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ABSTRACT. - Let N (x; s) be the number of integral points inside an
elliptic strip of area s, bounded by the ellipses E (x) and E (x + s), where

We prove that if  &#x3E; 0 is a diophantine number and s = s (T) = const T’Y,
with 0  7  1/2, then

(with the factor 4 coming from symmetry considerations). Contrariwise,
if JL is rational then

with some c (~c) &#x3E; 0, and if J-L is a Liouville number then
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28 P. M. BLEHER AND J. L. LEBOWITZ

Soit N (x; s) le nombre de points entiers dans une bande
elliptique d’aire s, comprise entre les ellipses E (x) et E (x + s), où

Nous montrons que, si JL &#x3E; 0 est un nombre diophantien et s = s (T) =
const T’*, with 0  1/2, alors

(le facteur 4 vient de considerations de symmétrie). Au contraire si J1 est

rationnel alors

où c (Jt) &#x3E; 0, et si Jt est un nombre de Liouville, alors,

1. INTRODUCTION

The statistical properties of the eigenvalues

0=EoEiE2..., lim En = oo,

of the Laplace-Beltrami operator (-A) on a compact d-dimensional

Riemannian manifold Md, d &#x3E; 2, is a problem of both physical and
mathematical interest. According to the Weyl law,

Defining rescaled eigenvalues by

(1.1) is equivalent to

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



29VARIANCE OF NUMBER OF LATTICE POINTS

so that the density of the rescaled eigenvalues xn is equal to 1,

We are interested in statistical properties of the sequence xo  x 1  x2 ...

To characterize the statistical properties of { consider the asymptotic
behavior as T ~ oo of the "temporal" moments

of N (x; s) = N (x + s) - N (x), the number of xn’s lying in the window
[x, x + s] . A striking conjecture proposed by Berry and Tabor [BT] is that
for a "generic" Riemannian manifold with completely integrable geodesic
flow the limiting moments of N (x; s) coincide with those of the Poisson
process, in which points are thrown randomly and independently on the
line wih density one,

Numerical evidence and impressive analytic arguments in the favor of this
conjecture were given in [BT] and also in subsequent papers of Berry [Ber],
Casati, Chirikov and Guarneri [CCG], Sinai [Sin], Major [Maj], Cheng
and Lebowitz [CL], Cheng, Lebowitz and Major [CLM] and others; see
also monographs of Gutzwiller [Gu], Ozorio de Almeida [OdA], and Tabor
[Tab]. By contrast, for a generic Riemannian manifold of negative curvature
the limiting moments of N (x; s) are expected to coincide with those of
the Wigner-Dyson gaussian orthogonal ensemble of random matrices. The
proof of this as well as of (1.2) remains a challenging open problem.

Keeping s fixed while T - oo in Mk (T ; s ) measures only local
correlations among the xn’s. To characterize long range correlations
between different xn consider windows of size s = s (T) which grow
with T. The question is then, for what s (T) does (1.2) still hold? Casati,
Chirikov and Guarneri [CCG] studied this problem for a simple model
system of a torus T2 with the metric

and they discovered a saturation of the Poisson asymptotics. Berry [Ber]
gave an analytic explanation of the phenomenon of saturation using a
heuristic trace formula for N (E) and a diagonal approximation for the
second moment. As a matter of fact, Berry computed the saturation of
rigidity, a more complicated statistical mean of the second order, but this
does not matter for our discussion.

Vol. 31, n° 1-1995.



30 P. M. BLEHER AND J. L. LEBOWITZ

In the present paper we continue the rigorous study of the phenomenon
of saturation which was begun in our paper [BL] (see also [BDL]). To
describe the phenomenon of saturation we consider the variance

Then the claim is that for a generic integrable system,

or more precisely,

In other words, D (T; s) grows linearly, as a function of s, for s  T 1 /2,
like for the Poisson process, and then it saturates at c for s ~ T 1/2.
The crossover behavior of D (T ; s ) is described by a scaling function

