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ABSTRACT. - We consider, as in I, a random walk Xt E E Z+
and a dynamical random field ~ (x), x E Z" in mutual interaction with
each other. The model is a perturbation of un unperturbed model in which
walk and field evolve independentently. Here we consider the environment
process in a frame of reference that moves with the walk, i.e., the "field
from the point of view of the particle" ~t (.) == çt (Xt +.). We prove that its
distribution tends, as t -~ oo, to a limiting distribution tc, which is absolutely
continuous with respect to the unperturbed equilibrium distribution. We
also prove that, for v &#x3E; 3, the time correlations of the field decay as
e-cxt

const 
20142014. 

.
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560 C. BOLDRIGHINI, R. A. MINLOS AND A. PELLEGRINOTTI

On considere un chemin aleatoire Xt E E Z+ et
un milieu aleatoire dynamique çt (x), x E Z" en interaction mutuelle.
Le modele est une perturbation d’un modele imperturbe, dans lequel
le chemin aleatoire et le milieu evoluent d’une façon independante. On
etudie ici le proces du milieu dans un repere qui se deplace avec le
chemin aleatoire, c’ est-a-dire le « milieu du point de vue de la particule »
r~t ( . ) (Xt +.). On montre que la distribution de T/t tend, pour t -~ o0
a une distribution limite qui est absolument continue par rapport a
la distribution d’ équilibre du milieu imperturbe. On montre aussi que le
premier terme du developpement asymptotique des correlations temporelles

e-at
du champ ~t est donne par const t2 " 

.

1. INTRODUCTION

The present paper is second in a series of two papers. As in the preceding
paper [1] (hereafter referred to as Part I), we study the time evolution of a
random walk Xt on the v-dimensional lattice Z" and a field (environment)
çt (x) : x E subject to a mutual interaction of local character.
Time is discrete, t E Z+, and the field E Z" takes values in
a finite set S.

We briefly recall the main features of the model, and refer the reader to
Part I for more details. The assumptions of the present paper which differ
from those of Part I are listed in Section 2.

As a starting point we consider an "unperturbed" model, in which the
random walk and the environment evolve independently. The random walk
is homogeneous with transition probabilities ~ Po (y) : y E 7~v ~, and the
evolution of the environment at each site is an ergodic Markov chain, with a
finite space state S, and stochastic operator Qo = ~ qo (s, s’) : s, s’ E S ~,
the same for all sites. 7ro will denote the unique stationary measure of the
chain. The evolution at different sites is independent.

For the interacting model the random walk transition probabilities are
written as

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques



561RANDOM WALK IN A DYNAMICAL RANDOM ENVIRONMENT. II

and the transition probabilities for the environment at the site x E Z" are

c ( . , . ) and q ( . , . ) satisfy some compatibility conditions, and e is a small
parameter.
Under some general assumptions we deduced in the paper [2] the local

central limit theorem for the displacements of the particle. In Part I

we studied the asymptotic (in time) decay of the correlations of the

environment in a fixed frame of reference. The present paper is devoted to
the investigation of the environment process in a frame of reference which
moves with the particle, i.e., of the process {~t : t E Z+} defined as
qt (x) _ ~t (Xt + x) (sometimes called "field from the point of view of the
particle"). ~t evolves as an infinite-dimensional Markov chain.
We prove for any dimension v that, as t ~ oo, the distribution of ~t

tends to a limiting invariant distribution p, which is absolutely continuous
with respect to the invariant distribution IIo = of the environment in

the unperturbed case (e = 0). We also study the time asymptotics of the
(time) correlations of the field for v &#x3E; 3. We prove that the leading
term is of the type const e-at t- 2 . The constant factor depends on the
initial conditions, whereas a E (0, oo ) depends only on the parameters of
the model. This result should be compared with the long time tail of the
correlations of the field in a fixed frame of reference, which was studied in
Part I. The different behavior is explained by the fact that in a fixed frame
of reference the environment process 03BEt by itself is not Markov.
The methods used in the proofs are, as in the previous papers [1] ] and

[2], based on the spectral analysis of the stochastic operator (or transfer
matrix) T of the Markov chain {~t : t E Z+}, acting on the space
= L2 (H, IIo). Here H = is the state space of the field. The method

of the proof is based, as in Part I, on the analysis of the leading spectral
subspaces.
The paper is organized as follows. Section 2 is devoted to the definition

of the model and to the statement of the results. In Section 3 we prove the
main technical theorem (Theorem 3.1), which gives the decomposition of J-l
in invariant (with respect to T) subspaces. Section 4 contain the proofs of
the theorems, which rely on the results of Section 3, and Section 5 is
devoted to some concluding remarks. In the Appendix we prove a technical
lemma which is needed in the proof of Theorem 3.1.

Vol. 30, n° 4-1994.



562 C. BOLDRIGHIM, R. A. MINLOS AND A. PELLEGRINOTTI

2. DEFINITIONS AND FORMULATION OF THE RESULTS

The model is described in detail in Section 2 of Part I, to which we
refer. We state here only the assumption which differ from the ones of
Part I. Throughout the paper we will write (I n.m) to denote formula (n.m)
of Part I.

The which plays an important role in what
follows, is defined by (I 3.1 a).

Throughout the paper we assume conditions I, II and III of Part I on

the random walk transition probabilities, and conditions IV and V on the
transition probabilities of the random field. Condition VI on the spectrum
of Qo is replaced by the following one.

VI*. If I S ] &#x3E; 2 the spectrum of Qo is such that

Condition VI* is the old condition VI plus the assumption that the

eigenvalue is nondegenerate (hence real, since complex eigenvalues
occur only in conjugate pairs).

Further, we assume Condition VII of Part I for the function c, but replace
Condition VIII by the following (stronger) condition.

VIII*. The Fourier coefficients

of the inverse of the function po (~) [eq. (I 2.3 d)] satisfy the inequality

Inequality (2.1 b) implies the existence of a spectral gap

We now define the random field which will be studied in this paper, the

"environment from the point of view of the particle". This is the random
field qt E E Z+ given by the relation

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



563RANDOM WALK IN A DYNAMICAL RANDOM ENVIRONMENT. II

For any bounded functional F on S2 we have for the conditional average
[with respect to the distribution (I 2.1)]

where Py (. ~ is a product measure

qI ( s, s’ ) , s, s’ E S being the matrix elements of the matrix Qi defined
in eq. (I 2.5b). The conditional average (2.2b) does not depend on Xt-i,
and we can consider it as an average over the Markov field { 1]t (y) }, with
transition probabilities

The stochastic operator or transfer matrix T of this field is defined, as
usual, by its action on the bounded functionals F on H :

We denote the average of a random variable f with respect to any
measure v by ( f )", and the correlations by ( f, g ~" _ ( f g ~" - ( f )" ~ 9 ) ~.
We fix an initial distribution II of the field ~, induced by some initial

distribution II of the field ç for a fixed initial position xo = Xo of the
random walk. II is simply the shift of fI by xo. Pn denotes the distribution
on the space of trajectories of the Markov field { r~t : t E 7L+ } generated by
the initial distribution II. From the definition (2.3) we find, for F as before

We shall also consider condition IX of Part I (symmetry of the random
walk). For the field 17 it implies the following statement, which may be
considered as a new condition.

