, n° 1-1995.
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that we need to bound uniformly in xo + y E 4. By the assumption that
m satisfies N.b.c. in 7~, when x = E-1 + x’, 0  x’  ~’E-1,

so that

Same bound holds when x = -~E-1 ~ x’~, 0  x’  ~’E-1, so that using
(4.11 ) and (4.13 ) we prove that the last bound in (4.6) holds in the whole
7~ so that the uniqueness in the whole 4 follows and the Proposition
is proved. D

Proof of Proposition 3.4. - Setting ço = by (3.3) we have that
lço - xo I  c~1/4 and by (1.2)

Then

We define

A linear interpolation in the missing intervals completes the definition of
mo.

Let mt and mt be the solutions of (2.7) with initial data respectively
mo and mo (and same noise). By Propositions 5.2 and 5.3, for any n
there is cn so that

We will prove that there is &#x26;  a and, for any n, cn so that
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where Xo is the center of mo. Observe that by (3.7), for any n there is
cn so that

Then from (4.17), (4.18) and (4.19)

After proving (4.18) and consequently (4.20) we will extend the result by
lifting the condition on x in (4.20) thus having a sup over the whole 7~.
Then, with the help of Proposition 3.2 we will easily conclude the proof of
the proposition. We next prove (4.18). Given a  1/4, let

and let

with YE as in (5.27). Then, by Propositions 5.2 and 5.4, for any n there
is cn so that

Let

then, by (2.11 ) and (2.16), there are constants Ci and C2 such that, in BE,

for all t  E-b. By (4.21) the last term i~ bounded by 6~. By (4.19)
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where C3 &#x3E; 1 is a suitable constant.
Then from (4.25) we get that, in BE,

Let

We next prove by contradiction that E-b  T, in We thus suppose
that T  E-b, then,

for all t  T and, by the continuity of 

Hence

that is

which cannot hold for all E small enough because, by (4.21 ), b  1 /4. We
have thus proven that E-b  T.
By (4.25) and (4.26) we then get for all t  E-b, in BE

hence setting t = E - b :

By (4.23) we have thus completed the proof of (4.18) hence also that of
(4.20).

In {~ 2014 çol ] &#x3E; 10’~(6~} we use Proposition 5.3 to reduce to the case
with the initial datum close to a function identically equal either to 1 or

-1. By symmetry we may just consider the interval
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Recalling (4.15), we get

for all E small enough. We define a new mo as

Then, by Proposition 5.3, for any n there is cn so that, calling
x* :== xo + 10-5(E-l,

To estimate mE-b we should study the equation linearized around m = 1.
The analysis is very similar to the previous one since m = 1 is linearly
stable for the deterministic evolution ( 1.1 ). We then obtain the same estimate
we had before, details are omitted. We have thus proved that (4.20) holds
with the sup over x E 4.
We now recall what stated right at the beginning of this proof, namely that

We then use this inequality to replace by mxo in the first sup in the
improved version of (4.20). For the second sup we use Proposition 3.2
to conclude that

We then get for the improved version of (4.20), the one with the sup
over x E ?~.

hence (3.10). Proposition 3.4 is therefore proved. D

Proof of Proposition 3.7. - We call mT = m~-103C4 and 7§ the a-algebra
generated by for T’  T. 0t is instead the a-algebra associated to
mt, as usual. We will first prove that
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and that

with

where i = 1, 2 .

Proof of (4.30) and (4.31 ). - We shorthand

Then, obviously,

Moreover

where

Recall the formula ~2 = L f 2 - 2 f L f for the "operateur carre du champ"
valid for the "second compensator" in time-continuous processes, [17].
To prove (4.35) it is enough to check that

whose proof is omitted. Then (4.30) and (4.31) are proven since they are
just (4.34) and (4.35) with different notation.

Tightness. - Having now the representation (4.30) and (4.31), we can
use the following sufficient condition for tightness, see for instance § 2.7.6
of [6] :

which is implied by (3.22).
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Support properties. - A sufficient condition (see for instance the proof of
Theorem 2.7.8 in [6]) for the support property stated in Proposition 3.7 is

with Y + and YT_ respectively the right and left limits of Y;, at T. Recalling
the definition of Y;, (4.39) is equivalent to

which follows from

Since

(4.39) follows from (3.26).