V(A), so that ,

The validity of (1.7), (1.8) was established in [BL] for a number of

systems. In the present work we study (1.6).
We will consider the CCG (Casati-Chirikov-Guarneri) model system of

a torus T2 with the metric (1.3), i.e., we have a periodic box with sides of
length 1 and ~c-1~2. The eigenvalues of the Laplace operator are then

so that the scaled eigenvalues xo  x2  ... are elements of the set

ordered in increasing order. Hence

N (x) and N (x; s) have the obvious geometric interpretation of the number
of integral points inside of the ellipse E ( s ) = { + J-l q2 ) - x ~
and inside of the elliptic strip between E (x) and E (x + s), respectively.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



31VARIANCE OF NUMBER OF LATTICE POINTS

A number J.L &#x3E; 0 is called diophantine if 3 C, M &#x3E; 0 such that for

every rational p/q,

p is a Liouville number if there exist a sequence of rationals 
Pi 

and a
qi

sequence of positive numbers ci ,I == 1, 2, ... , such that lim Ci == 00 and
I I 

In what follows we will assume that s = s (T) is a function which satisfies

For the sake of definiteness, one may take s = const T’ with an arbitrary
0  ry  1/2. Let

then d characterizes the width the elliptic strip between E (x) and E (~c+5),
T  ~  2 T, and the second condition in (1.9) is equivalent to d - 0 as
T - oo. We prove the following theorems.

THEOREM 1.1. - If  is diophantine and s satisfies ( 1.9) then

THEOREM 1.2. - If M = 1 and s satisfies ( 1.9) then

THEOREM 1.3. - If ~c is rational and s satisfies ( 1.9) &#x3E; 0

such that

Remarks. - 1. An exact value of follows from the formulae (4.8)
and (A.2) below.

Vol. 31, n° 1-1995.



32 P. M. BLEHER AND J. L. LEBOWITZ

In our last theorem we will need a more restrictive condition on s = s (T)
than ( 1.9):

THEOREM 1.4. - If ~c is a Liouville number and s satisfies (1.9’) then

Before passing to the proof of the theorems we make some comments. The

"temporal" averaging ~, 1 ... dx in Theorems 1.1-1.4 can be replaced
by more general averaging

with arbitrary b &#x3E; a &#x3E; 0 and arbitrary bounded probability density p (t) on
[a, b]. The proof remains the same for the uniform density p (t) = (b-a)-1,
and then by linearity it can be extended to stepwise densities. Since any
bounded probability density is approximated by a sequence of stepwise
densities the general case follows; for details see [BCDL] and [Ble] (see
also Theorem 2.1 below). The advantage of having p (t) in (1.14) is that
this allows to make change of variable in averaging. For instance, when
p (t) = ( 1 /2) (bl~z _ ~l~z)-1 t-1~2, (1.14) reduces to averaging with respect
to dR where R = X1/2 (cf [BL]).
Note that if  &#x3E; 0 is irrational then every rescaled eigenvalue

with n1, n2 &#x3E; 0 is fourfold degenerate since in this case Xml m2 = xnl n2 if
and only if ml m2 = iL?~2. This fourfold degeneracy of eigenvalues
is the origin of the 4 in the RHS of ( 1.10). More precisely, if we get rid
of the degeneracy by defining

then (1.10) is equivalent to

If J.L is rational then the degeneracy can be higher than 4, since for some
k E Z there exist many solutions of the equation

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



33VARIANCE OF NUMBER OF LATTICE POINTS

On the average the number of solutions of ( 1.16) grows like c log k (see
appendix), which gives rise to the logarithmic multiplier in the denominator
in the LHS of ( 1.11 ) and (1.12). Finally, if  is a Liouville number then
it is well approximated by rationals pi/q2. We will show that this implies
that we can choose Ti such that )N (x; s ) - S 12 is on the average of order
c (Pi/ qi) s| log d) on the interval Ti  x  2Ti and c log d| - oo,
hence (1.13) follows.

