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ABSTRACT. - We consider a one dimensional generalized symmetric
simple exclusion process where are permitted at most two particles per site.
The system is open and at the boundaries a stochastic dynamic is chosen
to model two infinite reservoirs of particles with different densities. This
simple model is non gradient. We prove that in the stationary state the

particles empirical density field converges to the deterministic solution of
a non linear elliptic equation as the microscopic size of the system goes
to infinity. Fick’ s law of transport for the expected value of the current in
the stationary state is also proven.

Key words: Interacting particle systems, hydrodynamical limit.

RESUME. - Nous considérons le processus d’ exclusion simple généralisé
qui admet au plus deux particules par site sur une boite unidimensionnelle
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192 C. KIPNIS, C. LANDIM AND S. OLLA

{ 1, ..., A~}. Ce modèle constitue 1’ exemple le plus simple de système non-
gradient. Aux deux frontières une dynamique stochastique est choisie de
manière a simuler deux reservoirs de particules a deux densités différentes.
Nous démontrons que pour 1’etat stationnaire, lorsque N i oo, le champ
de densité converge vers la solution d’une equation elliptique non linéaire
ainsi que la loi du transport de Fick pour 1’ esperance du courant.

0. INTRODUCTION

Suppose one has to compute the density profile in a pipe connecting
two infinite reservoirs containing a fluid with two different densities in a
stationary regime. At a macroscopic level, i. e. when the distance between

molecules is infinitely small compared to the size of the pipe, it is natural
to set the equation for the density p

and then to invoke Fick’ s Law in order to write the second equation for
the current J:

All of this remains at a macroscopic level and ignores any description of
the fluid in terms of a large number of interacting molecules. On the other
hand, given the interaction potential between the molecules, one should in
principle be able to compute the coefficient a(p) and also to verify that
Fick’s law holds at least by taking appropriate limits.

In the past decade considerable efforts have been made to bridge the
gap between the molecular description and the macroscopic one (usually
known as hydrodynamic limits in the jargon of infinite particles systems).
Due to the technical difficulties to this date, most of the rigorous results
have been proven for stochastic caricatures as the one presented below,
while Newtonian dynamics seem still out of reach.

Pioneering work on this subject was done in [GKMP] on the so called
symmetric simple exclusion process, although it was not yet realized at that
time that one was dealing with hydrodynamics so that one uses the term
Fourier’ s Law rather than Fick’ s Law. However when properly translated
this system gives rise to a constant coefficient &#x26; independent of p. Anyway

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



193STATIONARY STATE

the proof makes use of various special properties of the dynamics and
cannot be extended to general situations.

In a recent paper Eyink, Lebowitz and Spohn (cf. [ELS]), using the
robust techniques of [GPV], study the macroscopic properties of the

stationary distribution for the class of all one-dimensional gradient lattice
gas dynamics (see below for precise definitions) in contact with two infinite
reservoirs of particles at different chemical potential. Notice that for such
lattice models the stationary distribution is not explicitely computable. It is
known that they are not local Gibbs states, and can be approximated by
local Gibbs States only at a first order in the gradient of the density between
the two reservoirs. In [ELS] it is shown for such models that the empirical
density field of the particles converge to the deterministic solution of the
stationary transport equation.
The results contained in [ELS] are limited to gradient lattice dynamics,

i. e. to systems where the instantaneous current between two sites is given
by the difference between a local function and its space translation, i. e. a

spatial discrete gradient 1. That means that the conservation law is already
microscopically expressed as a second order difference equation. But the
gradient condition imposes very restrictive assumptions on the dynamics.
The motivation of the present paper is the extension of the results of

[ELS] to non-gradient dynamics of particles on a lattice. The simplest
non-gradient lattice model 2 we could think of is a generalized exclusion
model where particles perform symmetric random walks but no more than
two particles per site are allowed (instead of one for the usual symmetric
exclusion process), giving origin to a hard core exclusion if a particle
attempts to jump to a site already occupied by two particles. For this
model we have already studied (cf. [KLO]) the nonstationary macroscopic
evolution when the system is closed (i. e. when it is isolated from exterior
reservoirs, and the total number of particles is conserved).
We try now to give a heuristic idea of the increasing complexity of the

various models. For the usual symmetric simple exclusion the situation is
simple because the instantaneous current between two sites (say 0 and 1)
is given by~(l)2014~(0). This is why the macroscopic equation is linear.