Vol. 30, n° 4-1994.



564 C. BOLDRIGHINI, R. A. MINLOS AND A. PELLEGRINOTTI

IX*.

Here, as in Part I, V is the space reflection: (V ~7) (x) _ ~ (-:c).
We need the following further assumption on the correlations of the

initial measure II.

X*. The spatial correlations with respect to the distribution II of the
vectors {03A80393: r E of the basis in H [see (I 3.1a)] satisfy the
following cluster inequality

Here denotes the multi-index with supp r = ~ x ~ ~y (x) = j, and
M, q are two constants such that M &#x3E; 1, and q E (0, 1).
As in Part I, by dA, A c we denote the minimal length of the

connected graphs which join all points of the set A.
We now formulate the main results of our paper. We understand

throughout that condition I-IX are the ones of Part I. Conditions introduced
in the present paper are denoted by a star.

THEOREM 2.1. - Let t E l~+ denote the family o,f’measures generated
by the Markov process r~t with = II, and assume conditions I-V, VI*,
VII and VIII*. Then, as t ~ ~, the measures tend weakly to an
invariant measure p, which is absolutely continuous with respect to the
independent measure no.
Moreover there are positive constants cl and q E (0, 1) such that

Remark 2.1. - Inequality (2.4) implies that Condition X* above holds
for the invariant measure J1 as well.

In Theorem 2.1 Condition VI* could be replaced by the weaker
Condition VI, at the cost of a longer proof. We shall indicate below how
it can be done.

The other result concerns the behavior of the time correlations of the field,

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques



565RANDOM WALK IN A DYNAMICAL RANDOM ENVIRONMENT. II

for which we write down the precise asymptotics. Consider the correlation

where x1, x2 are two fixed points.

THEOREM 2.2. - Let v &#x3E; 3, and add conditions IX* and X * to the

hypotheses of Theorem 2.1. Then, as t --~ oo,

where a &#x3E; 0 is a constant depending only on the parameters of the model
and the constant C depends in addition on f 1, f 2 , x 1, x2, and II.

By Remark 2.1 the invariant measure ~c satisfies the conditions of

Theorem 2.2, so that the equilibrium time correlations for the measure p
are also of the type (2.6).

3. EXISTENCE AND PROPERTIES

OF THE INVARIANT SUBSPACES

3.1. More notation and preliminary results

In what follows we denote by const any absolute constant, independent
of c.

The action of T on the basis functions {03A80393 : 0393 ~ 203C0} is given by

Here Aj (x) r is the multi-index obtained by replacing the value, (x) of r
at x with j, leaving all the other values, (~), ~ 7~ ~ unchanged. T° is the
unperturbed operator

Vol. 30, nO 4-1994.



566 C. BOLDRIGHINI, R. A. MINLOS AND A. PELLEGRINOTTI

and the coefficients L ( ... ) are given by

Here we have used the equality Aj ( - y ) F + y = Aj (0) (F + y ) , and the
coefficients cj (y), qj’j , and bjm, m’ are the coefficients of the expansions in
the basis ( of the functions c (u, s), 03A3 q (s, s’) ej (s’) and ek (s) em (s) ,
respectively [see (I 2.6f)]. Note that co (u) = 0 and q0k = 0, which implies
L(0, j; u) = Cj {u) .
We shall write T = T° is translation invariant whereas T is not.

LEMMA 3.1. - T and 0 are bounded linear operators on ?-~.

Proof. - By eqs. (3.1a, b, c) we have

where we use the notation

Recalling the expression (I 3.1b) of the scalar product in H, we have

Setting, for fixed y, F* = T" + y, = f r~ _y, we have

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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where the operator is defined by the position

The proof that T (y) is a bounded operator is done exactly as in Lemma A.I
of [2], and since II by translation invariance of the norm, and
the sum is over the finite set I y ]  D, it follows that T is a bounded

operator in H. The proof that A is bounded is an easy consequence.
Lemma 3.1 is proved..
As in Part I we consider, for M &#x3E; M* - max {max|ej (s)|, 2 }, the

s

dense subspace HM C ~-l, with norm ] ] ~~M defined by (I 3.5a).
By the definition (I 3.1a) of the basis { ~r } it is easy to see that the

following inequalities between norms hold

where II m sup ~/ (~) ~ ] denotes the supremum norm of f.

For the space HM we state the analogue of Lemma 3.1.

LEMMA 3.2. - (i) The operators T and 0394 are bounded on HM . (ii) HM
is invariant under T.

Proof. - It is the same as the proof of the analogous Lemma 3.4 in
[2] ..
We denote by the set of the equivalence classes of multi-indices

which differ only by a shift. Let ( E and F E (be a representative
of the class (. Since T° is translation invariant, the subspace consisting
of the vectors

is invariant under It is easy to see that

Hence the spectrum of the operator x ~ coincides with the range of
the function Note that does not depend on the choice of
the representative r E (. We denote by x° the space ~C~ when ( is the
class of equivalence of the multi-indices F which contains (defined in

Vol. 30, n° 4-1994.
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Condition X* of § 2). Condition VIII* implies that the spectrum of T° in
the space ~C° is separated from the spectrum of 2~° in ~-C B ?-~o .

3.2. Construction of the invariant subspaces

The main result of this section is the following theorem.

THEOREM 3.1. - Under the assumptions I-V, VI*, VII, and VIII*, and
for ~ small enough the following assertions hold.

(i) One can find two subspaces of ~-C, ~1 and ~nC2, invariant with respect
to the operator T, such that

being the space of the constants.

(ii) In the space one can find a basis ~ hz , z E on which the

operator T1 ~ T acts according to the formula

Moreover p (y) is real and given by the relation

and, for some q E (0, 1), the following inequalities hold

(iii) The norms of the restrictions of T to the subspaces and 

(endowed with the norm ~ ~ . ~ satisfy respectively the estimates

iv) Under the additional condition IX* p (y) is an even function of
y E ~".

