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Dedicated to the Memory of Claude Kipnis

ABSTRACT. - Motivated by d-dimensional diffusion in a gradient drift
field with small diffusion constant E, we consider an inhomogeneous, but
reversible, continuous time nearest neighbor random walk Xt on Zd, or
on some other locally finite graph. Let G~ be the random subgraph whose
edges are the first n distinct edges traversed by We prove that if the

strongly inhomogeneous (E - 0) limit respects some ordering 0 of all
edges, then (?o? Gí, G2 , ... ) converges to invasion percolation for that O.

Key words: Random walk, invasion percolation.

Motives par des diffusions d-dimensionnelles en un champ
de derive gradient avec petit coefficient de diffusion E, nous considérons
une marche aléatoire, inhomogène mais reversible, à temps continu et à
plus proche voisin, Xt sur Zd ou sur un graphe localement fini. Soit G~ le
sous-graphe dont les arêtes sont les premières n arêtes distinctes traversées
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250 C. M. NEWMAN AND D. L. STEIN

par Nous démontrons que si la limite fortement inhomogène, lorsque
6-~0, respecte un ordre C des arêtes, alors ((9o,G~,G~,...) converge
vers la percolation par invasion pour cet ordre (?.

1. INTRODUCTION

In this section of the paper, we give some historical background to and
heuristic motivation for considering the type of strongly inhomogeneous
random walk which is our main subject. The motivations discussed here
are closely related to the two papers [ 1 ], [2] on which one of us (C.M.N.)
collaborated with Claude Kipnis; another set of motivations follows from
work on the dynamics of disordered systems [3]-[5] which employed
concepts introduced in the context of "broken ergodicity" [6], [7], [3].
We defer a discussion of this second group of topics to a later paper,
and focus here on the first. We note that a third source of motivations is

recent work on metastability in Ising models [8], [9], which led Olivieri
and Scoppola to an analysis of strongly inhomogeneous random walks [ 10]
which overlaps the analysis presented here.
Our last encounters with Claude were as workshop participants at Les

Houches in the summer of 1992; our first encounters were as visitors to
the Courant Institute in the fall of 1982. We now briefly discuss some of
the work with Claude from that early period that relates to the present
paper. Motivated by the phenomenon, observed in fossil records, known
as "punctuated equilibria" (see Ref. 2 and its references), we studied [1] ]
the E -~ 0 nature of the transition between local minima, y and z, of the
function W(y) on for the stochastic process

where Bt is the standard d-dimensional Wiener process. In Ref. 1, attention
was restricted to d = 1 and to adjacent local minima, but there seems to be a
common qualitative picture [ 1 ], [ 11 ]-[ 16], valid in any d, for "neighboring"
pairs y, z of local minima, which we now describe.
As E ---~ 0, the distribution of waiting times T;,z for a transition to

(the neighborhood of) z, starting from (that of) y (and conditional on no
transitions occurring meanwhile to any other local minimum z’) becomes
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251RANDOM WALK AND INVASION

exponential with mean (to leading exponential order)

Here z) = s(z, y) is a saddle point of W, as described below. Prior
to the transition, the process spends most of the time near y and the time
for the transition itself is negligible on the exponential scale given by
Eq. (1.2). In simple cases, the actual transition path, in the limit 62014~0,
follows the antideterministic equation dYt / dt = 1 2 ~W ( Y t), during the
uphill climb from y to s(y, z), after which it follows the deterministic

equation dYt/dt = -1 20394W(Yt) during the downhill segment from s (y, z)
to z. In the general case, there will be a sequence of saddle points s1,...,sl
with uphill antideterministic paths from y to s 1 and from to 8j for j 
some k followed by downhill deterministic paths from to sj for j &#x3E; k
and from si to z. We say that two local minima y and z are neighbors if
there exists such a sequence of saddle points and paths connecting them.
s ( ~, z ) is then defined to be the saddle point which minimizes maxj W ( s~ ) ,
over all such saddle point sequences si , ... , si. In generic situations, one
can restrict attention entirely to saddle points s where the Hessian matrix
of W has one strictly negative eigenvalue and d - 1 strictly positive ones.
We conclude from the above discussion that if Yt is observed infrequently

(i. e. only 0(1) times between successive transitions, as in Ref. 1 ), it should
have essentially the same E - 0 behavior as some continuous time random
walk (i.e. Markov jump process) Xt with state space

and transitions only between neighboring states. The transition rate from x
to y should have the same exponential order as ~E(TT~)~ :

where Wx = W ( x) and Wx y = Wy x = W(s(x, y)) . Furthermore, since
Y~ is reversible with respect to the density we will choose

rates which are reversible with respect to some density (xx (e) : x E V)
with similar exponential order:

Vol. 31, n° 1-1995.



