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ABSTRACT. - We consider a class of rescaled superprocesses and derive a
full large deviation principle with a "good" convex rate functional defined
on the measure state space. The rate functional is identified as the Legendre
transform of a log-Laplace functional. The latter is described by solutions
of an explosive reaction-diffusion equation (cumulant equation) which is
discussed in some detail. In the special case that the motion component
in the model is suppressed, the variational problem is explicitly solved
showing in particular that as a rule the rate functional is not strongly
convex and not continuous.

Keywords: Large deviation, superprocess, cumulant equation, rate functional.

Nous considerons une classe de superprocessus en changement
d’ échelle et nous obtenons un principe de grands ecarts par rapport a
une « bonne » fonctionnelle convexe definie sur une espace d’états de
mesures. La fonctionnelle d’ intensite est la transformee de Legendre d’une
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608 K. FLEISCHMANN AND I. KAJ

fonctionnelle de type Log-Laplace. Cette derniere est caracterisee a 1’ aide
des solutions d’une equation de reaction-diffusion explosive (1’ equation
cumulante) qui est etudiee en detail. Dans le cas particulier ou la composante
de derive du modele est supprimee, le probleme variationnel est resolu
explicitement, illustrant par le fait meme que la fonctionnelle d’ intensite
n’ est ni fortement convexe ni continue.

1. INTRODUCTION

1.1. Motivation

Since the pioneering paper of Liemant (1969), much has been

done in the field of spatially distributed branching models of infinite
populations: equilibrium theory, convergence theorems, scaling properties,
hydrodynamics, sample path properties, random media effects - to mention
only some main topics. However, to our knowledge there are only a
few papers dealing with large deviation aspects. (Generally speaking,
large deviation probabilities are of particular interest in statistical physics,
in models in random media, and in other respect; the relatively simple
branching models may serve as a certain test case only.)
Cox and Griffeath (1985) considered the critical binary branching

Brownian motion starting with a homogeneous Poisson particle system
of density one and studied in dimensions d ~ 3 the asymptotics of the
(logarithmic) large deviation probabilities

as t 2014~ oo where Ns (B) counts the number of particles at time s in the
bounded Borel set B C IRd of volume 1 ( B ) , and e &#x3E; 0 has to be s ufficiently
small. This last condition has its origin in the method they use based on
cumulants: It guarantees the convergence of some power series expansions.
Also, in recent manuscripts of Lee ( 1993) and Iscoe and Lee ( 1993) similar
restrictions enter into some large deviation probabilities for closely related
occupation time processes; the only exception is a dimension d = 3 result,
where a steepness argument could be used.
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609LARGE DEVIATION PROBABILITIES FOR SOME RESCALED SUPERPROCESSES

To remove such "disturbing" conditions was our primary motivation to
look for large deviation properties in infinite branching models. From a
technical point of view, one has to take into account that in such branching
models exponential moments are infinite as a rule.

In the present note we are concerned with large deviation probabilities
log Pr (XK (t) E A) as jR" 2014~ oo, where X K refers to a branching process
appropriately scaled in time, space and mass, t is a fixed macroscopic time
point and A is any open or closed set in the state space of the scaled
processes. Here we restrict our main attention to supercritical dimensions
d, i. e. to those dimensions where the unscaled process has steady states.
Under a critical rescaling we prove a full large deviation result.
From the variety of possible choices we decided to work with a measure-

valued branching model (Dawson-Watanabe process, superprocess), which
reduces the number of relevant approximations forced by the scaling and
which simplifies the use of some analytical tools.
We feel it is reasonable to assume that the reader is somewhat familiar

with the concept of a superprocess, or is willing to consult for example the
recent survey of Dawson (1993) which contains a full account. Regarding
the technical framework for the class of superprocesses we have in mind,
the paper is intended to be self-contained. Since we allow a fairly general
motion component in the model, it seems natural to use some functional
analytic approach.

In the remainder of this introduction we will describe the model,
formulate the main result and provide some heuristic background leading
to a dimensionally independent reformulation of the problem.

1.2. Preliminaries

Fix a dimension d &#x3E; 1, a "motion index" a E (0, 2], constants al, a2
satisfying d  d + a, a2 &#x3E; 0, write a := [ai, a2], and introduce
the reference function

Let 03A6 denote the linear space of all real-valued continuous functions p
defined on IRd with the property that the ratio p (y) converges to a
finite limit as Iyl ---&#x3E; oo. In 4l we introduce the norm

Vol. 30, nO 4-1994.



610 K. FLEISCHMANN AND I. KAJ

Then 4Y is a separable Banach space. Note that c Co where
Ccomp and Co = Co [lRd] are the spaces of all continuous functions with

compact support or vanishing at infinity, respectively, both equipped
with the supremum norm ( ~ . ~ ( ~ of uniform convergence. Moreover, the

embedding of 03A6 into Co is continuous, 
To 4Y we introduce the "dual" set Ma of all (locally finite non-negative)

measures M defined on R~ such that (~c,  +00, or equivalently,
(~c,  +00 for all (/? E ~+. We endow this set Ma of tempered
measures with the a-vague topology. By definition, this is the coarsest

topology such that all real functions  ~ (M, cp), p E U are

continuous. Hence all the mappings  ~ ( , cp), (/? E are continuous.

Note that the Lebesgue measure l belongs to this set Ma . Next we include
also a2 = 0 in which case pa = 1, ~ ~ . ~ ~ = ( . ~ ( ~ and where Ma degenerates
to the set of all finite measures endowed with the weak topology. (This is
actually the reason why the constant a2 was introduced.)

In the following the symbols A+ and A- refer to the sets of all

non-negative respectively non-positive members of a set A. Integrals
are written as (m, f ).

1.3. Model

Let X = [X, P:;; s E E Ma] denote the (critical continuous)
superstable motion on I~d with motion index a E (o, 2~ , "diffusion " constant
r~ &#x3E;_ 0, and constant branching rate p &#x3E; 0, related via its Laplace transition
functionals

to the solutions u of the non-linear differential equation

Here A~ - - ( - L~ ) a~ 2 denotes the fractional Laplacian acting on the
space coordinate y.

In other words, this time-homogeneous Markov process X lives in Ma.
Given the state X ( s ) _ ~c at an initial time s, the Laplace functional of
the random measure X (t), t &#x3E; s, is described by means of the solutions

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques



611LARGE DEVIATION PROBABILITIES FOR SOME RESCALED SUPERPROCESSES

u of the non-linear equation (1.3.2). Here the test functions p of the
Laplace functional enter as Cauchy initial conditions.

For readers not familiar with superprocesses we recommend considering
both components in the model separately. If p = 0, the population mass is
only smeared out by the stable flow with generator (the heat flow in the
case a = 2). On the other hand if 03BA = 0 all "differentially small" portions
of mass X (s, dy) fluctuate independently (at different space points y) in
time according to the stochastic equation

(starting in (8 = X (s, dy) for y "fixed" and with W a standard Wiener
process in R). This equation describes the simplest critical continuous

state Galton-Watson process (Lamperti process) with "branching rate" p.
(We restrict to the simplest continuous state branching component since
later we use the finiteness of exponential moments "around the origin".)
Superimposing both components leads heuristically to the superprocess X,
and in this way one gets a rough idea of how X behaves.
We also mention that such superprocesses serve as diffusion

approximation for high density branching particle models, where the

particles have a small mass, move independently according to symmetric
a-stable motions and split critically with finite variance but with a large rate.