In [ELS], as we said above, the dynamics considered is such that the
instantaneous current has the form of a gradient plus a ’time derivative’ i. e.

1 [ELS] results actually extend to systems with currents that are given by a spatial gradient
plus a time derivative of local functions.

2 i.e. not in the class considered by [ELS] (see previous footnote).

Vol. 31, n° 1-1995.
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were hand F are two local functions, L is the generator of the dynamics in
the infinite volume (no boundary conditions), and T is the space translation.
The diffusion coefficient will depend only on h and not on F. The reason
why the term LF is irrelevant is that its time fluctuations are orthogonal
to the one of the gradient part ~(77).

In our non-gradient situation there do not exist two such fixed functions
hand F. Following Varadhan’s ideas (cf. [V]), we show that the time
fluctuations of Wo,i with respect to the the dynamics generated by L in
equilibrium, can be approximated by those of

for some constant and function F(p,17) that must depend on the
parameter p that is the density of the equilibrium measure at which the
these fluctuations are computed. So the gradient part of the current now
will depend on the local density of particles. This picture is not complete:
such a function F( p, 7y) does not really exist. Formally it is given by some
infinite sum and an approximation argument must be used.
The central problem in applying Varadhan’s method here is to prove

that locally the system is close to equilibrium. For this purpose we need
a bound on the Dirichlet form of the stationary measure. To obtain this
bound we have to modify an argument in [ELS] (cf. proposition 2, where
the gradient condition was explicitely used).
As a corollary of the main result in this paper, we prove Fick’s law which

gives an explicit expression for the first order correction to the expectation
of the current under the stationary measure.

1. NOTATION AND RESULTS

For an integer N, let 7~ ~ {0,1,..., N ~ and denote {0,1,2}~ by
XN. We consider on XN the Markov process, informally described in the
introduction, which generator is given by

The elementary generators L~ and Ld are defined as follows.

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



195STATIONARY STATE

and the rate functions dk,k+i and are given by

In the above formula stands for

The "border" generators Lg, Ld are creation-destruction operators defined
by

where

and the intensities c~ and c~ will be defined later. The exclusion operators
correspond to jumps between sites k and k + 1.

For an integer k, we denote by Wk,k+i the current between sites k and
k + 1:

We will often omit the dependence of Wk,k+i on 7/. Notice that with these
notations, for an integer 1 ~ k  N - 1, LN~k writes

We consider the one parameter family of product measures such that the
probability to find r particles at a given site is proportional to ~r, ~ &#x3E; 0.

Notice that the mean occupation number of particles is given by

which is obviously a strictly increasing function onto the interval [0,2).
Vol. 31, n° 1-1995.



196 C. KIPNIS, C. LANDIM AND S. OLLA

For every p in [0,2], we denote by v03C1 the above product measure with
A( p) such that the density of particles at each site is p with the convention:

We define opportunely A (2) = oo.
We will use indifferently the same notation vP for the product measure

on X N or on the infinite product X = {0,1,2}~. As a shorthand for the
expectation with respect to v~, we will use the notation

Observe that the operators are symmetric with respect to the

measures vp for any p E [0, 2].
To define the creation and destruction rates at the border, we fix two

densities p9 and pd in [0, 2] . We choose c ( .) and c ( .) so as to make the
creation and destruction process at the left (right) border reversible with
respect to vPg (vPd ). This corresponds to imposing to the rates to satisfy
the equations:

Notice that for each border we obtain a two parameter family of rates.
Given two densities ( the densities of particles we want to have

respectively to the left and to the right of our system), the Markov process
generated by LN has a unique invariant measure that we will denote with

~cs , and will denote its density with respect to a fixed product measure

vp, taken as a reference measure. Our goal is to establish a law of large
numbers for the density field under /~ and show that it converges, as N
increases to oo, to the solution of a non linear elliptic equation. In order
to define the diffusion coefficient of the elliptic equation, we need to
establish some notations and to consider the generalized exclusion process
in the infinite space X = {0,1,2}~.