252 C. M. NEWMAN AND D. L. STEIN

In the context of evolutionary biology modelling (as in Ref. 2), W(y)
describes the "adaptive landscape" which is often thought of as a generic
(smooth, for our purposes) function with many local minima, perhaps itself
generated by some separate random mechanism. We will suppose that
W ( ~ ) has the following generic properties: The set of critical points (where

= 0) is countable, the Hessian matrix is nonsingular at every critical
point and the W values at critical points are all distinct. The set V of local
minima is nonempty. Each x in V has only finitely many neighboring y
in V, or equivalently, the graph 9 with vertex set V and edges between
neighboring pairs is locally finite. 9 is a connected graph.

Finally we make an assumption which unfortunately is not generic, but
which will simplify our analysis, namely that the saddle points s(x, y) for
distinct neighboring pairs x,y of local minima are distinct - and thus
there are distinct Wx y = W ( s (x, ~ ) ) values for the edges of C. The Wxy’ s
define an ordering C on the edges of 9 in which ~x, ~~  {~,~/} (in 0)
if Wxy  This ordering will play a major role in our analysis.

Remark. - There is a way of avoiding this nongeneric assumption, which
we will not pursue here and which creates a number of complications of
its own. Namely, one could replace V by the vertex set consisting of all
local minima together with saddle points where the Hessian matrix has
a single negative eigenvalue. One would then define neighbors as those
vertices connected by a single deterministic (or antideterministic) segment.
The rates for an uphill transition from x to y would be of exponential order
exp ( - ( Wy - and for a downhill segment would be of exponential
order one.

If one takes the original diffusion process ( 1.1 ) and lets E -+ 0 with
no scaling of time, one simply gets gradient descent (i.e. dYt/dt =

to some local minimum x. If one scales time by E(Txy(E))
one can obtain (as in Ref. 1 ) a jump process with the two states x and y.
Our purpose in this paper is to study the limit E - 0 so as to extract (at least
some) global information about all the transitions undergone over all time.
Since the various transitions occur on exponentially different timescales,
this cannot be done by observing the process directly, for any scaling of
time. Our strategy instead will be to observe the order in which transitions
are made for the first time. This should have a definite limit as E - 0

which we believe is identical to the corresponding limit for our discretized
approximation X;. In the next section we study that limit for X; and
explain its dependence on the ordering 0; our main result is a theorem
stating that the limit is exactly invasion percolation (with respect to 0) on
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253RANDOM WALK AND INVASION

the graph ~. The definition of invasion percolation is given at the beginning
of the next section followed by a statement of our theorem; the proof is
given in Section 3.

2. INHOMOGENEOUS RANDOM WALK
AS INVASION PERCOLATION

Throughout this section V will be a nonempty countable set of vertices
and 9 = ( V, ~ ) will be a graph with vertex set V and some edge set ?. We
assume 9 is connected and also locally finite, i. e., is such that only finitely
many edges touch any vertex x. C will be some ordering of the edge set ~.

In the standard version of invasion percolation [17]-[20], V = Zd, the
edge set E is Bd (all nearest neighbor edges of Zd), and 0 is the (a.s.
defined) random ordering on Bd determined by i.i.d. continuous random

variables {We: e E via e  e’ (in 0) if We  Of course the
same random ordering would result a.s. from any exchangeable We’ s which
are a.s. distinct. We remark that no role will be played in this section by the
specific structure of 9 or 0, including whether or not 0 (or g) is random.
Thus we will treat 0 as a deterministic ordering, and invasion percolation
will be the following deterministic growth model.