Remark 3.1. - The decomposition (I 3.2) of the space ~ in a direct
integral of the eigenspaces of the group of translations {Uv : v
does not reduce the operator T, since for c &#x3E; 0 T does not commute with

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



569RANDOM WALK IN A DYNAMICAL RANDOM ENVIRONMENT. II

the space shifts. This is why an additional sum appears in (3.4a), and we
had to assume inequality (2.1c) in Condition VIII*.

Remark 3.2. - If we have condition VI, instead of VI*, i.e., the

eigenvalue ~ 1 has a multiplicity s &#x3E; 1, Theorem 3.1 holds with some

obvious changes. Namely the basis in the space will be labeled by
two E ll v , i = 1, ... , s ~ . Moreover the operator
T |H(1)M ~ T1 in this basis will act as follows

M

where

and the matrix elements {03B4ij (u)}, and {Sij (z, y)} satisfy estimates
analogous to (3.4c).

Proof of Theorem 3.1. - The proof makes use of the same ideas as the
analogous proof in section 3 of [2]. It is based on several lemmas, which
are stated and proved in the rest of the present section.

We shall first find the invariant subspace and then obtain Hi as
the closure of in H.

For c = 0 we have clearly
~C = ~-lo ~-- ~C° + ~‘~C2 ,

~i, M + ~2 ~ M, ~° l,,l = ?-~C° n ~-~CM 2 = 1, 2.
Here Ho is the space of the constants, ?-~° was defined above and Hg is
the (closed) subspace spanned by the functions {03A80393: 1 r E g2}, g2 being
the set of the multi-indices r with either supp h ~ ] &#x3E; 1 or supp r ~ [ = 1
but 03B3 (x) ~ 1 for x E supp r.

It is convenient for the moment to set

so that HM = H01, M + M, and T (as an operator on is written
as an operator matrix 

’

Vol. 30, nO 4-1994.
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where the operators Ti~ act as follows: Tll : ~ -~ ~, 

, ~21 : ~ -~ ~ l°~M, T22 : The

space is spanned by the : x E and 03A80.
, . 

i

We first study the inverse of the operator T~l in the space l,,l. 

is defined in Condition X* of Section 2.) We introduce for brevity the
notation ~pz = ~ riz ~ , and we will allow z to take the value 0 : cpo = Wj.
For the indices of the matrix elements of operators on ~l° we shall also
write z instead of 

LEMMA 3.3. - The operator T11 = T ~~a is invertible in and
1, M ,

its inverse is given by 
,

where the operator D has the following properties:

for some 0 E (0, 1).

Proof. - The operator 7n can be written as

and, as it follows from formulas (3.1 a, b, c) 7n can be written as a matrix
(corresponding to the decomposition = Ho + ~C°, ~ )

where

Its inverse is represented by the matrix

with

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



571RANDOM WALK IN A DYNAMICAL RANDOM ENVIRONMENT. II

and R is given by a series

where in the running term of the sum the product R is repeated k
times. From eq. (3.8d) we get const Bf x-~ ~ I for some
0 E (0, 1). Inserting the expression for 7Z given by (3.8b) one easily
finds the estimate

One finds also that

This proves Lemma 3.3..

We look for an invariant subspace of the form

where S : --~ ?nC°, ~ is an unknown operator. The invariance
condition for leads to the following equation for S [which is analogous
to eq. (I 3.6c)] :

JC is considered as acting on the space A (?-L°, ~ , ?nC°, ~ ) of the maps from
to ?nC°, ~, endowed with the operator norm. Equation (3.9b) has a

unique solution, as stated by the following lemma.

LEMMA 3.4. - If ~ is small enough one can find a number K0 &#x3E; 0 such
that the map lC is a contraction in the sphere of radius ~o centered at the
origin of the space A (~C° M, ~C° ~ ) .
Proof - We denote with Sz, r the matrix elements of the operator S.
By equations b, c) we see that (~21 )o, r = 0, and for z E 7~v

For (T12 ) r, z we have, if supp r = ~ ~c ~,

Vol. 30, n° 4-1994.
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and if supp r = ~ u ~ U { v }, and z E Z"

= 0 in all other cases.

For the norms of the operators appearing in equation (3.9b) we have

where the constants Ci, j, i, j = 1, 2 depend on the parameters of the model
and on M. (3.12a) comes from Lemma 3.3, by observing that

Inequalities (3.12b, c) are easily derived, using the explicit expressions
(3.10), (3.1 la, b) and (3.12d) follows by observing that for ~ = 0, ?22 
with ( T° ~ ~ _ ~c*, and that ~-1 (~22 - is a bounded operator
(Lemma 3.2).

By inequalities (3.12a, b, c, d) and Condition VIII* [inequality (2.1b)],
we see that the second term on the right-hand side of eq. (3.9b) is bounded,
for small c, by ~3 ( ( S ( ~, where /3 E (0, 1). Since the other two terms are
of order c and ~ ~S~ 112 respectively, K is a contraction in any sufficiently
small sphere of Lemma 3.4 is proved..
Hence there is a unique S, solution of eq. (3.9b) and the space 

defined by eq. (3.9a) is invariant with respect to T. Since M &#x3E; 1, it is
not difficult to see that

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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The Banach space of the elements of A (~‘~C°, ~, ~C2, ~) with the norm
( M is denoted by AM. The solution S of equation (3.9b) is actually

in AM, as it follows from the following lemma.

LEMMA 3.5. - The right-hand side of equation (3.9b) defines a map
AM ~ AM, and for ~ small enough one can find a positive number R

so small that J’CM is a contraction in the sphere of radius ~ centered at the
origin of AM.

Proof. - We have, by inequalities (3.12a, b, c, d)

For the second term, which is the leading one, we have

where /3 E (0, 1 ) . The conclusion follows as for the preceding lemma..
Hence there is a unique solution of eq. (3.9b), which coincides

with the previous one. ,
We introduce a basis in by setting

The action of T on the new basis is given by the following formulas

Vol. 30, nO 4-1994.
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We need to prove a property of fast decay as z, z’ -~ o0 of the matrix
elements Az, z~ . To this aim, we use the fact that, as it was proved in [3],
S can be written as a series

where the summation goes over all sequences of pairs ai = (si, qj),
Si, qi E Z+,

and x~l, ", , ar are real numbers (see [3]). We first prove the convergence
of the series.

LEMMA 3.6. - For ~ small enough the series (3.16a) converges in the
norm of AM.