For an integer k, denote by the generator of the generalized
exclusion process restricted to sites k, k + 1 defined in ( 1.2). For a density
p, denote by Pp the Dirichlet form associated to the jumps between sites 0
and 1 in the infinite space X. Thus for f : X 2014~ R,

We will omit the index p when no confusion arises.

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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For an integer k define the operators V~ ~ and V~ ~i as

To keep notation simple set

Using the scalar product on R2, the Dirichlet form D can be rewritten as

Let Tk the shift operators acting on the cylinder functions on X. For
every cylinder function F: X 2014~ R, consider the formal sum

which does not make sense but for which

are well defined since they involve only a finite number of non zero
differences.
We are now in position to define the diffusion coefficient. For each p,

define 
, , , , ,

In this formula x stands for the usual static compressibility which in our
case is equal to

In [KLO] we proved that the diffusion coefficient a( p) is continuous

strictly positive and not constant.
Before stating the main theorems of this article, we have to clarify what

we mean by weak solutions. Denote by Co ( [0,1] ) the space of real, twice
continuously differentiable functions vanishing at the border as well as its
first and second derivatives.

Vol. 31, n° 1-1995.
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A bounded function /?(~): [0,1] - R is said to be a weak solution in
of the nonlinear elliptic equation with boundary conditions

if

(i) p has a derivative in L2(~0, 1]):

(ii) for every function F in C~([0,l]),

In this last formula ~4 represents the integral of &#x26;:

Observe that ~4 is a strictly increasing function.
It is easy to prove an uniqueness result of weak solution in H -1 of

(1.6). Indeed, consider pl and p2 two solutions. By (i) ~-{~4(/~) 2014 ~4(~)}
belongs to Lz(~0, 1]). On the other hand, by (ii), an integration by parts
and the boundary condition, 9~{~(~) 2014 A( p2 ) } is constant. In particular

p2 since they coincide at the boundary.
The first main result of this article is the following law of large numbers

for the empirical measure under the stationary regime of the process.

THEOREM 2.1. - For any J E C(j0,1]~) and for any 8 &#x3E; 0

where p(x) is the weak solution in H-l of the nonlinear elliptic equation
(1 .6).

THEOREM 2.2. - (Fick’s law.) For every x E ~0,1~,

where p is the unique weak solution in .H_ 1 of ( 1.6).

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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Observe that the last expression does not depend on x. In fact, we
have:

3. ENTROPY PRODUCTION

In this section we prove that the Dirichlet form of the density of the
stationary measure with respect to a reference measure vp is bounded

by Co /N for some constant Co. This is one of the main ingredient needed
in the proof of the so called 1 and 2 blocks estimates.

For a first reading, the reader may wish to skip the proof of this result
and go directly to the next section where Theorems 2.1 and 2.2 are proved.

For a positive integer £ and an integer k, we denote by r~~ the density of
particles in a box of length 2£ + 1 centered at k:

We will need often the following integration by parts formula. For an
integer 0  k  N - 1 and a cylinder function f,

PROPOSITION 3.1. - For every positive density p,

Proof. - By the definition of stationary state we have:

We first obtain an upper bound for the second and third terms of the

right hand side of the last equality. For the second one, for instance, define

Vol. 31, n° 1-1995.
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Now by a change of variables and from property (1.4) of c~ this last

expression is equal to

We denote by the current at the left boundary:

We proved therefore that

Identical computation gives a similar inequality for the third expression
of the last formula in this proof:

where is the current at the right boundary:

Putting these two inequalities together we have

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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The second step of the proof consists in obtaining an upper bound for
the right hand side of this last expression by means of the stationarity of
J-Lss and the Schwarz inequality.
By the stationarity of f ss and the conservation law of the we have

From formula (3 .1 ) and the previous equality, we have that

By Schwarz inequality the right hand side of the last expression is

bounded above by

Therefore,

We conclude the proof of this proposition bounding the left side of this
inequality by the Dirichlet form by means of an elementary inequality.