For a fixed initial vertex xo e V, invasion percolation starting from xo
is the sequence G = (Gn = (Vn , = 0,1, 2, ...) of finite subgraphs
of 9 determined inductively as follows:

(i) The initial vertex set Vo = ~xo ~ and the initial edge set £0 is empty.
(ii) == En U where is the edge of lowest O-ordering

in e touches some y E Vn ~ .
(iii) Vn+1 = {x E V : x touches some e E 
Note that each Gn is connected, that Gn is increasing in n and that the

cardinality of En is necessarily n, but the cardinality of Vn will generally
be less than n (unless Gn is a tree) since some em (with m ~ n) may be
the edge between two vertices already in If V is finite, then Gn is
defined only for n up to the (finite) cardinality of ?. If V is infinite then G is
an infinite sequence, and one may define as the increasing
limit of Gn. In general neither nor will be all of V or E. It is easy to

show, for example, in the standard version of invasion percolation that V 00
has zero density as a subset of Zd a.s. if and only if there is no percolation
for standard Bernoulli bond percolation on Zd at its critical point - it
is currently an open problem to prove the latter for general d. (For some
connections between the nature of V~ and spin glasses, see Ref. 21.)

Vol. 31, n° 1-1995.
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Our main result is a theorem, presented at the end of this section (with
the proof given in Section 3) which states that, under mild conditions,
invasion percolation arises as the strongly inhomogeneous (E - 0) limit
of stochastic growth models ~==0~1,2,...) determined by
random walks Xt on Q. For each E &#x3E; 0, Xt will be a continuous time
random walk on Q, starting at xo, with a strictly positive rate rxy (E) for the
transition from x to y for each x,y E V with {x, ?/} E ?. For concreteness,
we take Xt to be right-continuous in t. Further hypotheses (in particular,
reversibility) will be stated in the theorem below.
To define G~ = (~~) we first define VE ( s) to be the set of all

vertices in V, visited by X; for t E [0, s] and ~~ (s) to be the set of all

edges in ? traversed by Xt (in either direction) for t E [0, s] . Let Tn be
the random time at which the cardinality of ~E (s) first reaches n. Then

Vn = and ~ = ~(7~). In other words the sequence GE describes
both the vertices visited and edges traversed’ by Xt in the order they were
first visited/traversed. The direction of first traversal of an edge ~x, ~~ is
also contained within GE except in the case where x and y had both been
visited prior to the traversal. For a brief discussion about the times at which
first traversals occur, see the remark at the end of Section 3.

THEOREM. - Assume that for each E &#x3E; 0, there exist &#x3E; 0 for x E V
such that for each ~x, ~~ E £

Assume also that for each distinct e and e’ in ~,

Then the random sequence GE converges in distribution as E -+ 0 to

the deterministic invasion percolation sequence G (with the same initial
vertex xo and the same ordering on the edges).

3. PROOF

GE converges to G if and only if (Go, ..., converges to (Go, ..., Gn)
for every n. Since the vertices and edges of G~ (and Gm) for n

are connected to the starting point xo by paths in G containing at most n
edges and since 0 is locally finite, we may, for each n, replace 0 by a
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finite subgraph of itself (depending on n). It follows that, without loss of
generality, we may assume that Q is a finite graph.

Related to the continuous time process Xt in the standard way is the
discrete time Markov chain X E = = 0,1, ... ) which records the
succession of vertices visited by X; (including repeat visits). Clearly GE
depends only on X E and not on the times spent at successive vertices,
which is the extra information contained in X;. Let us denote by Nx the
set of neighbors (in Q) of the vertex x. Then the transition matrix for X E is

Note that the right hand side of Eq. (3.1) is unchanged if the rate rxy is

replaced by xxrxy for every x and y (with ~x, y~ E ~). Thus, without loss
of generality, we may assume that 03C0x == 1 and that the rates are symmetric :
rxy - ryx’
We next state two lemmas, one about random walks and one about

invasion percolation. Then we complete the proof of the theorem, using
the lemmas, and afterward present the proofs of the lemmas. We end the
section with a remark about the time scales for new transitions to occur.