As we pointed out above, the second condition in (1.9) is equivalent to
d - 0 as T - oo, where d = (2T~)’~ s characterizes the width of the
elliptic strip between E (x) and E (x + s), T  x  2 T. This condition
has a simple geometric origin. Namely, if d is bounded from below by
a positive constant, then N (x; s) "feels" the rigidity of the lattice and
for typical (diophantine) M this leads to deviation from the Poisson-like
behavior of D (T ; s ) as T - oo and this leads also to saturation when

d - oo as T - oo [cf (1.7), (1.8)]. Theorem 1.1 can be interpreted then
as an indication of the fact that if d - 0 as T - oo then for typical /~,
N (x; s) does not feel the rigidity of the lattice (modulo obvious symmetry
with respect to the axes), and D (T ; s ) behaves as if the lattice points
were randomly and independently thrown on the positive quadrant with
density one and then every point were symmetrically reflected with respect
to the axes. An interesting open problem remains to prove (or to disprove)
Theorem 1.1 for s fixed.

Theorem 1.1 can be extended to the case when the elliptic strip is bounded
by ellipses shifted in a fixed vector a = ( c~ 1, a2 ) in the plane. Namely, let
N at (x; s) be the number of lattice points between ellipses a + E (x) and
a + E (x + s ) . A minor modification of the proof of Theorem 1.1 below
allows to prove the following extension of this theorem:

THEOREM 1.1’ . - If p is diophantine and s satisfies ( 1.9) then

where the symmetry factor,

The case of rational J.L and nonzero a can be also treated by our methods;
in this case the asymptotic behavior of the variance of N ex (x; s) depends
Vol. 31, n° 1-1995.



34 P. M. BLEHER AND J. L. LEBOWITZ

on arithmetic properties of 0152: for 0152 diophantine,

while for of rational a log T-multiplier appears in the normalization factor,
like in Theorem 1.3 (cf. [BL]).
We would like to mention here an interesting paper of Luo and Sarnak

[LS] who proved some estimates on the variance for the eigenvalues of the
Laplace-Beltrami operator on arithmetic hyperbolic surfaces. The situation
they study is certaintly very different from ours (hyperbolic geodesic flow
versus integrable) but because of an arithmetic degeneracy, the behavior of
the variance turns out to be somewhat similar to the integrable case.
Theorem 1.1 is proved is Section 2. The proof utilizes a uniform estimate

on the average number of integral points in a narrow elliptic strip, which
is proved in Section 3. In Section 4 we prove Theorems 1.2-1.4 and in
the appendix we evaluate the average squared number of solutions of the
equation (1.16).

2. PROOF OF THEOREM 1.1

By (1.4) the equation (1.10) reads

It is useful to generalize this to

where

We will prove (2.2) under the assumption that

where ~ &#x3E; 0 is a fixed small number which will be chosen later. Then

(2.1) follows. Indeed, let L be the integral part of T~, L = [T"] . Divide the
interval T  x  2 T into L subintervals where

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



35VARIANCE OF NUMBER OF LATTICE POINTS

Then

satisfies (2.4), hence (2.2) holds which implies that &#x3E; 0, ~ T (~) &#x3E; 0

such that if T &#x3E; T (é) then

Now,

so that (2.1) indeed follows from (2.2) with the restriction (2.4).
The advantage of the restriction (2.4) is that it makes V much smaller

than T (for large T) and this enables us to pass from averaging over x
to averaging over R = Xl/2, which is useful for the application of the
Hardy-Voronoi summation formula and for all subsequent considerations.
So we can rewrite D (T, V; s) as

where No (R) = N (R2) and

Observe that

so

Vol. 31, n° 1-1995.
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which implies that we can drop the multiplier 20142014~ in the RHS of (2.5), in
the limit when T - oo and V/T - 0 [here and in what follows f = 0 (g)

const. g]. More precisely, define

Then

Put now

We want to replace d (R) in (2.7) by d. Define to that end

We will prove

THEOREM 2.1. - Assume that ~c is diophantine, d = d (To ) satisfies

and Vo = Vo (To) satisfies (2.9) with 0  2 ç  w. Then

Theorems 1.1 and 2.1 are very close and the difference between these
two theorems is that in Theorem 1.1 we fix the area s of the elliptic
strip while in Theorem 2.1 we fix its width d. To reduce Theorem 1.1 to
Theorem 2.1 we prove also

LEMMA 2.2.