Proof. - By reasoning exactly as in the deduction of inequality (3.13a)
we find

and, in analogy with the deduction of inequality (3.13b), we find

where, as before, by [ [ . [ we denote the operator norm of 722 : 
~(o~ 

’

2, M.
Now, by Lemma 3.3, expanding the power (Tl 1 ) -S = ( (~° ) - ~ -f- ~ D) s,

we find

where
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and D(q) is written as a sum of products. The function which is

the Fourier transform of (T011)-1, is analytic in some complex neighborhood
Wd = { A : ~ d, z = 1,... ,~ } of the torus T", if d is sufficientely
small, and satisfies in Wd the inequality

where r ( ~c) , u E Z" are the Fourier coefficients (2. la), and the quantity r~
is small for small d. It is easy to see that the Fourier transforms

are analytic for ~, ~’ E Wd. Using the inequality (1 + x)s - 1 
x 2 ( 1 + x 2 ) s , we find

where ci, c2 are constants independent of s. [Note that, by formula (3.8c)we have ( ~11 ) oo = 1 and = 0, z E Z" U 0.] ] In computing the
Fourier coefficients we can now shift the integration region in the complex
region Wd, and we get from (3.19), (3.20a, b) (maybe by redefining r~)
the relations

Relations (3.21) imply

..u C L- .. - ..

where c is a constant independent of s. From (3.17), (3.12d), (3.22) we find

Vol. 30, nO 4-1994.



576 C. BOLDRIGHINI, R. A. MINLOS AND A. PELLEGRINOTTI

whence

r r

where Sr = Y~ Si and Qr = 
1 1

From the analysis in paper [3] it follows that xai, ... , ~r = ~ if
and that

where ws, r are the coefficients of the expansion

of the solution w (z, () of the equation

By looking at the singularities in the complex z-plane of the solution of
the quadratic equation (3.24b) it is not hard to see that the radius of

convergence of the power series in z of w ((, z) tends to 1 as ( --~ 0. Since
in our case ~ ~ ~ _ (C ~)2, and the number 1 + ~ C22 ) 

a + ~ 
is, by

Condition VIII*, less than I for e and d small enough, B conclude thatCondition VIII*, less than 1 for ~ and d small enough, we conclude that

there is a positive number 6-0 such that for, s  co, (1+~ C22 ) (a + ~ | 1|)
will be smaller than the radius of convergence (in z) of the series

(3.24a), which implies absolute convergence in AM for the series (3.16a).
Lemma 3.6 is proved..

Remark 3.3. - Note that since and T21 03A80 = 0, it
follows that 0, which implies ~co = ~o~

Remark 3.4. - Inequality (3.23b) implies [  const ~.

For what follows we need a more accurate analysis of the matrix elements
of the operator S. What we need is provided by the following Lemma.

LEMMA 3.7. - The following relations hold

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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where the functions R and V satisfy, for some 8 E (0, 1), the estimates

Proof. - The proof is rather lengthy and requires additional constructions.
It is deferred to the Appendix..
By Lemmas 3.5 and 3.7 we have proved that is invariant with

respect to T, and that one can find in it a basis {uz : z E Z" U 0} on
which T acts as in (3.15a), and the coefficients ~ Az, z~ : z, z’ E Z" U 0 ~
are, by (3.8a, b), (3.15b) and (3.25a),

To accomplish the proof of assertion (ii) of Theorem 3.1 we introduce
in a new basis

and we show that the sequence H = f Hz : z E 7L" } can be determined
in such a way that

In fact, by eqs. (3.15a) and (3.27a) we have

and we can define H to be the solution of the system of equations

Let Bq, q E (0, 1) be the space of the sequences H such that the norm

is finite. From formula (3.15b), Lemmas 3.3 and 3.7 it follows that for
q &#x3E; 6~ the z’ E defines a bounded operator A
in Bq, with  1, and, moreover {Az,0 : z E E Bq.
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Hence there is a unique solution in Bq of the system (3.28a). Moreover,
by formula (3.26) it is clear II q ~ const whence it follows
that the same inequality

holds for the solution of eq. (3.28a).

By (3.27b) the space splits into two invariant subspaces: the

subspace of the constants 1-lo = { c ho } _ ~ c ~o }.and the subspace 
which is spanned by the basis {hz : z E 7L" }. Setting now b (y) = R (y),
and S (x, y) = y) + Vx,y, using the estimates (3.25b) we get the
relations (3.4a, b, c) of Theorem 3.1.
We now prove inequality (3.5a) for the restriction of T to Using the

explicit expression (3.27a) for the functions of the basis { h,z }, Remark 3.4
and inequality (3.28b) we see that

where the constant is independent of ~ and z. For any vector v = LV z h z E
z

~CM , by susbstituting the explicit expression (3.27a) of the functions hz,
we find

whence, reasoning as above, one deduces, for some ci &#x3E; 0,

Using (3.29), (3.30) and the inequality

H ‘

which follows easily from equation (3.26), and Lemmas 3.3 and 3.7, we
find, for ~ small enough
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Inequality (3.5a) is proved.
We are left with the construction of the space 7-lM~. We recall that in [2]

we introduced a basis { 03A8*0393 : r E in the space H

= 0, ... , |S| - 1 } is a basis in the space l2 (8, 
given by the normalized eigenvectors of the operator and bi-orthogonal
to the basis {ej : j = 0, ..., |S| - 1}. The r E is

bi-orthogonal to the basis {03A80393 1 r E in H. We observe furthermore
that the matrix {T*0393.0393’} of the operator T*, adjoint of T, in the basis

r E is the adjoint of the matrix { 7r, r~ ~ of the operator T in
the basis {03A80393, r E i.e.,

By applying to the operator T* the same considerations as above we find
a subspace C 1-lM, invariant with respect to T*, which, in analogy
with (3.9a), is given by

Here is the space spanned by the vectors ~po and { cpz :
z E cpz = ~ ~~ z ~ , is defined in analogy to and the operator

s* : is the space spanned by the vectors
~ ~ r : r E ~2 ~ ) is defined in analogy to S. In the space we can

choose a E Z" U 0 ~ of the form ~cz == cp; + ?* It is
not hard to see that

T* acts on the basis { ~cz ~ as follows

and, in analogy with eq.s (3.26), = 1 and = 0 for all z E Z".

As above we can go over to a new basis in 

and the sequence {H*z, z E is the solution of the system

Vol. 30, n° 4-1994.