Since a(log b - log a) ::; ~),

for every 0  i  N - 1. The last two inequalities give the bound on
the Dirichlet form:

Recalling that the product measure vPg is reversible for the generator
L9, we obtain the following bounds on the Dirichlet forms associated to
L9 and Ld.

Vol. 31, n° 1-1995.
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COROLLARY 3.2.

Proof - Again by stationarity we have:

and we have already an upper bound on the last term. D

4. HYDRODYNAMIC LIMIT

In this section we prove Theorems 2.1 and 2.2. Let .M(~0, 1]2) be the
space of all positive measures on the square [0,1]~ with total mass bounded
by 4. Let 7[N be the positive measure obtained from a configuration ~
by the relation

where 8(u,v) denotes the Dirac measure on (u, v). We will often omit the
dependence on ~ in the notation of 

Define QN as the measure on ,ilil ( ~0,1~ 2 ) obtained as the image of the
stationary measure by the application 

In section 6 we prove that the sequence ( Q N ) N &#x3E; 1 is tight and that
every limit point Q* is concentrated on measures absolutely continuous
with respect to the Lebesgue measure and whose density is equal to the
product of the marginal densities. More precisely, every limit point Q* is
concentrated on measures dy) such that

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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Moreover, we show that the marginal density has a derivative in L2(dx):

The strategy of the proof of Theorem 2.1 is simple. Recall the definition
of the strictly increasing function ~4 defined in (1.6) and denote by p the
weak solution in H_1 of (1.6). We have to show that Q* is concentrated
on the measure p( x ) p(y) dx dy . One way of doing it is to prove that the
non-negative function I: [0, 1] ~ R+ defined by

is identically equal to 0 or to prove that the function 7: [0,1]~ - R defined
by i _ 1 ’1

vanishes on the diagonal. Observe that 1(x) &#x3E; 0 since ~4 is increasing.
This strategy is accomplished in three steps. In Proposition 4.1 and

Corollary 4.3, we show that for every pair of functions F and 9 in

Co~~~~ 1]),

Moreover, in Proposition 4.4, we show that for every function .~ in

~([0,1]),

From this two results and since p is the weak solution in of (2.5),
we obtain that

for every pair of functions in Co(~0, 1~). This means, in a weak sense,that
the function I (x, y) has a second partial derivative with respect to the first
argument that is skew symmetric:

in the interior of [0,1]~.
Vol. 31, n° 1-1995.
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This first step concerns only the behavior of I inside the square [0,1]~.
The second step consists in proving that I is identically 0 at the border.
This is done in Proposition 4.5 by proving a law of large numbers for the
density at the border under the stationary measure.

Finally, we show that all functions I with the two previous properties
vanish on the diagonal.
We now turn to the proofs.

PROPOSITION 4.1. - ~: [0, 1] ~ R be functions of class C2 with
compact support on (o,1~. For every limit point Q* of the sequence QN,

Proof. - Assume without loss of generality that the sequence QN
converges to Q * .

Let 6: R 2014~ R+ be a smooth approximation of the identity with support
contained in [-1, 1]:

For a positive 8, denote by 15 the approximation of the identity ¿ scaled by 8:

and by 1i8 1 plus the integral of the difference of two translations of ~:

Notice that H6 is identically 0 in a neighborhood of the origin and
identically 1 outside a larger neighborhood of the origin.