Theorem 2.1, Lemma 2.2 and (2.8) imply obviously Theorem 1.1.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



37VARIANCE OF NUMBER OF LATTICE POINTS

Proof of Theorem 2.1. - To simplify notations we redenote To, vo and
No (R) by T, V and N (R), respectively, so that now

and (2.12) reads

(2.9) and (2.11 ) read

Note that

where

and

Let

where p (:r) &#x3E; 0 is a C° function with J cp (x) dx = 1 and p (x) = 0
when &#x3E; 1. For what follows we put

where ( satisfies

Note that (2.15) and (2.16) imply

Vol. 31, n° 1-1995.
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hence 8 is much smaller than d when T is large. Define

LEMMA 2.3. - 3 co &#x3E; 0 such that

Proof. - By (2.15),

hence it suffices to show that

Now,

hence

where

By symmetry we can assume &#x3E; Observe that x5 (x; R)-x (x; R)
has support in the 8-neighborhood of the ellipse E (R). This implies that
I (n, n’)  T or &#x3E; T + 2 V.
In addition,

hence

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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We will prove in the next section that

(see Lemma 3.1 ). This gives

Hence

Since by (2.16) 2 - 2( + 2 g - w  0, Lemma 2.3 follows.
By the triangle inequality Lemma 2.3 implies

hence it suffices to prove

Let

and

which is, up to a multiplier, a dual norm to ~ . ~. The Hardy-Voronoi
summation formula gives

Vol. 31, n° 1-1995.
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with the remainder O (R-1) uniform in 8. From (2.20)

where

so that (2.18) is equivalent to

By symmetry we can rewrite F (R; T) as

where

and

By (2.24),

where

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



41VARIANCE OF NUMBER OF LATTICE POINTS

and

The idea to prove (2.23) is to show that the diagonal sum

converges to 4 as T - oo, while the off-diagonal sum

converges to 0. The difficult part is to show the convergence of the

off-diagonal sum. First we consider the diagonal sum.
Observe that

so

which is an approximating sum of the integral

so that lim Id = M. A direct computation gives M = 4 (see the appendix
to [BL]), hence

We turn now to the evaluation of To.
From (2.27),

Define

Vol. 31, n° 1-1995.
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Then

The sum

diverges as log2, l.e., .

The function ~ (n ~) ~/~ (n’ 8) produces a smooth cut-off at the scale
= T( in the RHS of (2.29) hence we obtain

This implies lim IC = 0.
T-o

To estimate

we slice S into layers

and estimate

Let us fix some (’ such that (  (’  1 and assume first that N  T ~ .

By (2.28), for any (n, n’) E Sj,

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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and by (2.26),

where

hence

In the next section we will prove the estimate

(see Lemma 3.2) which implies

When N  d-1 this gives

Summing this last estimate over j = 0, 1, ..., T and N = [2-i d-1~,
z~0,l,...,[nog2~~ we obtain

if we take ~ such that

When N &#x3E; d-1, (2.31) gives

Vol. 31, n° 1-1995.
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Summing this estimate over j = 0, 1, ..., T and N = [2i d-1 ~ , i =

0, 1, ..., [ log2 (T~ d)], we obtain

if (2.33) holds. When |n| ~ T’ , a (n) is very small due to the cut-off

function (n 8). To see this note that VM &#x3E; 0, :) To &#x3E; 0 such that if

T &#x3E; To then

which implies

Therefore

Thus we have proved that

which finishes the proof of Theorem 2.1.

Proof of Lemma 2.2. - For any two positive functions f (R) and g (R)
on [T, T + V], define

where

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Obviously,

To prove (2.13) it suffices to show that

with

Consider the sequence of stepwise functions

Then fo (R) = g (R) and fj (R) - f (R) as j - oo. In addition,

where means cf  9  c’ f, which implies

LEMMA 2.4. - If dj &#x3E; T -1 then

Proof. - Let us show that

The proof is the same as the one of Lemma 2.3. Namely,

where

Vol. 31, n° 1-1995.
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where x (x; R) is the characteristic function of the elliptic strip between
E (R + f (R)) and E (R + fj (R)). Observe that the width of this strip
is O (dj). Now using the same arguments as we used in the proof of
Lemma 2.3, we obtain the estimate

which implies (2.38) [use (2.37)]. In addition to (2.38),

[use again (2.37)], hence Lemma 2.4 follows.
Take

Then by (2.37),

hence

By (2.40), jo rv log T. Let us estimate now p2 when j  jo.
Define

where n03B4 (R) == N6 (R) - R2. Put 6 = T-( with some ( satisfying (2.16).
Lemma 2.3 gives then