Identification of the limit law. - For what already proven, any limit law
P of P~ is supported by C([0, T] , R). It is then enough to show that Yr
and Y2 - DT, D = 4, are P martingales, because, by the Levy’s theorem,
P is then equal to 7~.

Let ~ be a bounded continuous function on C([0,T],R+), measurable
with respect to the coordinate process till time a, 0  T. We need

to show that along a converging subsequence, for any ~ as above and any
T such that a  T  T

In fact, since the functions in the expectation are P- a.s. continuous in

D(~0, T] , IR+), because of the support properties of IP, then

with E the expectation with respect to P.
By (4.30)
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Using (4.32) and (3.27) we then obtain (4.43).
Analogously, to prove that Y2 - DT is a P martingale we write,

shorthanding Yn for Yrn’

which is a PE martingale with respect to Analogously to (4.32) we
define

It is then enough to prove that for all ~, a, T as before,

which is implied by (3.28). The Proposition is therefore proved. D

Proof of Proposition 3.8. - By (3.11 ), (3.12) and the definition of TE,
we get

By definition, see Definition 3.3, ~t ~  E-1. It thus suffices to prove that

where the process mt starts from mo and the latter satisfies N.b.c in 7§ and
moreover mx0 liE :S; E1/2-a with  (1 - ~/2)~-1. c in (4.47)
and the convergence in (4.48) must be uniform in mo (provided it satisfies
the above conditions). Given mo, ço = ç(mo), let m; be the process that
starts from and denote by ç}e the variables and ~TE in
this new process. We will prove below that there are c’ and, for any n,
cn so that for any mo as above
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Then, by (3.7) there are c" and, for any n, cn so that

It then follows that (4.47) and (4.48) hold if they are verified with 
and Ç;’e’ i.e. when the process starts from an instanton centered at xo with

( 1 - (/2)E-l. The proof of Proposition 3 . 8 is thus reduced to that

of (4.49) and of (4.47)-(4.48) with and Ç;’e’ that will be carried
out in the sequel.

4.1 LEMMA. - For any a, ( and E positive, let (1 - ~)E-1,
mx0~~ ~ ~1/2-03B1 and suppose that mo satisfies N. b. c. in 4. and

that 03BE(m0) = xo. Denote by mt and m*t the solutions of (2.11 ) with initial
conditions respectively mo and mxo . Then there is, c and, for any n, cn so
that (4.49) holds.

Proof. - We start by proving that for any n there is cn so that

and that the same inequality holds for m;.
We define mo, mt, ut as in the proof of Proposition 3.4, see (4.16)-(4.25).

By (4.19) and the second inequality in (4.26)

with c~ and c2 suitable constants. We set

and we are going to prove by contradiction !3t for all

t  

Suppose that T  with

By the continuity 

Thus
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hence, letting a’  a,

which is a contradiction for E small enough and a  7/20. We have
therefore proved that if mt is in the set on the left hand side of (4.17) and
in then for )x - 10-5(E-l

where the first term on the right hand side of (4.57) bounds = E-1/ 10,
and the last term comes from (4.17). Recalling (4.19), this would prove
(4.51 ) if the sup were taken over Ix - ~o ~  10’~6~. When x does not
verify this condition, we proceed as in (4.27)-(4.29) and prove (4.51), we
omit the details.

The proof of (4.51) with mt in the place of mt is very similar and

simpler, it is thus omitted.

Let

Recalling (2.16), writing gt,xo == gt and F(~) == w3, we have

We write

By (4.51) there is c so that
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From (4.59) we get

Using (4.63) and (4.64) we write

In the set on the left hand side of (4.62), calling x the constant c in (2.11 )
and 1 a bound uniform in t of the sup norm of gt, we have that there is
a constant C so that for t  and

Using (4.66)-(4.68) we get from (4.63)

so that Lemma 4.1 is proved.
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4.2 LEMMA. - Given any ( &#x3E; 0, for any E &#x3E; 0 let xo E 4,
|x0|  ( 1 - ~)~-1, and let m*t be the process that starts from mxo . Set

Then for any n there is cn so that

and for any positive p there is Cp so that

Proof of (4.70). - We fix E &#x3E; 0 and xo. We define

Observe that in the above only the law of 2t depends on the boundary
conditions.