For constants ~y &#x3E; 0 and K &#x3E; 0 we define the scaled processes X K :

that is we speed up the time by a factor K~ (with, specified later), contract
the space and rescale the mass, both by the factor K-d . So X K describes
the mass on a large space-time scale. There will be an interplay between
the parameter 03B3, the scaling properties of the spatial a-stable motions and
the dimension d of space. This results in a variety of different behaviors of
the scaled processes XK as ~ 2014~ oo as we will now review.

1.4. Basic Ergodic Theory

We distinguish between several parameter constellations. First consider
the situation of a critical scaling by which we mean that, = a l~ d holds:

(*) In the case of a subcritical dimension, i. e. if d  a, or more explicitly,
~y = d = 1  a, the scaled processes X K converge in distribution to X but
the latter defined with diffusion constant x = 0 (i. e. the motion component
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612 K. FLEISCHMANN AND I. KAJ

disappears), provided that the initial measures X K (0) converge in law to
some X (0). If p &#x3E; 0, this means, that the scaling will catch clumps, which
in the limit are located in Poissonian points; the sizes of the clumps are
independent, fluctuate according to (1.3.3), and for a fixed macroscopic
time point t, are exponentially distributed. In other words, this limit can
be viewed as a collection of independent copies of processes fluctuating
according to the stochastic equation (1.3.3), with initial states (o according
to the limiting initial measure X (0, dy) . For details concerning this time-
space-mass scaling limit theorem we refer to Dawson and Fleischmann
( 1988).

(~r) In the situation of a critical dimension, i. e. if d = a, or more

explicitly, if 1 = d = 1 or 2, the superprocess is self-similar, i. e. that
X K coincides in distribution with X, provided that the initial states X K (0)
and X (0) coincides in law (e.g., if X (0) = l, the Lebesgue measure; see
Lemma 4.6.1 below).

(* * *) For supercritical dimensions d &#x3E; a (_ ~y) a law of large numbers
(LLN) is true: For fixed ~ ~ 0,

where ~’~ ~c is the measure which results if the a-stable flow with "diffusion"
constant x ~ 0 acts on M over a time period of length t; see Lemma 4.5.2
below. In this case (if p &#x3E; 0) also the Gaussian fluctuations around
the a-stable flow T’" M can be computed, leading to Ornstein-Uhlenbeck
processes; see e.g. Dawson, Fleischmann, and Gorostiza (1989) (specialized
to a constant medium and to branching with finite variance).

So far we discussed the situation under the critical scaling ~y = a A d.
In the case of a subcritical scaling -y  a n d (i. e. if the microscopic time
grows only "moderately"), always a LLN holds; see Remark 4.6.5 below.
On the other hand, for a supercritical scaling -y &#x3E; a n d, under reasonable
, , , ~ 

Pr
initial conditions one expects a local extinction X ~ (t) ----~ 0, t &#x3E; 0,

provided that d  a, whereas in supercritical dimensions d &#x3E; a again a
LLN should hold.

1.5. Main Results

In this note we fix our attention to large deviations related to the law
of large numbers (* * *) above, i. e. with the most interesting LLN since
in this case the scaling is critical.

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques



613LARGE DEVIATION PROBABILITIES FOR SOME RESCALED SUPERPROCESSES

For convenience, similarly to (1.3.4), we introduce a notation MK for a
scaling of measures  :

[with cpK defined in (1.3.4)]. Write

for the log-Laplace functionals related to the unscaled X.

THEOREM 1.5.3 (large deviation principle). - Assume that d &#x3E; a = ~y.
Fix r~, p &#x3E; 0, a measure ~c E Ma, ~c ~ 0, and a (macroscopic) time point
t &#x3E; 0. For K &#x3E; 0, let ~cK denote the measure in Ma which satisfies

= ~c (for instance ~c = l - Then the following large deviation
principle (LDP) holds: There is a lower semi-continuous convex functional

[0, with = 0 such that,

(i) for each open subset G of 

(ii) for each closed subset F of 

(iii) t is a "good" rate functional: all sets (v E .Jlit a ; t ( v )  N) ,
N &#x3E; 0, are compact.

(iv) t is given by the variational formula

That is, roughly speaking, Pr (XK (t) = exp (v)~,
as K - oo, in the sense of logarithmic equivalence.
The point is that for (i) we do not need any smallness condition, i. e. a

restriction to some small (open) neighborhoods G of T ‘~ ~c.
Although the representation (iv) is rather implicit, nevertheless it is very

useful since the log-Laplace functional can be characterized in terms
of unique solutions of equation (1.3.2), see Theorem 3.3.1 and Corollary
3.3.4 below.

In the special case of a vanishing "diffusion " constant ~ = 0 (i. e. if
there is no motion in the model) equation (1.3.2) can be solved explicitly.
Then we are able also to solve the variational problem (iv). To describe
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614 K. FLEISCHMANN AND I. KAJ

this, we need some notation. Within each may be uniquely
decomposed as v = va~ + va + Here va~ (dy) -. ~c (dy) is

absolutely continuous with respect to (the fixed) measure ~c, whereas va
and are singular with respect to ~c. By definition, va is concentrated on
the (uniquely determined) closed support S of  whereas (S) = 0.

THEOREM 1.5.4 (solution of the variational problem). - For ~c E A4a,
t, p &#x3E; 0, but  = 0,

(using the convention 0. (+oo) = 0).
An interesting fact is that by (1.5.5) the rate functional is typically

not strongly convex, since it is positively homogeneous along va . Hence
its "conjugate" is not "steep". (Recall that steepness is often used
as a starting point to get the lower bound (i) in terms of some Legendre
transform.) We mention also that normally the rate functional is not
continuous; see Example 5.2.4 below.

1.6. Reformulation and Methodology

By scaling properties of the stable semi-group and of the critical
continuous-state Galton-Watson process, and by our assumed parameter
relations, the time-space-mass scaling X~ of X as K -~ oo can be
reformulated as a limit in law of X under /? 2014~ 0 (see Lemma 4.6.1 below).

For the sake of a heuristic argument, let us restrict our attention for the
moment to the case of the special branching rates p = 1 /N, ~V -~ oo .

Then by the branching property and again by scaling arguments, X (t) with
N

respect to ~o; ~~N has the same law as N-1 X’ i (t), where the X 2 (t)’ 

i=1

are independent and distributed according to ~o; ~ . Now apply an infinite
dimensional version of Cramér’s Theorem. Here, of course, one has to be
careful since the exponential moments of the ( X i ( t ) , cp), p E ~ + , are
infinite as a rule. But they are finite for "small" p E ~+ which is actually
sufficient; see Corollary 5.1.3 below.
To be more precise, our approach is to investigate the large deviation

probabilities

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



615LARGE DEVIATION PROBABILITIES FOR SOME RESCALED SUPERPROCESSES

which exist without any dimension restriction and may be expressed by
means of some rate functional (see Theorem 4.1.1 below). We derive
this via a general methodology for large deviation probabilities as presented
in Chapters II and III of Deuschel and Stroock (1989), in conjunction with
some results on superprocess log-Laplace functionals which we develop
for this purpose. By scaling Theorem 1.5.3 above then follows with the
same rate functional t.

Concerning technical details, a necessary step in the development is to
deal with equation (1.3.2) for initial functions cp which admit also positive
values. Here one has to take into account that, for given cp and a fixed

time interval, solutions u may not exist (think of the explosive behavior

of the ordinary equation !!.- u ( t) = u2 (t) , for /) &#x3E; 0 and positive initial
values). Perhaps we should add at this place, ~ that (1.3.2) will be handled
by transfering it to the corresponding integral equation [mild solutions of
(1.3.2)]. A rather detailed picture is given in the Theorem 2.4.3 below,
which in particular covers known results due to Fujita ( 1966) or Nagasawa
and Sirao (1969).
We mention that the methods in this note are useful also for dealing with

functional deviations in time (and not only in space), see Fleischmann et
al. (1993), and for large deviations related to other variants of the law of
large numbers (subcritical scaling).