580 C. BOLDRIGHINI, R. A. MINLOS AND A. PELLEGRINOTTI

which, reasoning as for eq. (3.28a), is in the space Bg. We find, as above,

i. e., the space * splits into two invariant (with respect to T* ) subspaces:

and * 

being spanned by the vectors ho, 
We denote by and the subspaces of ~-C obtained by taking

the closure of the spaces 
* 

and 7~ * in the norm of ~. They are
invariant with respect to T* and for them a decomposition analogous to
(3.35) holds.
We now come to the proof of the reality of the function p (~/). It follows

from the reality of the operator T (i.e., from the fact that T f = T f ), and
the reality of the functions ( ~ ) = ei ( ~ ( z ) ) : z E and which,
in its turn, follows from Condition VIII*. This implies the reality of the
operators 7n, 7i2, T21, and ?22.

In fact, consider for instance a real function f E ?-~°, M . As T is real,
T f = ?i2 f + ?22 f is real, and so is T~12 f = L (T f, cpz) ~pz.

Hence 7i2 and 722 are real operators. Analogous arguments show that 7n
and Tl2 are also real. This implies, by equation (3.16a), the reality of S,
and hence the reality of the basis {hz : z E and of the matrix
elements Az, z~ . Since, as it follows from estimate (3.4c) and formulas
(3.26), p (y) = lim Az, z-y, is a real function.

If we now assume that the symmetry Condition IX* holds, it is not hard
to see that Az, z~ = Az~, z. In fact, by the discussion of Condition IX in
Part I, Po ( y ) and cj (y), j = 1, ... ~ S ~ - 1 are symmetric in y E It
follows that the operators 0~ defined by formula (A.4) of the Appendix,
are also symmetric in yj. This gives the required property of the matrix
Az, z~, which, with the help of (3.26) leads to the symmetry of the function
p ( y) . Assertions (ii) and (iv) of Theorem 3.1 are proved.
We now pass to the rest of the proof. We have

As a consequence of the bi-orthogonality of the bases { r e m}
and {Wr : r E hj is orthogonal to the subspace ?-~1. Moreover ho
is orthogonal to the subspace In fact, by the invariance of h* with
respect to T* we have ( ho , (E - T) v ) = 0 for any v E ?-~~ , where E
denotes the identity operator. But, by inequality (3.5a) f - ~ is invertible
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in ~‘~CM , which implies that ho 1 v for any v E ~M . Since is dense
in Hi, the assertion follows.
Next we construct the bi-orthogonal basis to {hz : z E 7~v ~. By

relations (3.14), (3.26), (3.31) and (3.32) we have

We introduce a new E in the space of the form

The matrix .~ _ ~ .~’z, z~ ~ is chosen in such a way that

where 7* is the adjoint matrix of .~’.
In Lemma 3.8 below we prove that the operator C has a small norm

in Bq . Hence .~’, which can be written as

exists as an operator on Bq, and has also small norm.
An easy check shows that the E is bi-orthogonal

to the basis {hz : z E in xl.
We now introduce the space

Clearly this space is invariant with respect to T, and for any vector f 
we have a unique decomposition 

’

This last assertion can be proved as follows. We set

It is easy to see that f(2) 1 ho and f(2) 1 ?~Ci, so that f(2) E H2. The
uniqueness of the decomposition (3.37a) is evident.

This proves the decomposition (3.3a). To accomplish the proof we
have to prove the analogous assertion (3.3b) for HM. We have to show
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that and f t2~ are in and ~C~ , respectively, for any f E HM. We
first need an estimate for the matrix elements Sz, rand Sz r.
LEMMA 3.8. - The following estimates hold

where q E (0, 1 ) , Cl is an absolute constant, and u is the element of the
set supp r which is closest to z. A similar estimate holds for Sz, r, z E 7~v,
and finally 

"

Proof. - It is not hard to deduce the estimate (3.38a) by analyzing the
terms of the series (3.16a, b), much in the same way as it is was done in
the proof of Lemma 3.7. As for S*, it can be represented in a series, which
is simply obtained by replacing in the series (3.16a, b) the matrix elements
of the operator T with the elements of the operator T*. The estimates that
are needed are obtained as for S. We omit the details..

To prove that the projection of any vector f E HM on H2 and Hi
belongs respectively to or ~nC~ , and inequality (3.5b) we introduce
a basis in H2 .

Consider the functions

_ - - -

which, as it is easy to check, belong to the space H2. In addition we set
= uz, z e Z" [see (3.14)], and Uj = uj = Wj.

i

LEMMA 3.9. - The following assertions hold.

(I) The functions ( Ur, r e C2 ) are in H2, M.
(ii) Any vector f e H M is written as a series

which converges in the and, for ~ small enough, we have
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(iii) The matrix elements of the operator T ~x2 in the basis ~ Ur : r E
G2} are

Proof. - We set

The transition matrix from the system { ~r : r E 9K B { 0 } } to the

system { Ur : r E a~B{6}}is

where = bz, z~ , (~2 ) r, r~ = br, r~ , ?i has matrix elements Sz, r,
and S2 has matrix elements r . Here, as above, we write z for A

simple computation shows that the inverse matrix ,t3-1 has the form

where

Hence it follows that

Substituting this expression in the expansion f = Y~ fr Wr E HM we get
r

the expansion (3.39a), in which the coefficients fp are easily computed with
Vol. 30, n° 4-1994.



584 C. BOLDRIGHINI, R. A. MINLOS AND A. PELLEGRINOTTI

the help of formula (3.41). Hence, using the estimates (3.38a) and (3.38b)
for the matrix elements Sz, r, and the fact that f E HM, we easily
establish the convergence of the series (3.39a) and inequalities (3.39b).

Assertion (iii) follows from the expression of T21 [eq. (3.10)]. Finally
from expression (3.40) for the matrix elements of the operator T~ ~~2 in the
basis ~ Ur : r E ~2 ~, and from the estimate (3.39b) it is easy to obtain
the assertion (3.5b) of Theorem 3.1. Theorem 3.1 is proved..

4. PROOF OF THEOREMS 2.1 AND 2.2

4.1. Proof of Theorem 1

We first prove convergence of expectations of the type (Tt By
Theorem 3.1 we can write

where

being defined in (3.36). Denoting by the coefficients of the expansion

it is easy to see that

By inequalities (3.5a, b) we have

Since [   1, for ~ small enough the estimates (4.3a, b) imply
exponential convergence of the expectations to the corresponding
expectations 03A80393&#x3E; , where M is the measure on Q which is absolutely
continuous with respect to IIo, with density ho (r~). Clearly the same holds
for all cylinder functions depending only on the field in a bounded region.
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This implies that the probabilities of the cylinder sets converge, and this is
enough (see for example [4]) to ensure weak convergence of the measures
net) to ~c, and the first assertion of Theorem 2.1 is proved.
As for the second assertion, note that, by (3.34), we have

If r = for some z E the right-hand side of eq. (4.4) is equal to
H;. If on the other hand r E ~2 it is equal to

The second assertion of the theorem then follows with the help of
Lemma 3.8, and the fact E Bq .
Theorem 2.1 is proved..