Let R be the map from into itself defined as

Thus R reflects around xo and then changes the sign.
The processes Zt and Rt are equal in distribution, hence the same is

true for mt and Rmt. Setting ~ := ~(~t) - xo, we have that f and -~
are equal in distribution, hence

There is 8 &#x3E; 0 and for any n cn so that

There is 81 &#x3E; 0 so that, in the set appearing on the left hand side of (4.77),
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Using the same argument as in the proof of Proposition 3.2, we obtain

with b2 &#x3E; 0 a suitable constant.

Thus, for any n there is cn so that

We have therefore proved (4.70).

Proof of (4.71). - Let Zt,xo be as in (2.17) and suppose that

Zt,xo E xo), see (5.27) and (5.28). By the first inequality in (4.25)
with ut := mxo, uo = 0, we have

It then follows that for all E small enough, since t,x0 E xo),

hence

Then, recalling (5.24) we have

Then by (3.7), the center ~TE of mTE and the center xo + of

.satisfy the following inequality

Vol. 31, n° 1-1995.



110 S. BRASSESCO, A. DE MASI AND E. PRESUTTI

for a suitable constant c. Recalling (4.69), in xo),

By (5.28) and because 6 B the contribution to the expectation
of Y* outside is negligible, then (4.71) is proven, recalling that
the distribution of is a normal with 0 average and variance DE
given in (5 .25 ) . D

Proof of Proposition 3.8 (Conclusion). - As observed after (4.50) the
proof of Proposition 3.8 is reduced to that of (4.47) and (4.48) with the
process starting from an instanton, since (4.50) is proven in Lemma 4.1.
(4.47) follows from (4.71). The first term on the left hand side of (4.48)
vanishes by (4.71), the second one by (4.70). The proof that the third
term vanishes follows from (4.86) and (5.26), recalling that by (4.69)
Y* m £T, - xo . D

5. ESTIMATES ON THE GINZBURG-LANDAU
AND THE FREE PROCESSES

In this section we prove some basic properties of the Ginzburg-Landau
and the free processes that have been used in the previous sections.

Proof of Lemma 2.1. - The continuity is proved by Walsh, 1981, [ 18]
(Section 4). To prove (2.3), we denote by

and by

We then use Theorem 2.1 of [ 1 ], which states that for any Gaussian,
centered process Z(E) the following inequality holds, provided that both 0-2
and are finite,
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where A is any number such that A &#x3E; 

By means of the explicit form of the covariance of Z(E) (see [18]
(Section 4)) it is not difficult to prove that

We will also prove below that there is a positive constant ki such that

Lemma 2.1 then easily follows from (5.4) and (5.2), with A = 

Inequality (5.4) follows from standard results on Gaussian processes
(see [1] and references therein) as we will briefly explain. From Corollary
4.15 of [ 1 ], there exists a universal constant K such that

where is the metric entropy of our parameter space S =: f (x,, t,) :
x E 1, 0  t,  1}. In other words, = with the

minimal number of balls of radius 8 needed to cover S, where the metric
considered is

After some computations (that may be found in [18], Prop 4.2), one -sees that
there exist constants k2 and k3 such that, for any ~l,~e7~0~l

Using (5.6) and (5.7) it is possible to show that ~V(~)  ~46 ~ ~ for some
positive constant k4 and from this (5.4) follows. D

From now on we use the integral representation (2.7) for the process.
We next prove a comparison theorem that follows from the parabolic

structure of the equation.

5.1 PROPOSITION. - Let mo &#x3E; ~(~ be continuous functions. Let mt and

m7 solve (2.7) with initial data mo and mo and with the same noise Zt.
Then, almost surely, mt ~ mt , for all t &#x3E; 0.
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Proof - Since Zt is bounded on the compacts, by standard arguments
on the reaction diffusion equations it follows that both mt and mt are
bounded for all t 2 0.