1.7. Outline

The relevant tools concerning equation (1.3.2) for cp with possibly
changing sign are compiled in Section 2 in a more general set-up than
needed for the present particular application (for the sake of later reference).
In Section 3, by analytic continuation methods, the connection to the

log-Laplace functionals is given. The large deviation estimates follow in
Section 4, whereas the final section is devoted to the identification of the
rate functional.

2. ON THE CUMULANT EQUATION

The main content of this section is Theorem 2.4.3 below which provides a
rather detailed picture concerning the explosive reaction diffusion equation
(1.3.2) when we drop the assumption 03C6 ~ 0. This is a variation of a type
of result which has appeared in many forms and it may be regarded as

Vol. 30, n° 4-1994.
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essentially known. Nevertheless we include it here for the sake of being
self-contained. We also stress the fact that most results in the literature only
refer to the Brownian case a = 2. In general A~ are integral operators
outside the area of classical partial differential equations and this motivated
our approach here which is based on functional analytic methods.

2.1. Further Preliminaries

In this subsection we introduce the function space ~~ in which solutions
of the equation (1.3.2) "live". Recall the parameters d, a and a = a2]
where we first go back to our earlier assumption a2 &#x3E; 0. Fix a finite closed

time interval I := [L, T], L ~ T. Let denote the linear space of all

continuous curves ~c defined on I and with values in ~. Equip with

the supremum norm, denoted by

By setting u (t, y) :== u (t) E we also regard u as a
function on I x IRd, and we get a continuous embedding 03A6I C Co [I X IRd]

~I . Moreover, we immediately obtain:

LEMMA 2.1.1. - The spaces ~ and ~I are Banach algebras with respect
to the pointwise product of functions.
From now on we again include the boundary case a2 = 0 in which

~ = C1 and ~I = C1 [I x where C1 refers to spaces of continuous
functions with a finite limit at infinity.

2.2. On the Stable Flow

Recall that ~ ~ 0 is a fixed ("diffusion") constant. If ~ &#x3E; 0, then

the stable semigroup ~T’~; t &#x3E; 0~ with generator ~Da = -,~ (-0)a~2
possesses continuous transition density functions

with characteristic functions

(Note again that with ex = 2 the heat flow is included.)

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



617LARGE DEVIATION PROBABILITIES FOR SOME RESCALED SUPERPROCESSES

For p we set and for ~ &#x3E; 0 define 

I~ where by definition

J

The following lemma can be found, for instance, in Dawson and
Fleischmann (1988), Lemma 4.1. (Note that T’~ _ lt.)
LEMMA 2.2.2. - [~, cp~ ~ is a continuous mapping of f~+ 

into 

As a simple consequence we get [see also Dawson and Fleischmann
(1992), formula line (3.4)]:

LEMMA 2.2.3. - The linear operators acting in 03A6 are uniformly
bounded for bounded t and ~.

Proo, f : - In fact, for 0 ~ t, r~  c,

where for the moment we set J := [0, c2], and const. always denotes a
finite constant..

2.3. Another Convolution Map

For u E we introduce by setting

LEMMA 2.3.1. - [x, u] is a continuous mapping of R+ x 03A6I
into 

Proof. - According to Lemma 2.2.2, T~.’~ s ~c (r) belongs to for each
pair r, s satisfying r &#x3E; s. In view of Lemma 2.2.3,

Assume and as n --~ oo. For sn E I, by the previous
estimates,

Vol. 30, nO 4-1994.
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In virtue of Lemma 2.2.2, the latter norm expression converges to 0 as
n - oo, for each r. Moreover, by Lemma 2.2.3, it is bounded above by

= const. Hence, by dominated convergence,
the integral over the second norm expression converges to 0 as ?~ 2014~ oo .

But for the first term we get ~ const.llun - which converges to 0,
too. Summarizing,

2.4. Implicit Function Theorem Setting

Recall that I = [L, T]. Now we are prepared to introduce the functional

defined for [x, p, u] E R+ x R+ x x We will study the
equation

which covers (1.3.2). In fact, in more details it can be written as

and a formal differentiation to the time variable s yields

(To rebuild (1.3.2), set L = 0, ~ = 0, and reverse the time : s ~ T - t;
later the backward formulation is needed to express some functionals of the
occupation time process related to X.) Our purpose will be to solve (2.4.2)
with the help of the implicit function theorem, for adequate ~~, p, cp, ~].

THEOREM 2.4.3 (cumulant equation). - Recall that 0  c~ _ 2, 1 - d 
+ cx, a2 &#x3E;_ 0 and I = [L, T] are fixed.

(i) (uniqueness). - To each [03BA, p, cp, 03C8] E R2+  03A6 x there exists at

most one element u E which solves F (r~, p, cp, ~, ~c) = 0.

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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(ii) (existence). - The set U of all those [~, p, p, ~] E I~+ x ~I
such that there exists an element u =: u~,~, P, ~, ~J in for which
F (~, p, cp, ~, u) = 0 is open and includes R+ x ~0~ x ~j as well as

I~+ x x In particular, u~,, ,, o, oJ = 0.

(iii) (continuity, convexity and analyticity). - The map [x, p, p, ~] -
u~,~, P, ~, .~J E defined on U is continuous, and for fixed [~, p], the map
[cp, ~~ ’2014~ 

P, ~, ,~J is convex and analytic (with [~, p, p, ~] ranging in U).
(iv) If L  T then U is different from I~+ x ~I,

and sup ~u~,~~ P~ ~~ ~J (s, ~J~~ [s, y] E I x (~d~ ~ as [~, p, ~P~ ~] ~
[R, p, ~p, ïJ;] E the boundary of U.

(v) (maximum principle). ~c~,~, p, ~, ~J  0 ( &#x3E; 0) provided that ~p, ~  0

(~ 0, resp.).
(vi) (global solutions). Fix [~, p] E f~+ . 0, then even a global

solution exists, that is the solution can be extended from I = [L, T] to all
of (-00, T]. On the other hand, if d &#x3E; c~ (supercritical dimension) and
~~P+ ~ 9+] is sufficiently small in norm, then again a global solution exists.

[Of course, in our real Banach space setting, analyticity at a point means
that the power series expansion converges absolutely in a neighborhood of
that point; see e.g. Zeidler (1986), Section 8.2.]
The reader who is more interested in the direction of the paper as a

whole or is willing to accept this theorem as it stands might want to skip
the proof in the next subsection and proceed directly to Section 3.

2.5. Proof of Theorem 2.4.3

To prepare for the proof, first note that F maps f~+ x x ~I
continuously into see the Lemmas 2.2.2, 2.3.1 and 2.1.1. Furthermore,
at each point ~~, p, cp, ~, u] E p~+ x $ x x we get the following
first partial (Fréchet) derivative of F with respect to u :

Consequently, this partial derivative is linear in u and continuous in

~~, u] (again by the Lemmas 2.3.1 and 2.1.1).

e) For some specific blow-up properties in the case a = 2, we refer to Mueller and Weissler
( 1985).
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620 K. FLEISCHMANN AND I. KAJ

LEMMA 2.5.2. - For each [x, p, cp, ~, u] E x x 

(bounded linear) operator Du F (~, p, p, ~, u) : H is bijective.
Proof. - Suppose L  T (otherwise = 0 and D~ F ( ~, p, cp, ~, u)

is the identity). Fix [x, p, p, ~, u] and let v belong to with

D~ F (r~, p, cp, ’lj;, u) v = 0. By (2.5.1) and boundedness of the operator
according to Lemma 2.3.1,

Then Gr6nwall’s Lemma (pass s ) ~ ~ ) = 0, i. e.
v = 0. Consequently, the first partial derivative under consideration is a
one-to-one operator.