4.2. Proof of Theorem 2.2

From now on we assume that all assumption I-V, VI*, VII, VIII*, IX*
and X* hold. Moreover we will assume that ~c1 is positive. The changes
that are needed for negative ~cl are obvious.

By expanding the functions fi, 2 in the basis {Wr : r E the

asymptotic behavior of the correlation (2.6) is reduced to that of the

quantities

For brevity we shall sometimes replace the index simply by i = 1, 2,
and write 7j for = 1, 2. By (4.1) we have

and clearly
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The second term on the right of eq. (4.5a) falls off, by ineq. (3.5b) as
+ const é) t, which, as we shall see, is negligible with respect to the

contribution of the first term in the asymptotic expansion. By (4.2a, b)
we have

where C~ = (~, = 6~. Whence we get that
Jl

denotes the matrix elements of the operator in the basis

~hz : ,Z E 

LEMMA 4 .1. - The sequences - ~ Cyl ~ : y E and D -
~ ~hz, Y’r(.x2 &#x3E; ~ ~ : z E are in the space Bq.

~2

Proof. - The assertion regarding follows from Lemmas 3.7 and
3.8 and from the expression (3.36) for the vectors hz . Going over to the
function D, we can write it as

By using condition X* and Lemma 3.8, we get the assertion that we need
on D..
We introduce the Fourier transforms

Lemma 4.1 implies that ~ (~) and (~) are analytic in the complex
neighborhood Wd of the torus T" for d small enough. Moreover for t = 1
we have

where p (A) and S (A, M) are the Fourier transforms of the functions p (y)
and of S (x, y) respectively, appearing in (3.4a). By the estimates (3.4c)
they are both analytic for E Wd. As T is a bounded operator in H
we have for any integer t

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



587RANDOM WALK IN A DYNAMICAL RANDOM ENVIRONMENT. II

where R (z) = (T - z ~) 1 is the resolvent of T, and the integral is over
any closed contour ~ in the complex plane, which contains the spectrum
of T. The kernel Rz (A, M) of the resolvent R (z) for operators of the
type (4.6) has the form

where the function A (z) is a Fredholm determinant

Here

and the function D (A, ~c; z) (Fredholm minor) is equal to

with

Hence the correlation (4.5b), can be written as

Since p (A) is a real function we can apply to the first integral in (4.8) the
Laplace method [7] and we obtain that
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where

(The function p (A) for small c has a unique maximum, as it follows from
Condition II, and it is an even function, hence it attains its maximum at

0.) Here

&#x3E;

and the elements of the matrix A are

Note that for small ~ 03BA is close to pi, so that

, , -.- . , , I , - - - - /

where 6 = £ [ $ (y) [ (see relations 3.4b, c).
v

We now pass to the asymptotics of the second term in (4.8), and, to
simplify the computations, assume from now on that v = 3. Note that
A (z) and the integral

» - , , , , , , , -

are both analytic functions of z outside the cut C = ~~’, ~~ C ~- l, l~ . Here
r~’ = min p (~), and for small ~, by Condition III, we have

a

Consider the set

i. e. , the 3-neighborhood of x outside the cut. We have

LEMMA 4.2. - For ,Q small enough the following limits exist

Moreover for z E U~ the following representations hold
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Here Co, C1, Bo, B1 are constants, and C2, B2 are analytic functions in
z such that for some K &#x3E; 0

(z - ~) 2 denotes the branch which takes positive values for z real and z &#x3E; ~.

Proof - Both assertions come from the following Lemma..

LEMMA 4.3. - Consider the integral

where Q is analytic in each variable for ~i E Wd. Then for ,~ small enough
the following representation holds for z E U,~

where

and the function is analytic in U~ and satisfies there the estimate

_ " _ . ",

where M and B are constants independent of n, z and of the function
Q ( ~ 1, ... , ~n ). Moreover the limiting values exist

Proof - We consider first the case n = 1. We have

Here 118 is a neighborhood of the point 0:
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8 is chosen so small that in V6 there are no other critical points for the
function p (A) except A = 0. (From this it follows in particular that Yh
is connected.)

Clearly the second integral on the right in (4.17) is an analytic function
of z in the circle [  (3 for ,B G 6, and consequently can be
represented in the form

where

and the constant K is independent of z and Q.
We pass now to the first integral in (4.17), and perform in V8 an analytic

change of variables

(where c is an absolute constant) such that in the new variable A’ the
function p (A) for A has the form

Here b (A’) is a positive definite quadratic form of A’ (which coincides
with the second differential of p (A) at A = 0 (see [5]). We introduce a
new metric in V8

In the new variables the first integral in (4.17) is written as

where Q’ (A’) = -Q ( ~ ) Z ( ~ ), and is the jacobian of the change of
variable (4.20). Further we represent Q’ (A’) in the form

where d1 ( ~’ ) is a linear function in A’ and

The linear term di gives no contribution, and the integral (4.21) is
represented as
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An easy computation shows that

where the function C (z) is analytic in and verifies the estimates

for some constant I~ independent of z. One can show similarly that

is, for small ~3 an analytic function in 7~ and satisfies there the estimate

From formulas (4.17), (4.18), (4.22), (4.23), and estimate (4.19), (4.24),
(4.25), taking into account the fact that .Z (0) = 1 [by relations (4.20)],
we get the representation

where

and C2 (z) is analytic in and satisfies the estimate

for some constant K" independent of z, Q.
From (4.26) it follows that in the region U,~ the following estimate holds

, _ ~ .., ’B. ,

where k is an absolute constants.
We now consider the general case of the integral (4.13) and we write

it in the form
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By applying the previous formulas and estimates to the internal integral
we get

where

and the function C21 ~ ( ~2 , ... , z ) is analytic in z for z E U, and
satisfies the estimate

By substituting the expression thus obtained in the integral (4.27) and
integrating each term in ~2 we obtain

where

The function C22~ (a3, ... , An; z) is analytic in U~ and verifies the
estimate
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where

and

Atter s  n integrations in (4.27) we get the expansion

where

(~S+1, ..., z) is an analytic function of z, for z E U , and satisfies
there the estimate

with KS given by
+ Kl ~Ds_1 + 2 7T2 ~ Ds_2 (s - 1) + (s _ 1) (2 ?f)2 

It is not hard to see that the recurrence formula leads to the estimate

where D = max (D, 1), and L &#x3E; 0 is some absolute constant. From (4.28)
for s = ~ we get the estimate (4.15). The expansion (4.14) is proved.