LEMMA 1. - Let ~’ _ (V’, ~’) be a finite connected graph with M vertices
and let Xt be a continuous time random walk on ~’ with strictly positive
symmetric rates, rxy = ryx = Rlx,yl &#x3E; 0 for each ~x, ~~ E ~’. There exist
constants OJ ( j = 1 , 2 , 3 , 4) in (0, oo) depending only on ~’ (but not on the
rates Re), such that for every x, y E V’, e E ~’, and t &#x3E; 0,

and

where Te is the time X; first traverses the edge e, and

LEMMA 2. - Let G = (Gn = (Vn, Sn) : n = 0, 1, 2, ... ) be invasion
percolation on G = (V, £) starting from some xo E V, with respect to
some ordering 0 on ~, and let el, e2, ... be the sequence of invaded edges.
If em &#x3E; e’-,.L+1 (in C~), then em = ~x, ~~ and = ~~, z~ for some
x E V’.,2- l, and z ~ Vm; furthermore, z is the vertex in 
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which minimizes the O-order of ~y, z~. If em  e,,.,.t+1 (in C~), then in the

subgraph (Vr,.t+1, of where

em and belong to the same connected component.

Continuing with the proof of the theorem, we denote by eí, e2 , ... the
sequence of random edges giving the edge set of = {e~,..., e~}.
We denote by T: the time when X; first traverses edge e. Our object is
to show that for each n = 1, 2, ...

We proceed by induction on n.
Let An denote the event (e[ = e 1, ... , en = en ~ . For n = 1, this is

simply the event that the first transition from xo is made to the z in

Nxo (call it z) with minimum (9-order of ~xo, z ~ . Recalling Eq. (3.1 ) and
Eq. (2.2), we see that

Now suppose P(~) -~ 1. We must show that 1. If

em &#x3E; (in 0), then by Lemma 2, we have (conditional on Am) that
for t = Tem, Xt = y / and also (again conditional on Am) that

contains the event that the next transition (after Tem ) is from y to
the z in (call it z) such that {y, z~ has minimum 0-order. In this case,

exceeds the expression in (3.7), but with xo replaced by y,
and so tends to 1 as E - 0.

Now consider the case where em  (in 0). In this case, X; for
t = Tem may not be deterministic (even when conditioned on A~ ), but
it can only be either y’ or y", = em. Let denote

the connected component of em (which also contains em+i) in the graph
of Lemma 2. Let c~Gr,.,,+1 denote the set of all edges in 0

which do not belong to but which touch Note that every

edge in 8Gm+1 is of higher O-order than every edge in Gm+1’
Conditional on contains the event that (after time 

is traversed before any edge in 8Gm+1 is traversed. Let us assign
independent Poisson alarm clocks (with rates Re ( E)) to the edges of 9 to
determine the (possible) transitions of X;. Let BE denote the event that
none of the clocks assigned to the edges in 8Gm+1 rings (and hence no
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edge in is traversed) during the time interval Tem + t(~)],
where t(E) will be chosen later. Then

Furthermore, conditional on B~ and Xt = y (a vertex in 8Gm+1) for
t = the process Xt for t E + t(E)~ is identical to one in

which 9 is replaced by Gm+1 (with the same rates). Let Xt denote this
replacement process and T~e (for e an edge of Gm+i) denote the time ~t
first traverses e. Then, we have (for any choice of t(E))

It remains to choose t(e) so that the RHS of (3.9) tends to 1. To do so, we
first apply (3.3) of Lemma 1 with 0’ = Gm+1, X; = and Te = 
so that (3.9) combined with (3.8) yields

where p(E) is the minimum Re (E) for edges in Gr,.t+1. From (2.2) and the
fact that all edges in 8Gm+1 exceed in O-order all edges in we

see that t ( E) can be chosen so that

which forces the RHS of (3.10) to tend to 1, as desired.

Proof of Lemma 1. - For small {) &#x3E; 0, define the M x M transition matrix

Let {31 (8) denote the second largest eigenvalue of (the largest equals
one) and let denote the continuous time Markov process which makes

transitions according to at times given by a Poisson process of rate

Vol. 31, n° 1-1995.
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1/b. Since is symmetric, its invariant distribution is uniform. It then
follows from Eq. ( 1.10) of Ref. 22 that

On the other hand, Proposition 1 of Ref. 22 gives the bound

where the max is over all e in E~ and ryxy, for each ordered pair x, y of
vertices, is some path in 0’ connecting x and y. The RHS of (3.14) is

easily bounded by p/C2(M). Inserting that into (3.13) and letting 8 - 0
yields (3.2).