Let w E We want to show that there is a v E with
v - (uv) = w, i. e. that v solves the linear equation

To this purpose we will decompose the interval I into sufficiently small
pieces in order to replace the integral operator in (2.5.3) by an operator
with norm strictly smaller than 1, which then will allow us to apply the
so-called main theorem for linear operator equations in Banach spaces.

Fix w E I, let N &#x3E; 1 be a natural number (to be specified later),
set T := (T - L)/N, and introduce the intervals I (i) := [T - (i + 1) T,
T - iT], J (i) := [T - iT, T], 0 ~ i  N. Fix z. For s E I (i), instead
of (2.5.3) we get

Now

where the constant C can be chosen independently of i and T. Fix N so
large that  1, in order to ensure that the bounded linear

operator W’~~ I ~i~ (u.) acting in ~i~ has a norm smaller than l.

First assume that i = 0. Then the middle expression at the r.h.s. of

equation (2.5.4) disappears, and (2.5.4) has a (unique) solution v on 1 (0);
see, for instance, Zeidler (1986), Theorem 1.B .

For a proof by induction on i suppose that v is already constructed on
J (i) for some i, 0 _ i  N - 1. Then apply the same theorem to extend v
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621LARGE DEVIATION PROBABILITIES FOR SOME RESCALED SUPERPROCESSES

continuously to I (i) U J (z) . Summarizing, the operator under consideration
maps onto and the proof is finished..
Now we are ready to complete the Proof of Theorem 2.4.3.
1° (uniqueness). Take ~r~, p, ~p, E I~+ x and assume that

F (~, p, cp, = 0 = F (~, p, cp, ’ljJ, v) for some u, v E From

(2.4.1 ),

Using the Lemmas 2.1.1 and 2.2.3, we can continue with

and again Gr6nwall’s Lemma This proves the

claim (i).
2° (open domain of existence). Fix a point po, uo~ E

f~+ x x and assume that F (xo, po, uo) = 0 (as is

the case for ~po = = uo = 0). Based on the formula (2.5.1), Lemma
2.5.2 and 1°, from the implicit function theorem we conclude the existence
of an (open) neighborhood Uo of ~~o, po, in ~+ x x such
that there is a unique map [~, p, p, - 

P, ~, ~~ defined on Uo with
F(~, p, p, 1/;, u~,~, P, ~, ~~ ) = 0; see for instance Theorem 4.B in Zeidler
(1986). (Here we have to mention that in applying the implicit function
theorem we could replace 1R2 by (~+ where the neighborhoods of points at
the half axis x = 0 or p = 0 are defined in a one-sided way). This shows
that the non-empty set U defined in (ii) is open. For the remaining claims
of (ii) we refer to the last step of proof below.

on (continuity 
and analyticity). The continuous dependence of 03C1, 03C6, 03C8]

on ~~, p, p, directly follows by the implicit function theorem from the
continuity of D; F (~, p, cp, ~, u) in [x, p, cp, ~~ .

For fixed ~, p &#x3E;_ 0, the directional derivative of F in the direction of
the vector is given by

[~ C] x hence is independent of Combining this with
(2.5.1 ), we obtain that the first partial derivative F ( ~, p, cp, ~, u)
exists and is even continuous in ’ljJ, u~ . Next,

i. e. DF(Ii,p, cp, ’ljJ, u) is independent of ’ljJ, MJ. Consequently, all

higher partial derivatives of F with respect to ’ljJ, u] will disappear (in
Vol. 30, nO 4-1994.
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other words, F is a polynomial in ’ljJ, ~c~ ) . Therefore F (~, p, p, u)
is analytic in u~ , for each fixed ~r~, p~ . Then the analyticity property
in the statement (iii) follows; see Zeidler (1986), Corollary 4.23.

4° (blow-up). Assume that pn , ~~, /~, ~, ~~ E (~u and
that the corresponding solutions - satisfy ~un~~ ~ C,
n &#x3E; 1, for some finite constant C. From (2.4.1.) and (2.4.2), for s E I,

From the Lemmas 2.2.2 and 2.3.1, the first two terms on the r.h.s. are of
the order o ( 1 ) as n, m -~ oo, uniformly in s. Since the sequence pn is

bounded, the remaining term can be estimated from above by

[the o ( 1 ) is again uniform in s] . Using the boundedness of the sequence
and Gr6nwall’s inequality we get un~I = o ( 1 ) as

n, m ~ oc . Hence the Un form a Cauchy sequence in the Banach space 03A6I.
Let u denote its limit. From the Lemmas 2.1.1, 2.2.2 and 2.3.1 we conclude
that F (R, p, (j5, ~, u) = 0. However, this contradicts the statement in 2°
since by assumption [~, p, ~p, ~~ does not belong to the maximal open set
U of existence. Therefore is unbounded. From (2.4.2’) as well as
the Lemmas 2.2.2 and 2.3.1,

i. e. the Un are bounded below, which yields the (one-sided) blow-up
property claimed in (iv).

5° (points of non-existence). Take ~r~, p, p, E I~+ x x with

p &#x3E; 0 and cp ~ 0. Let 03B8 &#x3E; 0. From 2° we know that [03BA, p, belongs
to U for 03B8 sufficiently small. Assume that it belongs to U for all 9 &#x3E; 0.

Applying the operator T’~ L on the solution ue :== 
P, at time

s E I = [L, T], we get

Setting (s) (y) -. fe (s), s E I, for a fixed y E R, from Jensen’s
inequality we obtain
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Therefore fe dominates the solution of the equation

for all 0 &#x3E; 0. But the latter equation is solvable only for (T -L) fB (T)  1

and its solution g (s) (T)/(1 - (T - s) fB (T)), s E I, explodes as
(T - T 1. On the other hand, L  T by assumption, and
fe (T) = 0 (y) ranges continuously from 0+ to +00 on {B &#x3E; 0} for
an appropriate y by our assumption on cp. This is certainly a contradiction.
Consequently, [~, p, does not belong to U for 0 sufficiently large.
This completes the proof of (iv).

6° (convexity). At this stage we use the standard iteration scheme, which
we recall here without going into any details. (For this technique, see for
instance Dawson and Fleischmann (1988), Proposition 4.6, or also Dawson
and Fleischamnn (1992).) Fix ~, p _&#x3E; 0. Let [~, p, cp, belong to U. Set

We may assume that I is sufficiently small (otherwise decompose I as
in the proof of Lemma 2.5.2.). Then we get un - oo u ~’~ ~ P ~ ‘~ ~ ~~ =: u

in ~I. Take additionally cp’, E U and consider the corresponding
approximating functions un of the solution u~~, P, ~~, ~~~ ==: u’. For a constant
0  /3  1, we want to show that u~,~, p, ~a, ~~~ ==: u, exists, where

:= /? + (1 - /3) and that

To this end, by using (2.5.6), show by induction that

holds. On the other hand,

because from (2.5.6) and (2.5.8),

Consequently, un, j3 converges in to the desired solution u, as n - oo,
and the inequality (2.5.7) is obvious. Summarizing, u has the desired

convexity property. This completes the proof of (iii).
7° (special cases). If p = 0 then ~c = hence ~ p = 0~ C ?.l.