LEMMA 2.5. - ~ EO &#x3E; 0 such that

Proof. - With the help of the Hardy-Voronoi summation formula we
obtain (as in the proof of Theorem 2.1 above)

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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where

and

[cf (2.26), (2.27)]. Now with the help of the same arguments that we used
in the proof of Theorem 1.2 we obtain that

[cf (2.32)]. This proves Lemma 2.5

Lemma 2.5 combined with (2.41), (2.42) proves (2.35) and thus Lemma
2.2 is proved.

3. UNIFORM ESTIMATE OF THE NUMBER OF CLOSE PAIRS

In this section we put We call a pair (n, n’) E Z2~Z2
close if is small. We are interested in evaluation of the number

of close pairs in the annulus T  In I, ]  2T.

LEMMA 3.1.-v~&#x3E; 0, 3cê &#x3E; 0 such that VT &#x3E; 1 and V 1 &#x3E; 8 &#x3E; T-1,

Proof. - By symmetry we may assume Inl &#x3E; In’l and also that n 1,
n2, n2 &#x3E; 0 and estimate the sum J with these restrictions. We have

Vol. 31, n° 1-1995.
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hence

Let

Then

We can count all pairs n, n’ first counting m2 from -4 T2 to 4 T2, then
counting m1 which satisfy (3.1) and then counting the divisors of mi, m2.
Assume first that mi 7~2 7~ 0. This part of J is estimated as

Assume second that m2 = 0, m1 i- 0. This part is estimated as

Similarly we estimate the part with ml = 0, m2 ~ 0. Lemma 3.1 is proved.
LEMMA 3.2. - If ~c is diophantine and ( &#x3E; 1 then ~ ~  2 such that

Proof - If  is diophantine and ( &#x3E; 1, then the number of m2,
1m2 I  4T~, which satisfy (3 .1 ) for at least one m1, is O (T’~ ~ ) with
some ~’  2. This implies J = 0 (T’~~+~), &#x3E; 0. Lemma 3.2 is proved.
LEMMA 3.3. - If jj is a rational and ( &#x3E; 1 then for large T,

Proof. - Let ~c = p Then
~ i 1-- i2 1 --/12 1

hence J = 0 for &#x3E; 4 q. Lemma 3.3 is proved.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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4. PROOF OF THEOREMS 1.2-1.4

Proof of Theorem 1.2. - There are two places where the proof of Theorem
1.2 differs from the proof of Theorem 1.1: the first place concerns the

computation of the diagonal sum and the second one concerns the estimation
of the off-diagonal sum. Let us first discuss the diagonal sum.

When J-L = 1, (2.19) reduces to

we rewrite (2.22) as

where r2 (k) is the number of representations of k as a sum of two squares,
k = ni + n22, and k = 03C0-1 k = In12. As is well known, r2 (k) ~ c~ k~,
V6 &#x3E; 0. To prove Theorem 1.2 we have to show that

[cf (2.23)]. By (4.1),

where

and

Vol. 31, n° 1-1995.
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The diagonal sum reduces to

As shown in [BD] (see also the appendix to the present paper),

Substituting Xk == 1[-1 kd2 we can reduce (4.4) to an approximating sum

of the integral

Indeed, when Xk is order of 1, k is of order of d-2, hence by (4.5) r2 (~)2
is on the average of order of 4 log d-2, so that

The off-diagonal sum To is estimated in the same way as in the

proof of Theorem 1.1, except instead of Lemma 3.2 we use Lemma 3.3.
Theorem 1.2 is proved.

Proof of Theorem 1. 3 . - For a general p = p q, (2.19) reduces to

and (4.1 ) reads

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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where r2 (k; p, q) is the number of representation of k as

and

We will prove in the appendix that

which is a generalization of (4.5). The diagonal sum (4.4) now reads

Substituting xk = kd2 we can reduce (4.7) to an approximating summ
of the integral

hence

where a (p, q) is defined in (A.2).
The off-diagonal sum 7o is again estimated in the same way as in the

proof of Theorem 1.1 except instead of Lemma 3.2 we use Lemma 3.3.
Theorem 1.3 is proved.