Since is a stationary measure,

Since H5 is identically 0 in a neighborhood of the origin, in the above
formula we have only to compute for k and j far apart. In this

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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case the generator acts separetely on each term. Recalling the definition
( 1. 3 ~ of the current, we obtain that

Therefore, by a summation by part, since ~’ and 9 have compact support
in ( 0,1 ) , we obtain

In the above formula, aN stands for the discrete derivative:

We consider the two expressions in (4.1) separately. Define 4lN : [0,1] x
[0, 1] ~ R as the functions 

Notice that, for sufficiently large N, is a function with support contained

in E, where

For every positive integer f, let

In the next section we will prove the following proposition which is the
crucial part of the proof.

PROPOSITION 4.2. - For every functions .~, ~ in CK ( (0, 1 ) ) and positive b,

Vol. 31, n° 1-1995.
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With this result it is easy to conclude the proof of Theorem 4.1. Indeed,
from Proposition 4.2 and (4.1 ), we have that

where is defined as 4JN with the roles of .~’ and 9 interchanged.
Since we assumed that the sequence QN converges to Q*, the first line

of the last expression is equal to

In Appendix 1 we prove that all limit points of the sequence QN are
concentrated on measure whose densities with respect to the Lebesgue
measure are in Therefore the last expression is equal to

From the definition of 7~, its derivative is equal to the difference of
an approximation of the identity and its translation by 68. Since, under
Q*, 8y p belongs to L2 (dx), the limit of the last expression, as 8 decreases
to 0, is equal to

An integration by parts conclude the proof of Proposition 4.1. D

COROLLARY 4.3. - The statement of Proposition 4.1 holds for every
functions F and G in C20([0, 1]).

Proof - Since every limit point of the sequence QN is concentrated on
measures x(dx, dy) whose density is bounded, Corollary 4.3 follows by
approximating functions in C5 ( [0, 1]) by functions in Cx ( ~0,1~ ) . 0

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



207STATIONARY STATE

PROPOSITION 4.4. - Let [0 , 1] -- R be function in Ca ( ~0,1~ ) . For every
limit point Q* of the sequence QN,

The proof is omitted since it is similar to the one of Proposition 4.1
and Corollary 4.3.

Let p be the unique weak solution in H_1 of (1.6). From Propositions 4.1
and 4.4, it follows that for every function .~’ and 9 in C~([0,1]), we have

for every limit point Q* of the sequence QN.
Up to this point we have obtained properties of the limit points Q* on

the interior of the square [0, 1]2. We now turn to the proof of a law of large
numbers for the density on the boundaries.

PROPOSITION 4.5. - For any 6 &#x3E; 0:

Proof. - This follows from Corollary 3.2. In fact

The first term on the right is controlled by a two block argument (cf.
Lemma 4.2 in [KLO]) and goes to zero as N - oo and then E 2014~ 0. The

second term goes to zero as ~V 2014~ oo and then I - oo by the law of large

Vol. 31, n° 1-1995.
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numbers, since by Corollary 3.2. the Dirichlet form of restricted to

{O, 1, 2~1°wwl~ converges to 0 as N i oo. 0

COROLLARY 4.6. - Every limit point Q* of the sequence is such that

Proof - Let Q* be a limit point. From Proposition 4.5,

Since, by Proposition A.1.t, Q* is concentrated on profiles with continous
densities, the integral in the last formula converges to p(0) Q* a.s.. D

Proof of Theorem 2.1. - Let p(x) be the solution of the equation ( 1.6). Fix
a limit point Q* of the sequence QN. Recal the definition of the function
I: [0,1]~ - R and remember that I is non-negative on the diagonal.
By equation (4.3) we have that, in a weak sense

in the interior of [0,1]~. This says that there exists g(x, y) such that
i) for any y E [0,1], g(., y) is a distribution on [0, 1],

ii) 9~7(’,~/) = g ( . , y) as distributions,

iii) g is skew-symmetric, in the sense that for any symmetric smooth
function F(x, y) on [0, 1]~

(here the integration in x is intended as distribution).
From Proposition 4.5, we know the behavior of the function I at the

boundary. Indeed, we have that

uniformly in y and similar limits for the three other boundary of [0,1]~.
Let G(x, x’) be the Green function corresponding to the operator 8; on

[0,1] with 0-boundary conditions. Then

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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so we have

The Green function G is symmetric and g is skew-symmetric. Therefore
the right hand side of the last expression is equal to 0.