If 0, then obviously ~c~,~, p, ~, ~~ &#x3E;_ 0, (if they exist). On the other
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hand, if p, ~  0 then non-positive solutions P, ~, ~~ can always be
constructed by the iteration scheme. Since I is arbitrary, we can easily
extend the solutions to all of ( - oo, T]. Such global solutions exist also
if, for p~ E (~+ fixed, ~cp+, ~+~ is sufficiently small in norm, provided
that we are in supercritical dimensons d &#x3E; a; we refer to Fujita (1966) or
Nagasawa and Sirao (1969). This completes the proof of (ii), (v) and (vi)
and finishes the proof of Theorem 2.4.3 at all..

3. LOG-LAPLACE FUNCTIONALS

In this section we shall introduce the super-a-stable motion X. The main
result will be a characterization of its exponential moments in terms of the
equation (1.3.2) ; see Theorem 3.3.1 and Corollary 3.3.4 below.

3.1. Preliminaries : The a-Vague Topology

Let ( ( . ~ ( * ~ denote the dual Banach space to ( . ~ ( ~ . Then can

be considered as a convex subset of equipped with the weak* topology
(i. e. the a-vague topology in Ma is nothing else than the topology induced
in by the weak* topology in P*). Note that

from which in particular follows that the "duality" relation (., . ) between
Ma and 03A6 is continuous in both "components", and that

There exists a 1 ~ of functions in such that,
with f o := pa,

is a translation-invariant metric on Ma which generates the a-vague

topology; cf Kallenberg (1983), Appendix is a separable metric
space.
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LEMMA 3.1.3. - Each open ball

is a convex subset of .,Ilit a .

Proof. - This can be concluded from the inequality

which follows from the corresponding property of the Euclidean metric
entering into the exponents in the definition of pa , combined with the fact
that the function 1 - e-r, r ~ 0, is monotonically increasing..

Set Rd := Rd with ooa an isolated point. Denote by y3a the
extension of 03C6a to Rd by setting y3a (ooa) := 1. Write Ma for the set of all
measures ~c on Rd satisfying (p, CPa)  oo. Define the a-vague topology in

as we did in the case but now with pa replaced by The follow-

ing criterion is taken from Iscoe (1986) [see also Dawson ( 1993), § 3.1.5].

LEMMA 3.1.4. - A subset A of Ma is relatively compact if and only if
there is a natural number k such that A C ~ ~c E ( ~c, 1~ ~ holds.

Finally, from the definition of p~ we conclude that

3.2. Superstable Motion in Rd

Recall that 0  o~ 2, d  d + ~, ~2,~? P ~ 0 and a = a2].
A critical superstable motion X in Rd with motion index a, "diffusion"
constant ~ ~ 0, and (constant) branching rate p &#x3E; 0 can be defined as
a time-homogeneous Markov process ~X , ~ S y ~ ; s E E A4a] with
continuous trajectories in Ma and with Laplace transition functionals

where 
P, ~, o~ = U solves 

rB

or as a short-hand

Vol. 30, n° 4-1994.



626 K. FLEISCHMANN AND I. KAJ

that is, u~,~, P, ~, o~ , cp E ~ _ , is the unique extension from I C R- to R- of
the solution according to Theorem 2.4.3.

Note that by the continuity properties of solutions and by (3.1.1) the
Laplace functional expression (3.2.1) is continuous in all its variables

s, t, ~c, cp as described. Note also that if p = 0 then X reduces to the stable

flow ~~’~ ~c; t &#x3E; o~ in defined by (Tt’~ ~c, cp) := (p, ~’~ cp), p E 

3.3. Exponential Moments

The (weighted) occupation time process Y related to X is defined by

Y (t) := it d s X ( s ) , t &#x3E; 0. Now we want to describe the exponential
moments of [X (t), Y (t)], t &#x3E;_ 0, with the help of solutions to the equation
(2.4.2’).

THEOREM 3.3.1 (log-Laplace functional). - Fix I = [L, T], L  T,
~, p &#x3E;_ 0, and let QJ := QJ ~~, p] denote the set of all those x ~I
such that V ~~ . - v defined by

satisfies sup ~v~,~, p,~, ~~ (s, ~); ~s, y] E I X  -+-oo. Then ~? is an open
convex set which covers 03A6_ x Moreover, 03C8] ~ D [03BA, p] if and
only if ~~, p, p, ~~ E U with U defined in Theorem 2.4.3 (ii). In this case

= 
P, ~,~~ , the (unique) solution to (2.4.2’).

Note that this theorem provides a probabilistic representation of the
solutions to (2.4.2’).

Proof of Theorem 3.3.1. - 1 ° Fix ~~, p, p, ~~ E (~+ x and

assume for the moment that cp, 0. Then, for 0, the functions
V defined in (3.3.2) belong to and solve (2.4.2’), hence coincide
with u03B8 := E In fact, if 03C8 = 0 then this is a version of

the log-Laplace functional in (3.2.1), and the formula can be extended to
(3.3.2) by approximating ~ by appropriate step functions using that X is
a Markov process; see Iscoe (1986).

2° Now drop the additional assumption 0. Let cp = cp+ - 
denote the minimal decomposition with cp+, ~+ &#x3E;_ 0, cp_ ,

_ &#x3E;_ 0. Consider 9 := ~Bl, ..., 84~ _ 0. Then from 1° we know

that ve :- V ~81 4’+ + 82 83 ~+ + 84 belongs to ~I and satisfies
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(2.4.2’) with ~~ replaced by A (6’) := [01 ~p+ + 82 6~3 ~+ + 6~4 ~_~,
that is, ve = P~ e1 ~++e2 ~- ~ 83 ~++e4 ~-~ -. ue for 8  0.

3° Keeping the notations from the previous step of proof, set

with U defined in Theorem 2.4.3 (ii). Note that Ri C 8 n 8. By Holder’s
inequality, 8 is a convex subset of R~. On the other hand, 8 i open by
Theorem 2.4.3. (ii), and also convex by the convexity of 0 ~ ue (s, y)
which follows from Theorem 2.4.3 (iii).

Fix [s, y] E I x IRd for the moment. Well-known properties of bilateral
Laplace functions imply that 8 (s, y) is an analytic function on the
interior O° of 8. On the other hand, 8 H ue (s, y) is an analytic function
on 8 by Theorem 2.4.3 (iii). But by 2° both coincide on ~8; o  0~, and by
uniqueness of analytic continuation we conclude that ve (s, y) = ~ce (s, y)
on O ° n 0, and that both v. (s, y ) and u. ( s , y ) are branches of a unique
analytic function defined on eo U 0. Since [s, y] is arbitrary, the (I x Re-
valued mappings v, and ~c, coincide on 8 = O° = 8. In fact, both 8 and
8 are maximal by their definition: ve has a finite supremum on I x R~ if
and only if B E 8 whereas ~ce blows up at the boundary of 8 as described
in Theorem 2.4.3 (iv). Passing to 01 = B3 = 03B8 and 82 = 04 = -0, we
get that ~ D if and only if [x, p, 03B803C6, 03B803C8] E U, and in this case
V o~~ _ P, e~~ . Specialize to 8 = 1 to finish the proof..
From 8-initial measures we may pass to any initial measure:

COROLLARY 3.3.4. (exponential moments). - Fix I = [L, T], L  T and

~C E A4a. If [x, p, cp, belongs to U, then

with 
P, ~, ~~ the solution to (2.4.2’) as defined in Theorem 2.4.3.

Proof - This follows from Theorem 3.3.1 if we approximate M by discrete
measures with a finite set of atoms and use the branching property and
obvious continuities.
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4. LARGE DEVIATION ESTIMATES

Here we shall derive the announced large deviation principle (LDP),
actually in a reformulated setting; later we turn back to the original
statement.

4.1. Reformulation of the LDP Theorem 1.5.3

Note that here only our basic parameter assumptions 0  c~  2,
c~2, ~, p &#x3E;_ 0 are enforced.