Proof of Theorem 1.4. - Assume

Put Ti = ebiqi with some bi such that lim bi = oo . By Theorem 1. 3
~2014)-00

when T is large,

Vol. 31, n° 1-1995.



52 P. M. BLEHER AND J. L. LEBOWITZ

where N (x; s, J-l) stands for N (x; s) referred to an ellipse with the value
of parameter A careful inspection of the proof of Theorem 1.3 shows
that (4.10) holds when T = Ti . In addition (4.8), (A.2) imply

so that

Now, a simple estimate gives

which implies

If we take bi = (1/5) ci, then (4.12) combined with (4.11) give

Theorem 1.4 is proved.

APPENDIX

Let r2 (k; p, q) with gcd (p, q) = 1 be the number of representations
of k as k = qnf + pn2.
’ 

LEMMA A.1.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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with

~ (p, q)

where d (p) is the number of divisors of p.

Proof. - We follow the appendix to [BCDL] (see also [BD1], [BD2])
where (A.1 ) was proved for p = q = 1. Consider the exponential sum

We will show that

By the tauberian theorem of Hardy and Littlewood [HL], (A.1) follows
from (A.4). We can rewrite S (b) as

summed over integral vectors m, m’ with

We want to convert (A.5) into an unrestricted sum. To that end let us

analyze (A.6). Assume first that

Obviously (A.6) is equivalent to

This is satisfied when

where

Vol. 31, n° 1-1995.
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We would like to have a one-to-one correspondence between pairs m,
m’ E 7L2 which satisfy (A.8) and the numbers h, j, k, l, PI, Q1. From (A.9),

and

[use (A.7)]. This implies that

(otherwise =0) and

To secure the uniqueness of the representation (A.9) we impose the

following conditions:

PROPOSITION A.2. - If (A.7) holds then (A.9) sets a one-to-one

correspondence between pairs m, m’ E 7~ 2 with ~ 0 and
the numbers j, h, k, l, pl, ql satisfying (A.13)-(A.15).

Proof. - Observe that (A.9) and (A. 15) determine uniquely the signs of
j, h, k, l so we may assume that m, ±77~2 =b m~ &#x3E; 0 and look
for nonnegative j, h, k, l. Put

Then (A.7) reduces to

with

Hence p divides xy and q divides zw so that
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and

which implies that k = n and l = m. Therefore (A.9) holds.
To prove uniqueness assume that we have another representation

Then on the one hand as we showed before, k = n and l = m, on the other
hand the same computation gives = n and l’ = m. Hence k = k’ and
l == l’ which proves the uniqueness. Proposition A.2 is proved.

Observe that if j, satisfy (A.7) then - j, - h, -1~, - satisfy (A.7)
as well. So if we drop the condition on the sign in (A.15) then
we will have in (A.7) a one-to-two correspondence between m, m’ and j,
h, k, l, pi, qi. Therefore,

summed over all divisors pi of p and qi of q and over all ( j, h, k, I)
satisfying (A.13), (A.14) and

Let us consider a partial sum S (b; pi, in (A.16) with pi, q1 fixed.

(A.17) reduces the possibilities allowed by (A.14) to two. Therefore

where the terms with even j, h are

summed over (k, l) satisfying (A.17), and the terms with j and h odd are

summed over over odd integers (k, l) satisfying (A.17). The functions

(f2, gi) are defined by
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where the sum is over integer x for f i and over half-odd-integer x for ~,.
In (A.20) we have used the abbreviation

The (- 1) in (A.18) takes account of the fact that the term (j = h = 0)
was omitted from (A.16). By the Poisson summation formula, (A.20) gives

For ai ~ 1, (A.20) gives the asymptotics

For ai  1, (A.22) gives

The density of (k, l) with gcd (k, l) = 1 is 6/7r~, hence (A.24) implies

Therefore

Similar computation gives
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[note that the density of odd (k, l) with gcd (k, l) = 1 is equal to 2/~].
Thus 

.~ ,

Summing over pi, q1 we obtain that

For p, q odd Lemma A.1 is proved. For p even and q odd the proof is
similar, with a somewhat more tedious arithmetics.
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