Since 1(x,x) &#x3E; 0 this implies that I(a,x) = 0 a. e.. A is a strictly
increasing function, so we have that

This conclude the proof of Proposition 2.1. D

We now turn to the proof of Fick’s law. It is a simple consequence
of the bound on the Dirichlet form obtained in Proposition 3.1 and of

Proposition 4.2.

Proof of Theorem 2.2. - Since is stationary, does not

depend on i. For this reason, if for a positive 8, F8 denotes a smooth
function with compact support on ( 0,1 ) such that

we have that

The second sum of the last line is of order 0 ( 8). Indeed, since is

stationary, this expression may be rewritten as

By the integration by part formula (3.1) and Proposition 3.1 the absolute
value of this expression is bounded above by,

Vol. 31, n° 1-1995.
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On the other hand, by arguments similar to the ones used in the proof of
Proposition 4.2, for each fixed 8, the first sum of (4.4) converges to

where p is the solution of (1.6). Notice that for such a function
does not depend on x. In particular, the last expression

converges to

when 8 decreases to 0. D

5. PROOF OF PROPOSITION 4.2.

In order to prove Proposition 4.2, we need to introduce some notation.
For a cylinder function F and 0  p  2 define A ( F, p) as

From the definition (1.4) of &#x26;(’), it is clear that A(F, p) is positive and
bounded. Moreover, for every 0  p  2, the infimum of A(F, p) over
all cylinder functions satisfies

We need to consider functions F that depend also on the density. Let us
denote by U the space of functions F: [0,2] x X ~ R such that

(i) For each p E [0, 2], F(p, ~) is a cylinder function with uniform
support. That is there exist a finite set A such that for each p in [0,2] the
support of F(p, .) is contained in A.

(ii) For each configuration 7/, F(., ~) is a smooth function.
In what follows, for a function F in U, we denote by b = b(F) the

common support of the cylinder functions F(p, .):

The application A can be extended to act on functions of U. Indeed, for
a function F in U, define A(F, p) as

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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Notice that

and that ~4(F, -) is continuous for every F in U since by Theorem A.3.2
in [KLO] &#x26; is continuous.

For a function F in U and a positive integer f define a cylinder function
Fg by

The proof of Proposition 3.2 follows from the following two lemmas.
Recall from (4.2) the definition of the set E.

LEMMA 5 .1. - Let 03A6: (0,1 ) 2 - R be a smooth function with compact
support on E. For every positive integer .~ and every function F in U, let

Then,

LEMMA 5.2. - Let 03A6: (0, 1 ) 2 ~ R be a smooth function with compact
support on E. For every function F in U,

We start with the proof of Lemma 5.2 which is simpler.

Proof of Lemma 5.2. - Fix a function F in U. By the stationarity of 

Since ~ vanishes in a neigbourhood of the diagonal of (0,1 ) 2, for

sufficiently large N and small E, the generator LN acts separetely on

Vol. 31, n° 1-1995.
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the product Therefore the last expression rewrites

Therefore, to conclude the proof of the lemma it is enough to show that
the second term of the last expression converges to 0. Since 03A6 has compact
support on (0,1)~, a discrete integration by part gives that it is equal to

In this last formula, 8f denotes the discrete partial derivative with respect
to the first coordinate. By the integration by parts formula, since ~ vanishes
in a neighborhood of the diagonal, for sufficiently large N and small E,
this last expression is equal to

where the product ’ is the usual internal product. Since F is a bounded
function, the absolute value of this last expression is bounded above by