THEOREM 4.1.1 (dimension independent version of the LDP). - Fix t &#x3E; 0

and M E A4a , ~c 7~ 0. There exists a lower semi-continuous convex "good "
rate functional t : [0, with t (~’~ ~c) = 0 such that,

(i) for each open subset G of -

(ii) for each closed subset F of 

The proof of this theorem is provided within the next four subsections.

4.2. Supermultiplicativity

As an immediate preparation for the proof of the previous theorem, we
formulate the following simple lemma.

LEMMA 4.2.1. - Fix t &#x3E; 0, ~C E and a convex Borel subset A of 
The function

is supermultiplicative: f (R + ,S’) &#x3E;_ f (R) f (,S), R, ,5’ &#x3E; 0.

Proof. - Fix R, S &#x3E; 0. Let [X’, X"] be distributed according to the
product measure ~o; R ~ x ~o; s Then
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However, if both R-1 X’ (t) and S-1 X" (t) belong to A then also its

convex combination (R + (X’ (t) + X" (t)) is in A. Consequently

But by the branching property, which follows directly from the form of the
Laplace functional (3.2.1), the sum X’ (t) + X" (t) has the law 
Hence 

LEMMA 4.2.3. - In addition to the assumptions in the previous lemma,
suppose that A C Ma is open. If now f (R) &#x3E; 0 for some R &#x3E; 0 then f is
bounded away from 0 on some non-empty open interval.

Proof. - Assume that f (R) &#x3E; 0 for a fixed R &#x3E; 0. Since is separable
there exists a 03BD ~ Ma and an ~0 &#x3E; 0 such that for the open ball B (v, eo)
contained in A we have

By the continuity of finite measures, this even holds with 6-0 replaced
by some c E (0, Hence we may fix a 8 &#x3E; 0 with 2 b 

A ) , and a natural number s o with E +  so 6.
For 0 ~ r  R and a natural number s, let [X’, X"] be distributed

according to x ~o; p~ . Then, by the branching property,

But a sum belongs to A certainly if the first summand belongs to B (v, e+6)
and the second summand has a ~.~-norm smaller than 8 [recall (3.16)]:

The first factor on the right hand side can be estimated further in

a similar way: (s R + X’ (t) E + b) is certainly fulfilled
if ( s R) -1 X’ ( t ) E B (v, E) and if the pa -distance of the difference
of both "vectors" is smaller than 8. But this is actually true under

(s X’ (t) E B (v, ~) and s &#x3E; so. In fact, by the translation-invariance
of the metric pa ,
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which by r (s R + r)-1 _ s-1 can be continued with

by the triangular inequality, (3.1.6), and our choice of so. Thus the first
factor at the r.h.s. of (4.2.5) can be estimated from below by

where we applied the supermultiplicativity Lemma 4.2.1 to the convex
(by Lemma 3.1.3) set B (v, e). Concerning the second factor at the r.h.s.
of (4.2.5) pass to the complement and proceed for 0 &#x3E; 0 as follows by
using (3.1.2):

By Corollary 3.3.4 with I = [-t, 0] and applying time-homogeneity, this
exponential moment is finite for a sufficiently small (9 &#x3E; 0 and equals

hence is bounded in r  R. On the other hand, - 0 as oo.

Consequently, the second factor on the r.h.s. of (4.2.5) is bounded away
from 0 for sufficiently large S = s R + r. Combined with (4.2.6) we
conclude that f (S) is bounded away from 0 on some non-empty open
interval. This finishes the proof..

4.3. Weak Large Deviation Principle

Let U denote the system of all those non-empty subsets of Ma which
are open and convex . Fix E A4a , t &#x3E; 0 and, for the moment, A E In
Lemma 4.2.1 go over to -log f to conclude that the function

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



631LARGE DEVIATION PROBABILITIES FOR SOME RESCALED SUPERPROCESSES

is subadditive, i. e. a (R + ,S’) _ ~ (R) + a (S) , R, S &#x3E; 0. Moreover,
Lemma 4.2.3 yields that a is either bounded on some non-empty open
interval, or identically +00. Hence, the subadditivity of a implies that all
the limits

exist; see, for instance Lemma 4.2.5 in [9]. Recall that by Lemma 3.1.3 all
open balls B ( v, r), r &#x3E; 0, vEMa, belong to By monotonicity, set

Obviously, [0, +00] is a lower semi-continuous functional.
For convexity, it is enough to show that

Set (vi -~ v2)/2 =: v, take any A with v E A, and choose Ai such
that Vi E Ai and A D (A1 + A2 ) /2. Then, by (4.3.1) and the branching
property, .

and (4.3.2) implies (4.3.3).
Immediately from (4.3.1) and (4.3.2) we get

On the other hand, if C is a compact subset of and i := inf (v)
is positive, then for 0  ~  i we find finitely many open balls B1, ..., BM
which cover C and satisfy (B~ ) &#x3E; i - ~, 1 ~ m  M. Then again
with (4.3.1) and (4.3.2), we obtain (cf [9], p. 62)
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Summarizing, with the estimates (4.3.4) and (4.3.5) we proved that

the family R-1 (R-1 X (t) E .); R &#x3E; 0, satisfies a weak large
deviation principle with the convex rate functional t defined in (4.3.1).

4.4. Full Large Deviation Principle

For convenience, for M E Ma, t &#x3E; 0 we introduce the largest open set
~~, t of all those functions cp E ~ such that (cp)  +00, with t

defined in (1.5.2).

LEMMA 4.4.1. - Fix Ma and t &#x3E; 0. For all cp E I&#x3E;Jl"t,

lim lim R-1 log E03BA,03C10,R  {exp (X (t), cp); (R-1 X (t), cp) &#x3E; N} = -oo.
R-o ’ ’

Proof. - Fix ~c, t, cp as in the lemma. Since is open by
definition, we find a 0 &#x3E; 0 such that also (1 + 8 ) cp belongs to ~ ~, t .
Writing cp = cp ( 1 -~- B ) - 8 cp in the exponent and using the condition
(X (t), 8cp) &#x3E; RN B, we immediately get

R, N &#x3E; 0. But by the branching property,

R &#x3E; 0. Hence, the r.h.s. in (4.4.2) is finite, and letting first R -~ oo and
then N ~ ~, the claim follows..

By Lemma 4.4.1 with cp = 03B803C6a and 03B8 &#x3E; 0 sufficiently small,

From the compactness Lemma 3.1.5 and (3.1.2) we learn that to each
M &#x3E; 0 we find a compact set CM C such that (interpreting measures
on Rd as measures on Rd, and distributions on as distributions on 
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In other words, we have exponential tightness in Since the

superprocess X lives in A4a, together with the results of the previous
subsection we get for E .), R &#x3E; 0, a .full
LDP with the convex "good " rate , functional [of (4. 3 .1 )] ; see [9],
Lemma 2.1.5.

4.5. Law of Large Numbers

We need the following simple scaling property of the superprocess:

LEMMA 4.5.1. - Fix p E .Ma and a constant c &#x3E; 0. If X is distributed
according to ~o; ~ then c X has the law 0~0; ~ ~ .

Proof. - By the Markov property, this directly follows from the identity
= ~-, via (3.2.1) and (3.2.2). N

As a complement to Theorem 4.1.1 we add here the following

LEMMA 4.5.2 (law of large numbers). - Fix t &#x3E; 0, ~c E For all

neighborhoods U (T’~ ~c) of T’~ ~c,

Proof. - By Lemma 4.5.1,

The claim then follows from continuity properties, since

Completion of Proof of Theorem 4.1.1. - By the LLN Lemma 4.5.2,
Lemma 3.1.3 and (4.3.1), we have (B (T’~ ~c, r)) = 0 for all r &#x3E; 0,
and (4.3.2) implies that t (T’~ ~c) = 0..