In order to prove (4.16) one has to represent the integral Hn in the form

where
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Since we have only one critical point (A = 0) of the function p (A) in V8 the
function U ( s 1, ... , 8n) is a smooth function of the variables s 1, ... , sn
in the region 1’£ - 8  s 1  x, i = 1, ... , n [6]. Hence by a repeated
application of the formula of Sokhotskij [6] we get that  s  /~

Here the summation goes over all subsets L C ~ 1, ... , n~, the variables si
are taken equal to s for i e L and the other variables are integrated (in the
sense of the principal part). One can define similarly Hj (s), which has a
similar expression for x - 6  s  ~.

Lemma 4.3 is proved..
From Lemma 4.3 it is easy to deduce Lemma 4.2. In fact one has

to apply it to reach integral in the expansions (4.7a) and (4.7b), and

use the Hadamard inequality for the determinants Kn ( ~ 1, ... , lin) and
/~ ~i,..., 

From these estimates it follows that the expansions of the type (4.14) for
each of the terms of the series (4.7a) and (4.7b) can be summed term by
term, so that one finally gets the relation (4.11 ). In the course of the proof
we get also that

and similar formulas for Bo, Bi. The assertion (4.12) is obtained in the
same way. Lemma 4.2 is proved..
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Some consequences of Lemma 4.2 are the following.
Remark 4.1 . - Note that the expansion we obtained for 0 (z) implies

that A (z) ~ 0 for z E for (3 small enough. This follows by observing
that A (x) is close to 1 for e small enough. [It follows from the first
estimate (3.4c) for the function S and from inequalities (4.29)]
Remark 4.2. - The zeroes of the determinant 0 (z) which lie outside

the cut C, are eigenvalues of the operator T, and hence for small e, lie in a
small neighborhood V of the cut C (see [6]). The intersection of the external
part of the circle I z [  ~ with this neighborhood lies inside Hence
all zeroes of the determinant A (z) lie strictly inside the circle I z [  /~.

Remark 4.3. - From the expansion (4.11) and inequalities (4.29) it

follows that the ratio ~ ~zj is analytic for z E !7/?, and can be represented
as

where the function G2 is analytic in and is bounded by

where R is some constant independent of z. Moreover, by (4.11 ),

, B / /

We are now able to compute the asymptotics as t -~ o0 of the second
integral in (4.8), which can be written as

Since all singularities of F ( z ) (A ( z ) ) -1 are on the cut, except maybe for
some zeroes of A which, as we said above, lie strictly inside the circle
I z [  ~, we can choose for the integration contour ~ the circle I z ] 
(for 13 small enough) plus a small "deviation" which goes around the cut C.
Clearly the integral on the circle (more exactly on the arc on the circle)
I z ] _ ~ - 13 gives a contribution which is bounded by

constant (x - (4.32)
The main contribution comes from the integral along the "deviation", which
can be assumed to be as close to the cut as we want. Hence we are reduced
to studying the integral
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From the expansion (4.30) it follows that

Here G~ (s) are the limiting values of G2 (z) on the cut C. The integral
(4.33) takes the form

Introducing the new variable u by setting s = x (1 - ~ ) we get the
asymptotics of the first integral:

Using the estimate (4.31) for G2, we get, after similar computations, that
the second integral is bounded by

From (4.9), (4.32) and (4.34), and from the estimate (4.10) we get the
final proof of Theorem 2.2 for the case v = 3..

For v &#x3E; 3 the asymptotics is deduced along the same lines, only with
more complicated calculations.

5. CONCLUDING REMARKS

If VI* is replaced by the weaker Condition VI (i.e., if 1 has multiplicity
s &#x3E; 1) the proof of Theorem 2.2 is more complicated, and the asymptotics
itself has a more complicated expression. One would have on the right-hand
side of formula (2.6) an expression of the type

where p _ s, f3i ~ 0, i = 1,..., p. The proof could be done following
the same lines as above.

Another important remark concerns the connection between the spectral
decomposition and the invariant (under T) subspaces for the field ("from
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the point of view of the particle") 7/, and the corresponding constructions of
Part I. In Part I we studied the full "particle + field model", with transfer
matrix which we here denote, in order to avoid confusion, by Ttot
and the operators {Uv: v E 7~v ~, which are a representation of the group
of the space shifts, act on the space = L2 Ho) x l2 ( l~v ) . Since the
operators Uv commute with Ttot (see Part I, Section 3), the space fi can
be decomposed as a direct integral

where the spaces are eigenspaces for the operators Uv with eigenvalues
ei ~~‘~ v~, and (5.1) generates a decomposition for the operator Tt~t

as a direct integral of the operators Ttot (A), each of which acts on the
space Hx.
A function f (ç, x) = g (r~), depending only on r~, is invariant with

respect to the shifts, and it is not hard to see that the transfer matrix T
which we study in the present paper coincides with the operator (0)
acting on Ho.

In Part I we constructed the leading subspace invariant for the

operator Ttot (and the group {Uv : v E ll v ~ ), as a perturbation of the
subspace x l2 (lV) (see Appendix A of Part I). In a similar way
one can construct, under the assumptions of the present paper, an invariant
subspace ~‘~CZ as a perturbation of the subspace ~C° _ ~° x l2 (l~v), where
?~C° is the space spanned by the functions (pz : z E 71v~, as explained in
Section 3. ~C2 is invariant with respect to the group {Uv : v E and
can be represented as a direct integral

The decomposition leads to the representation of the operator T~2 ~t -
Ttot| asx2

Moreover the subspace 2 (0) c 0 is isomorphic to the space Hi ~ H
constructed in the present paper, and the operator (0) coincides with
the operator 7i = ~ ~ x 1-
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Appendix: Proof of Lemma 3.7

The representation (3.16a) of S as a series gives us that

where

We consider first the product Tl2 T22 T2 ~ . We write, in an obvious way
T22 = T022 + ~ 039422, so that the power Ts22 can be written as a sum of
products, the elements of which can be either T022 or ~ 022. Suppose that
we have p factors ~ ~22 and s - p factors ~° :

where 0(~) = A22 for j E ~il, ... , ~22 for j ~
~ i 1, ... , The corresponding contribution can be written as