By Schwarz inequality and, by now, standard arguments, this last sum
is bounded above by

In the last step we used Proposition 3.1 to bound the Dirichlet form of
the density f ss . D

Proof of Lemma 5.1. - The proof is divided in two steps. The first one
consists in reducing the problem of a small macroscopic block to the same
problem for a large microscopic block.
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First of all, there is no spatial average on in Such a

spatial average is crucial and can easily be inserted since

is of order as one can see after using summation by part and from
the presence of a discrete laplacian.
The second step in reducing the problem of a small macroscopic block

to the same problem for a large microscopic block is to replace the term
involving the generator LN by a simpler one.

For a function F in JF denote by (LNF)(p, ~) the generator acting on the
cylinder function F(p, .) and taken at the configuration q. Moreover, for a
positive integer ~, denotes the smooth (in the first variable)
function (L~F)(’,?7) taken at the density p = ~:

The difference between ( L N F ) ( r~o E , r~ ) and which appears in

the definition of XN,NE is that the latter takes into account the changes of
the density of particles in the box ~-NE, while the former does not.

We claim that we may replace the latter by the former in the definition of
This is the content of the next lemma.

LEMMA 5.3. - Under the assumptions of Lemma S.1,

The proof of this lemma is omitted since it is identical to the one of

Lemma 4.1 in [KLO]. We have just to keep in mind two facts. First of
all, ~ has compact support on E. For this reason the cylinder function

qk appearing in the statement of Lemma 5.3 will not prevent us from

using the integration by parts (3.1 ). Secondly, in section 3, we proved that
the Dirichlet form of the density f SS is bounded by C/N. These are all
ingredients needed in the proof of Lemma 4.2 of [KLO].

In Lemma 5.3 we replaced the expression appearing in the
definition of X N,N E by a simpler one (L~F)(~~ vy). The aim of this first
step as explained above is to transform the original problem which involves
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the density of particles in small macroscopic boxes to the same problem
with large microscopic boxes. Therefore we need to replace the density 
appearing in the last expression by a density in a large microscopic block.
This is the content of the next lemma.

LEMMA 5.4. - Under the assumptions of Lemma 5.1,

The proof of this lemma is similar to the one of Lemma 4.2 in [KLO]
and therefore is omitted.

The last step in the localization of the term involving the generator LN
is to introduce a space average on the configurations which will be crucial
in what follows.

For an integer j, (TjF)(p, q) denotes the cylinder function F(p, ~)
translated by j and taken at the configuration yy. Moreover, ~7)
denotes the function (Tj F) (p, q) taken at the density p = qb :

Recall from (5.1 ) that we denote by b the common support of the functions
F(p, .) . Define £b by P.6 == £ - b - 1. The previous two lemmas show that
in the definition of XN,N~ we can replace by q).
On the other hand, the expression

is of order ~Z/N. This can be seen using a discrete integration by part since
a discrete laplacian will appear . Notice that the average on LNF uses only
those translations that remain inside the box {2014~ ... , ,~}.
The final step in the first part of the proof consists in replacing
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in the definition of 
E by

This is the content of the next lemma.

LEMMA 5.5. - Under the assumptions of Lemma 5.1,

The proof of this lemma is omitted since it is similar to the one of
Lemma 4.5 in [KLO].

Up to this point we reduced the proof of Lemma 5.1 to the proof of the
following statement. For a positive integer f define as

LEMMA 5.6. - Under the assumptions of Lemma 5.1,

Proof. - Since by Proposition 3.1 the Dirichlet form of f ss is bounded

by Co /N, for every positive ~3, the above expected value is bounded by

In the above formula, the supremum is taken over all densities with respect
to the product measure vp. Therefore, to prove the theorem it is enough
to show that for every positive f3,

inf lim sup lim sup sup
FEU 
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For a density f and for an integer 0  k;  N, define the density fk as

where Zk(!) is a renormalizing constant:

Notice that Zk(!) is bounded by 2 since there are at most 2 particles per
site and f is a density. 