4.6. Proof of the LDP Theorem 1.5.3

Here we come back to our scaled processes X~ defined in (1.3.4). By
some scaling arguments, the LDP of Theorem 1.5.3 is in fact a consequence
of Theorem 4.1.1. First of all, X K coicides in law with the original process
X but with other parameters ~, p [recall (1.5.1)]:
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LEMMA 4.6.1 (space-time-mass scaling). - For I~ &#x3E;_ l, let ~cK belong to
Ma, and set ~~ .- ~ K~’-~ as well as pK := Then

Proof. - Fix K &#x3E;_ 1. By the self-similarity of the stable transition density
functions p’~ (t) := p’~ (t, .), t &#x3E; 0, introduced in Subsection 2.2, we have

[which directly follows from (2.2.1)1. This implies

But = E ~-, and the uniqueness of solutions
~c = 

P, ~, o~ to equation (3.2.2) yields

Then from (3.2.1) for t &#x3E; 0, cp 

By the previous identity and again by (3.2.1) we can continue with

This coincidence of Laplace functionals implies the claim..

Proof of Theorem 1.5.3 [except (iv)]. - The scaling Lemmas 4.6.1 and
4.5.1 are now the essential steps in order to see that Theorem 1.5.3 [except
(iv)] follows from Theorem 4.1.1. In fact, for 03B3 = a,

We have only to set Kd-a =: R and to take into account that d &#x3E; a

by assumption..
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Remark 4.6.5. - Under subcritical scaling, that is if q  a n d, the LLN

mentioned in the end of Subsection 1.4 above, follows similarly as in the
proof of Lemma 4.5.2, since here 0 in view of Lemma 4.6.1 and

T° equals the identity operator. 0

5. IDENTIFICATION OF THE RATE FUNCTIONAL

This section is devoted to the representation of the rate functional

formulated in assertion (iv) of Theorem 1.5.3, and the solution of this
variational problem in the x = 0 case. Again only our basic parameter
assumptions 0  a  2, 1  d  al  d ~-- a, and a2, ~, p &#x3E;_ 0 are
enforced.

5.1. Proof of the Representation (iv) of Theorem 1.5.3

Fix again ~c E Ma, p 7~ 0 and t &#x3E; 0. First note that the LDP according
to Theorem 4.1.1. with l~ --~ oo can be weakened as a LDP along
N = 1, 2,... (parameter discretization). Thus by uniqueness of the rate
functional (see e.g. Lemma 2.1.1 in [9]), = A;, t will be true if we
can show that Theorem 4.1.1. holds with .R 2014~ oo and t replaced by
N --~ oo and A;, t, respectively.

Recall the definition (1.5.2) of t. By the identity (4.4.3),

(reflecting the i.i.d. structure). Hence, the discrete version of the LDP
Theorem 4.1.1 implies

see, for instance, [9], Lemma 2.1.7. Therefore, -A~, t, which
gives the desired large deviation upper bound. It remains to show that for
fixed non-empty open G C Ma
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holds. By the branching property, the random variable N-1 X (t) with
N

respect to the law can be read as N-1 ~ X2 (t) with i.i.d.
’ 

i=l

X 1, ..., X N with respect to ~, and we will do this in the following.
In order to get (5.1.2), we want to apply the lower large deviation estimate

of Cramer’s Theorem in finite dimensions. To this end, fix vo E G. Then
there exists a finite sequence cpl, ..., and an ~ &#x3E; 0 such that

with

By the branching property and Cramer’s large deviation lower bound in 
which holds without the strong assumption on everywhere finite exponential
moments, see, for instance, de Acosta, Ney and Nummelin (1991),

where

with

Thus,

v E U, and therefore, since vo E U,

and (5.1.2) follows. This finishes the proof..
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At this place we mention that as a consequence of the proofs in
the Subsections 4.2-4.4, combined with the previous proof, we get the
following infinite dimensional version of Cramér’s Theorem, written in
terms of random measures. (In the case of everywhere finite exponential
moments see also Dawson and Gartner (1987), Theorem 3.4.)

COROLLARY 5.1.3 (infinite dimensional Cramér’s Theorem). - Let

x 2 , ... be an i.i.d. sequence of random elements in Ma. Set A (cp) _
log ~ exp cp), 03C6 E 03A6, and assume that there is an ~ &#x3E; 0 such that

N

A  +~ if  ~. Then the sequence N-1 N = 1, 2, ...,

satisfies the LDP with "good" convex rate functional A* defined by
~* (v~ v= SuP ~(v~ (~P~~ ~P E 

5.2. Solution of the Variational Problem

The purpose of this subsection is to compute the Legendre transform
of the log-Laplace functional t of X (t) with respect to ~o; ~, which
implies Theorem 1.5.4. To this end, recall that ~* is the dual to the Banach
space ~ equipped with the weak* topology, and that we use the convention
0 . (-~oo) = 0.

THEOREM 5.2.1 (Legendre transform). - Fix p, t &#x3E; 0, ~c E Ma. In the
case ~ = 0, the Legendre transform

of [defined in ( 1.5 .2)] has the following form: For 

with va, introduced before Theorem 1.5.4, whereas

11~, t (cp’~ ) _ for the remaining cp* E ~* .

Note that 11~, t is positively homogeneous along va, hence it is not
strongly convex at v = 0. Roughly speaking, strong convexity is
violated at measures v which spatially "deviate" inside the closed support
Vol. 30, n° 4-1994.
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of the starting measure p in a singular way. Moreover, the following
example shows that as a rule 1~~, t is not continuous.

Example 5.2.4. - Let ~c be the uniform distribution on the cube

[-1, and 03BD~ the mean zero Gaussian distribution on IRd with variance
c &#x3E; 0, but restricted to [-1, 1]~. converges (even
weakly) to 80 = ( bo ) a as c --~ 0 however 11~, t ( v~ ) ~ 0 2 / p t whereas
1~.~, t (bo) = 1/pt..
Note also that the integral in (5.2.3) appears in a criterion for absolute

continuity respectively singularity of Poisson point processes in ~d with
intensity measures M and v; see e.g. Theorem 1.12.3 in Matthes et al. ( 1978).

Proof of Theorem 5.2.1. - 1° First we want to compute For the

moment, fix cp E ~. Then equation (2.4.2’) (with ~ = 0) degenerates to
the ordinary equation

~n

which has the unique (pointwise) solution

s  0, ~/ E By analytic continuation as in the proof of Theorem 3.3.1
we conclude that

In addition, fix t &#x3E; 0 and ~c E Ma. Then

with u given in (5.2.5).
2° Without loss of generality we may assume that p = 1 (otherwise

make a time change). Also, by the special form (5.2.6) of t, in the
definition of 11~, t the supremum can be restricted to those cp such that

 [since (cp*, cp) is always finite].
3° To prove that 11~, t = +00 outside Ma , we fix cp* in q&#x3E;* and assume

that cp) - ( cp) ~  +00 where cp runs through the set just
described. Then we have to show that cp* can be generated by a measure
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in Ma . To this purpose we want to apply the Daniell-Stone Theorem; see,
for instance, Bauer (1974), Satz 39.4. Indeed, ~ is a Stone lattice, and we
will show that is non-negative and that ( cp* , f{Jn) - 0 as f{Jn pointwise
monotonously decreases to 0 (as n - oo ) . Assume that there exists a
non-negative f{J such that (f{J*,  0. Then 03B803C6 ~ 0 for 03B8  0, and
the supremum in the definition of the Legendre transform can be estimated
below by taking into account only 0y :

~~, t (cp*) &#x3E; 8 (cp*, cp) since - t (8cp) &#x3E; 0.