Denoting by

after an integration by parts from (2.7) we have that for any real a

An analogous expression obviously holds for By subtracting one
equation from the other we get for wt := e-at[mt - 

We fix T &#x3E; 0. Then, for each cv in the probability space there is a &#x3E; 0 so

that Fs + a &#x3E; 0 for all s  T. We then solve (5.9) by iteration with FS
as known. Recalling that Ht is positive we obtain a series of non negative
terms. By the arbitrarity of T the proposition is therefore proved. D

5.2 PROPOSITION. - Let mo E  1 + 1 / 32. Then there are
c’ and c &#x3E; 0 so that if mt solves (2.7), then

Proof - By Proposition 5.1, mt ’where solve (2.7)
starting from + 1 /32) . By the symmetry under change of sign,
it will thus suffice to show that

We denote by vt = mt - 1, and we write (1.4) in terms of vt :
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The corresponding integral equation for vt, in terms of the operator

at - 2 ~2 ~x2 + 2Id)-1 = is

where

Recall that vo - 1/32, so

The process ~ is studied in detail by Walsh in [18], 1981, for fixed L.
Using his estimates and the results on Gaussian processes as in the proof
of Lemma 2.1, it is not difficult to obtain inequalities analogous to (5.3)
and (5.4) for ~, for t  E-2 instead of t  1. Then, inequality (5.2) yields
that given any b &#x3E; 0 there are positive constants k’1 and k’2 such that

Let us consider, for b small that will be fixed conveniently,

Then,

where the last inequality follows from (5.16). But, if T  E-2, and
 b for all t  E - 2 , from the definition of T, (5 .13 ) and

(5.15) we have
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If we take b = 1/32, we get a contradiction in the above inequality, what
means that the last probability in (5.18) equals 0 and (5.11 ) follows. D

5.3 PROPOSITION. - (The barrier Lemma. ) There are V &#x3E; 0 and c so that
the following holds. Let mt and mt both solve (2.7), with initial conditions
respectively mo and Suppose that for some T &#x3E; 0 their sup norms for
t  T are bounded by 2 and that mo (x) = for all |x|  VT. Then

’ 

Proof. - Calling ut(x) := we have

Iterating N times (5.21) we get

from which (5.20) follows. D

Observe that as a corollary of Proposition 5.3 we get that for any L &#x3E; 0

provided that mo(x) = for all Ixl (  L + VT. 
’

5.4 PROPOSITION. - Given any ( &#x3E; 0, for any E &#x3E; 0 and any
 ( 1 - ~) E-1, the process has the representation

with the following properties.
Bt is a process adapted to Zt, its law is the law of a Brownian motion

with diffusion coefficient

and there is a constant c such that
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For any a &#x3E; 0 let

Then for any n &#x3E; 1 there is cn so that

Proof of Proposition 5.4. - We drop xo from the subscripts and write

We start from the identity

By (2.19), PE almost surely,

where

By the Fubini theorem, see [8], the right hand side of (5.31 ) is equal to

Since

because the semigroup Gt is symmetric and in’ is the eigenvector of its

generator with eigenvalue 1. By (5.31), (5.32), (5.33) and (5.34)
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The right hand side is a Gaussian process with covariance DEt. It is
therefore a Brownian motion which is identified to the Brownian Bt in the
statement of the Proposition. (5.26) follows from the exponential decay of

Rt,xo is identified to the curly brackets term on the right hand side of
(5.30) and we are left with the proof of (5.28).

For any t’  t and y G R we denote by

and observe that

Furthermore, given t, we let

t* = integer part of t

We also observe that for any t’  t, any t’ - 1  s  t’ and any y, z E R,

By the Fubini theorem we then have

and by (5.34)

From (5.39) and (5.40) we then get
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where

Going back to the original notation with xo explicited and using (5.34) we
have, see Theorem 2.4,

Then, by (2.11 )

Recalling (5.37) and (2.17) we have that the law of is the same

as that of

Analogously, the law of is the same as that of

Then, by (5.44) and (2.3), for any a &#x3E; 0 and for any n there is cn so that

Proposition 5.4 is thus proved.
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