We can assume z ~ 0, since (T21)0,0393 = 0 for all 0. We take for the

moment that z’ E and set r° = = Each term on the

right-hand side of eq. (A.2) can then be associated to a sequence
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rj+1 is obtained from rj simply by a shift of a vector yj ,
whereas if j E {i 1, ... , i p ~, r~ + 1 is obtained by shifting and by changing
the resulting multi-index rj + yj at 0. We describe this process by assigning
a "particle" to the points of the support of each multi-index r. The value
q (x), x E supp r will be the "species" of the particle. For j E ..., ip~
an "interaction" takes place at the origin: a particle can be "created" (if
03B3j+1 (0) &#x3E; 0 and 03B3j (-yj) = 0), can "disappear" (if 03B3j+1 (0) = 0, and
~y~ (-yj) &#x3E; 0), or can change species (if q3 (-~2) ~ -y~+1 (0) 7~ 0). It

is convenient to assume that a particle disappears whenever it falls into

the origin at one of the "times" {i 1, ... , i p ~, i. e. , a change of species is
described by a destruction and a subsequent creation. We have, by (3. la,
b, c)

Let us suppose, for the moment, that z’ E and that z and z’ are far
from the origin, i. e. , ] &#x3E; D ( s + 2).
To help the intuition we interpret the sequence (A.3) as a time sequence,

more precisely j will be the time at which the transition r~ -~ rj+1 takes
place. At the time j = io = 0 we have the first step of the sequence (A.3),
which is described by the matrix element of (721)z,rl. By formula (3.10)
we see that if z is far away the transition r° --~ r1 can be only a shift
accompanied by a creation at 0. Formulas (3.11 a, b) for T~12 show also that
the transition at the time j = = s + 1, rs+1 -~ rs+2 is necessarily
a shift followed by the annihilation of a particle at 0. Since the particle
originally at z cannot fall into the origin, it must clearly end up at z’ :

All particles which are generated at the origin must fall back into the

origin at some later time and disappear. Supposing that their number is
n (n &#x3E;_ 1, since one particle is certainly generated at j = io = 0), we
denote by ~ ( j, j’ ) ~ n = ~ ( jo , ..., (jn-l, jn _ 1 ) ~ the sequence of pairs
which gives the "lifetimes" of the C ~io, ... , ip~
will be the times at which a particle is created, 
~ i 1, ... , the times at which a particle disappears (the particle created
at j h disappearing at the time j~). We denote _ ~ I~o , ... , 
the species of the particles, kh being the species of the particle created at
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the time jh. Clearly if a particle is created at the time j and disappears at
.,

the time j’, we must have ~ ~l = 0.
l=j-f-1

One finds that the contribution to the expression (A.2) for a fixed choice
of n, of the lifetimes {(j, j’)}n, and of the particle species {k}n can be
written as

Here we have set

Moreover the under the summation sign means that the
sum should be extended only to those Yh ’s such that

the second relation holding for such that j1 = j l ,
j2 = jl for some 1 = 1,..., n. (This is the condition for the particle to
come back to the origin.) The function Pl (u ; ~I~~n) is the convolution of the
function L (k, 1~’; ~ ) with factors Po ( ~ ). Note that the species
k and 1~’, as well as the factors ~c~ are fixed by the choice of ~ ( j, j’ ) ~ n and

Summing the expression (A.5) over all choices of ~ ( j, j’ ) ~ n and
we get a quantity which is denoted by R ~i ~... , 2 p ( z’ - z ) .

When z and z’ are not far from the origin i p (z’ - z) makes sense,
since it depends only on the difference z’ - z, but does not correspond to the
sum of the contributions of all possible sequences (A.3). More precisely,
only the sequences (A.3) for which z does not fall into the origin at the
times ~zo, ... , give contributions corresponding to terms on the right
side of equation (A.5), for some choice of ~ ( j, j’ ) ~ n and The sum

of the contribution of the other sequences is denoted by ~~ ~ i p (z, z’).
To make up R~o ~..., i p we have to add and substract the terms appearing
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on the right side of eq. (A.5) corresponding to Yh’s for which the choice
of z would imply that the particle originally at z falls into the origin at
some time of the set {io,..., Denoting the sum of such terms by

(z, z’), we can write

(’I ~12)z z’ =  (z - z’) (z, z’).
where V~S~ . (z z’) = (z z’) - V ~s~ (z z’). Clearly the

quantity (z, z’) can be written as a sum of terms of the type
(A.5), where the shifts Yh’s are subject to some conditions expressing the
fact that the particle originally at z falls into the origin.
To estimate the terms (A.5) we take absolute values, extend the sum

s~-1

to all values of yj ’s such that = z’ - z and introduce the function

j=0

L* (~) _ ~ ~ L (h, k; -y) ~ , , so that finally
h, k

where the constant does not depend on sand p. Similar arguments lead
to the inequality

The notation {j, h~ under the summation sign stands for the conditions

which express the fact that ij is the time at which the particle originally
at z falls into the origin, and ih is the time at which the particle ending
up at z’ is created. Summing up over all choices of {i 1, ... , ip~, for fixed
p, and then over p, we get
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where Rs (u) and Vs (z , z’) are 0 if |u| &#x3E; s D or max { , 

respectively, and

If z’ = 0, then at the last but one step there is only one particle left
(i.e. | supp 0393s+1 [ = 1), which ends up at the origin and disappears. In
this case only the term ip (z, 0) is left, and summing up all such
terms as before, we get a term Vs (z, 0) which is 0 if I z ] &#x3E; D, and
satisfies the estimate

From (A.6b, c) it follows that the Fourier transform of these functions

, 
_

are analytic in the complex neighborhood Wd - ~ a : ~ Im ]  d,
i = 1, ... , v~, for d small, and in this neighborhood we have

We now go back to the matrix elements of defined by eq. (A.1 ).
Using relations (3.18) and (A.6a) we see that

where
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Consider now the Fourier transforms

Using the estimate (3.23a) it is not hard to see that the functions Rs, q (A),
A’) are analytic for A, A’ in the complex neighborood

Wd and satisfy the estimates

where c~ i = (Si, qi ) i = 1,..., r. We write

where .I~~ 1, . , , , a r is an operator product

and the operator Yal,,.., ar satisfies the recurrent formula

From inequalities (A.7) we see that the Fourier transform

is analytic in Wd and satisfies the estimate
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r r

where Sr = L sz, Qr = L qi . Using this estimate, (A.7) and (A.8) it is
1 1

not hard to show that the Fourier transforms

are analytic for A, A’ in Wd and satisfy in Wd the following estimates

- , r- i / ,

The convergence of the series (3.16a) for S implies that the series

is convergent and the sum is equal

where

and

From the convergence of the series (A. 10) and the inequalities (A.9), one
deduces easily, again by shifting the integration region into the complex
Wd region, that the Fourier coefficients R (u) and V (z, z’) verify, if ~ is
small enough, the estimates

for some 0  8  1. Moreover V0,z = V0,0 = 0.

Lemma 3.7 is proved..
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