Letting 0 - - oo we get a contradiction to the assumed finiteness. Hence, 
°

f{J* is non-negative. Suppose that in ~ there exists a sequence f{Jn 1 0
pointwise as n - oo and such that ( cp* , ~, n &#x3E;_ 1, for some E &#x3E; 0.

All f{Jn are continuous and wil vanish as Iyl - oo. Hence, 0

as n - oo. Thus, for each B &#x3E; 0, 0 ~  1 / t for all
sufficiently large n. Therefore, by (5.2.6) and (5.2.5),

for sufficiently large n. But even

as n - oo. Hence,

j

However, the latter integral is finite and tends to 0 by monotone convergence
as n - oo. Thus * ,t (cp* ) ~ 03B8~, for all 03B8 &#x3E; 0. Letting 9 - oo we arrive at
the desired contradiction. Summarizing, cp* is an abstract integral and can
then be represented by some measure v. Here v is defined on the smallest
cr-field making all cp E ~ measurable, which is nothing else than the usual
Borel a-field on Rd. Of course, v has the necessary finiteness property, i. e.

it belongs to Ma. It remains to calculate 1~~, ~ on Ma.
4° By calculus methods one can easily handle ’ the "zero-dimensional"

case:

where the supremum is uniquely "realized" at 03B8 = (1 - (read
8 = -oo if x = 0).

5° Next we will deal with the case 0. Here we have to show
that 11~, ~ (v) _ +0oo. Now there is a bounded Borel set B ç Rd B S
with 03BD~ (B) &#x3E; 0. By regularity, there is even a compact set C C B
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with v~ (C) &#x3E; 0. Since the closed sets C and S are apart by a

positive (Euclidean) distance, for all sufficiently small c &#x3E; 0 the open

E-neighborhood (C) =: U of C is also disjoint to S. For such E we
may choose some 7/JE: with the property that ~~  
Then t (~~ ) = 0 and

6° For the remaining proof we can assume that = 0. Then

where the supremum is taken over those f{J such that (y)  1 

We can estimate from above as follows (recall that gac _: g is the density
of v with respect to 

Here for the first term we used 03C6 ~ 1/t on S by the continuity of cp,
whereas for the remaining term we passed to pointwise suprema. Together
with 4° we get the desired expression as an upper estimate for A~ t (v).
It remains to deal with estimates from below. Here the key idea of proof
consists in choosing a 7/J such that approximately 03C8(y) ~ 1/t for

those y where va has its mass, on the

"support" of vac. Here of course some technical work has to be done.

7° We start with the case  1 - b~) _ +0oo for some 8 &#x3E; 0.

Then also ~C ({(~ - 1)2 &#x3E; bz}) &#x3E;__  1 - 6}) _ +oc for some
6 &#x3E; 0 we fix in the following. We have to show that A~ t (v) &#x3E;_ +00.
Let A C S be a supporting Borel set of Ec with the property that

va (A) = 0. By our assumption, to each K &#x3E; 0 there is a compact
set C :== CK C {~  1 - 6} n A with J-l (C) &#x3E; K. By regularity, we find
a bounded open neighborhood U (CK ) =: U such that (v + (U B C)  1.

Choose ~ e 4l with

Now
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and using both estimates of (5.2.7) and since va (C) = 0 and r - r/(1 - r)
is monotone, we can continue with

8° By the previous step of proof, from now on we can assume that
 1 - b ~ )  +0oo for all 6 &#x3E; 0. Let E denote the halfopen unit cube

[0, 1)d in Rd, and let z2, i = 1, 2, ..., run through all points of the lattice
Zd. Each Borel set B C Rd can be decomposed into disjoint bounded sets
by setting Bi := B n ( E + i ~ 1. We will apply this construction (and
reserve the index i for it) to the sets ? B ~ and A n ~ g &#x3E; 1 - b ~ , b &#x3E; 0,
which have possibly infinite mass with respect to va and J-t. (Although
we could also deal separately with the cases va (? B A) = +0oo and
J-t (~g &#x3E; 1 + b~) _ +00 similarly as in 7°, since then 11~, t (v) = +00.)

9° For the next steps of proof we fix a number 8 :== 2-’n, m &#x3E; 1,
and set 6- := E8,n = b2-’2, n &#x3E; 1. For i ~ 1 choose compact sets

Cé:,i i c (s B A) i such that

For 1 _ j _ (1 - b)/e2 we introduce the Borel sets

Select compact sets C satisfying p (B~, ~ B  ~4 . For z &#x3E; 1
take compact subsets Le, i of ({1 - !) ~ ~  1 ~ n .4), with the property that

Finally, for i ~ 1 and 0  k  (1 - set

and take compact sets ç such that

Note that all these compact sets Ce, i, L~, and C~, (where i, j, k
are running as above) have pairwise a positive distance. Now choose
7/Je E ~ with the property that

Vol. 30, n° 4-1994.



642 K. FLEISCHMANN AND I. KAJ

where i &#x3E; 1, 1 _ j _ (1 - fi)~~2 and 0 _ k  (1 - e2)~e4. Moreover,
we impose

for the remaining y. This choice of 7/Je is actually possible since 7/Je has
these bounds also on all the compact sets above (for the fixed e).

10° Now we are ready to provide the estimates from below. In fact,
A~, t (v) &#x3E;_ (va, 7/Je) + A + 12 + 13 where the last three terms refer to

the integral J restricted to {g  1 - b}, to

{ 1 - 6 _ g  1 ~ and to ~g &#x3E;_ 1 }, respectively. First of all,

where the first term converges to the desired expression va (Rd)jt as 6’ - 0,
whereas, using (5.2.8), the second term can be estimated further from below

converging to zero as c - 0.
110 Turning to Ii we proceed as follows. On each set Ke, j, for the

integrand we have

since g  j~2 and noting that 7fJc is non-positive because of j~2  1.

Further, on use 0  g _ 1 and (5.2.10) to get 9 7fJc - 
-2/t~. Decomposing {g  1 - 03B4} = ~(K~,j U 

j
we obtain

Since J-l (B~, ~ B Ke, j)  ~4 and taking into account that there are at most
indices ?, further

Now set fE (y) := L j E2 (y) to get

Recall that E2 = b 2-n, and let n - oo. Then on {g  1 - b~ n A
we have fe - g and pointwise. But fe is bounded by
1 and  1 - b} )  +0oo, thus by bounded convergence we

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



643LARGE DEVIATION PROBABILITIES FOR SOME RESCALED SUPERPROCESSES

get Il &#x3E;_ t-1 J dJ-L (g - 1)2 where the latter expression finally

converges to r1 f (g - 1)2 as 6 - 0.

12° Since (y) = 0 in the main term of I2, its estimation results into
the error term

13° Finally, is non-negative on each U Hence, on these sets
~

~ ~ 1 + =: qk, and then

By (5.2.9) we can continue with

Using the notation he (y) := L Tlk (y) and taking into account
~ i

that we have at most indices k, the latter expressions can be written
as and estimated from below by

Here we can additionally assume that in 9° the construction of the sets
had been done in such a way that the union U monotonously

t,A?
increases to ~g &#x3E; 1 ~ as n - oo (via £ = b 2-n ) . But he converges
monotonously to g and then by monotone convergence as n - oo

we arrive at the estimate I3 &#x3E; r 1 dJ-L ( ~ - 1 ) 2 .
14° Combining the estimates in 100 -130, we get the desired lower bound,

and the proof of Theorem 5.2.1 is complete..
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