,

Since there are at most two particles per site and since for integers i at
distance at least 2 from k, 7~ behaves like a constant for jumps between
sites i and i + 1, the Dirichlet form restricted to the bond i, i + 1 of fk
is bounded by the one of f:

for Ii - kl &#x3E; 2.

For a density fk and for an integer 0  j  N, denote by fk,j the
conditional expectation of fk with respect to the a-algebra generated by
~j-l,...,~j+l. For integers j such that |j - k| ] &#x3E; £ +1, for the same reasons
presented above and from the convexity of the Dirichlet form, a standard
computation (cf. [GPV], [KLO]) shows that

Since the cylinder function YF depends on 7y only through 1]-£, ... , 
from the above two remarks on the Dirichlet forms and since ~ vanishes
in a neighborhood of the diagonal, for N sufficiently large the (5.2) is
bounded by

For a fixed integer j, since Zk(!) is bounded by 2, the above supremum
is bounded above by
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In the last formula the second supremum is taken over all densities on

{0,1,2}~, where

and DR is the Dirichlet form on ~0,1, 2}A£ defined by:

Now we project on hyperplanes since because of the existence of

conserved quantities ergodicity holds only on hyperplanes.
For 0  ~  2(2£ + 1) denote by the measure ~ conditioned on

the hyperplane {ç; 03A3 03BE(k) = K}:

Notice that the r.h.s. of the last expression does not depend on p.
For 0  K  2(2£ + 1) and for a density f on {0, 1, 2} {-£,...,£} denote

by hK the projection of f on the hyperplane {03BE; 03A3 03BE(k) = K :

With this notation just introduced, for a density f on {0,1,2}~ ~ ~

may be written as

In this formula c( f, K) stands for

and  . denotes the expectation with respect to the measure 
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Finally, since the total number of particles is conserved by the dynamics
the Dirichlet form of a density f may be written as

where c( f, K) is defined just above and is the Dirichlet form

Therefore, decomposing the integral and the Dirichlet form of (5.2) as a
sum over hyperplanes with fixed total number of particles, then taking the
supremum inside the sum we get that it is bounded above by

From the bound on the largest eigenvalue of a small perturbation of a
generator, stated as Theorem A.1.1 of [KLO], we obtain that the limit when
N increases to oo of this expression is less than or equal to

From section 5 of [KLO], the limit of the expression inside the supremum,
when £ increases to oo and I~/.~ converges to p, is equal to A(F, p) defined
at the begining of this section, uniformly in p. From the definition of A,

This concludes the proof of the theorem. 0

APPENDIX 1. TIGHTNESS

In this section we prove that the sequence QN introduced in section 4
is tight and that all limit points are concentrated on measures with certain
properties.
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PROPOSITION A.1.1. - The sequence QN is tight. Moreover, every limit
point Q* of the sequence QN is such that

Proof - The sequence QN is tight since it is a family of probabilities
over a compact space (the space of positive measures with total mass
bounded by 4 on the compact space [0,1]~).
Each limit point is concentrated on absolutely continuous measures whose

density are positive and bounded by 4 because in the model considered
there are at most two particles per site. Their densities are product by
construction.
We now prove the last property of the limit points. Since is stationary

and by the entropy inequality, for any smooth J in C~((0,1)):

where Co is the bound on the relative entropy of /~ with respect to the
product measure v~.
By Feynman-Kac formula this last expression is bounded by

where the eigenvalue AN is given by

In this last formula, LN denotes the adjoint of LN with respect to the

product measure vp. The Dirichlet + which
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appears in the above formula is equal to the Dirichlet form

By the formula of integration by parts (3.1 ) we have

. _ . 
- . 

T 
_ 

... ,

and by Schwarz inequality the last line is bounded by

for some constant B.
Then we have

Taking the limits as A~ 2014~ oo we have

By Lemma 7.4 in [KLO] we can take a supremum over the functions
J inside the expectation and obtain:

This concludes the proof.
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