It remains to obtain (3.3) from (3.2). Let Xt denote the process which is
the same as Xt except that the single rate Re is set to zero. Let y be an
endpoint of e which is connected to x in the graph G (which is 0’ with the
single edge e removed). Let Ut denote the amount of time in [0, t] spent
by Xt at y. Then {T~ &#x3E; t~ is contained in the event that the Poisson clock
at e (see the discussion preceding (3.8) above) does not ring during the Ut
seconds when Xt is at y and thus, for any s  t,

Next we note that by applying (3.2) to Xt (restricted to the connected
component of x in 9, which has M vertices), we have

Noting that p &#x3E; p, that M and then considering worst cases of
Cl and C2, we see that there exists a C5 depending only on 0’ so that
E(Ut) &#x3E; 2~ for t &#x3E; C5/p. Since for a E (0,1),
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we may take 03B1 = 41- and conclude that for T &#x3E; C5 /p,

Thus from (3.15) with t = C5 /p and s = t/4M,

Denote the RHS of (3.19) by exp( -C6). Then by a standard Markov
process argument,

which can be rewritten as (3.3).

Proof of Lemma 2. - We first consider the case em &#x3E; (in C~). If
both endpoints of em were in Vm-1, then the edges of 8Em would already
all be in 9~_i and so would be above em (in (9) since it was
not chosen as the mth edge in the invasion; this contradiction shows that
em = {x, ?/} with ~ E Similarly, cannot be any
of the edges already in 9~_i and so it must be an edge in 
which forces it to be of the form {~} with z ~ Vm . must be the

edge touching y, with minimum 0-order, or else it wouldn’t be invaded

immediately after em.
Now consider the case em  (in 0). We must show that there

is a path ry of edges in Em, all of which are below in 0-order,
which connects some vertex of em to some vertex of Since Gm is
connected, and touches both em and there must be some site-self-

avoiding path ry of edges in Em connecting a single vertex of em to a
single vertex of em+1. We will prove by contradiction that every edge in
ry is below in 0-order.

Let e* be the edge of maximum (9-order in 03B3 and suppose that e* is
above both em and in O-order. Let l be the first n ( m) such that
Gn touches 03B3. The touched vertex is either between em and e* in 03B3 or
else between and e* in ~y. In the former case, em and all edges in
ry between em and e* would be invaded prior to e* being invaded; this
would contradict the fact that e* is invaded before em (since e* is in Gm
and e* # em). Similarly, in the latter case would be invaded before
e* which is again a contradiction.
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Remark. - Although we will not pursue the issue at length in this paper,
we make some heuristic comments about the timescales on which first

traversals of edges by Xt occur as E - 0 in the context of the reversible
rates of (2.1 ) - (2.2). In the situation of Lemma 1 with symmetric rates,
the time * for first traversal of e*, the edge with minimum rate among
the edges of 0’ (assume distinct rates) is of the order of 1/Re* = 1/p. In
a process on 0’ with rates which are not symmetric, but rather reversible
with respect to }, let us denote by ~* the connected component of the
initial vertex x in the graph obtained from 9 by deleting e*, and denote by
x* the vertex in g* which minimizes 03C0y (assume for the time being distinct

’Try’s). The circle of methods used in the proof of Lemma 1 also shows that
prior to Te* , the process on 0* reaches equilibrium and thus spends most
of its time at vertex x*. If one replaces the nonsymmetric process on g*
by the symmetric one with rates 03C0xrxy/03C0x* = then the rates

for transitions from x* are unchanged, as is the order of the time spent at
x*. We conclude that in a reversible process on ~, starting from x, the
time T~. * is of the order Combining this with Lemma 2 and the
rest of this section, we reach the following conclusion about the times Tem
for first traversals by the process X: (starting at xo) of the edges ei, e2,...
(given by invasion percolation for the ordering 0). Define x1 = xo,

where is the connected component containing em of the graph obtained
from Gm by deleting all edges e’ with e’ &#x3E; em (in C). Then as E - 0

(and under the hypotheses (2.1) - (2.2))

in an appropriate distributional sense.
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