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ABSTRACT. - We consider a random walk Xt, t E Z+ and a dynamical
random Geld ~ (x ) , x E (t E Z+) in mutual interaction with each other.
The interaction is small, and the model is a perturbation of an unperturbed
model in which walk and field evolve independently, the walk according
to i.i.d. finite range jumps, and the field independently at each site x E llv,
according to an ergodic Markov chain. Our main result in Part I concerns
the asymptotics of temporal correlations of the random field, as seen in a
fixed frame of reference. We prove that it has a "long time tail" falling off
as an inverse power of t. In Part II we obtain results on temporal correlation
in a frame of reference moving with the walk.
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On considere un chemin aleatoire Xt, t E Z+,et un milieu
aleatoire dynamique ~t (x ) , x E E Z+) en interaction mutuelle.
L’interaction est petite, et le modele est une perturbation d’ un modele

imperturbe, dans lequel le chemin aleatoire et le milieu evoluent d’une

façon independente pour chaque x E selon une chmne de Markov

ergodique. Le resultat principal de la partie I regarde 1’ asymptotique des
correlations temporelles du milieu dans un repere fixe. On trouve que la
decroissance dans le temps est donnee par une puissance negative de t.

Dans la partie II on obtient des resultats sur les correlations temporelles du
milieu dans un repere qui se deplace avec la particule.

1. INTRODUCTION

The expression "random walk in random environment" can have several
meanings. Most of the work is devoted to random motions in a fixed

realization of the random environment. For this class of problems we refer
the reader to the classical paper of Fisher [I], and to the paper [2] (and
references therein) for recent rigorous results.

We are interested here in random walks in a dynamical environment.
Except for the class of models that we consider in the present work, which
were introduced in [4] and [5], there are, up to now, few results for random
walks in random dynamical environments. An example is the result in [3].
The models that we consider here correspond to a particle performing

a random walk on the lattice and interacting with a medium

("environment") consisting of a random field in evolution. The interaction
is a mutual influence, i. e., the random walk transition probabilities depend
on the field and the evolution of the field depends on the position of the
particle. The models are obtained as a modification of some "unperturbed"
model, in which the particle and the environment evolve independently. This
unperturbed model has, in addition, the following properties: the random
walk makes jumps according to some homogeneous transition kernel with
finite range, and the environment is an i.i.d. evolution of copies of some
egordic Markov chain associated with the transitions at each site x E 7lw
The modification consists in adding a local interaction.

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques



521RANDOM WALK IN A DYNAMICAL RANDOM ENVIRONMENT. I

In the papers [4] and [5] we were mainly concerned with the proof
of the central limit theorem for the displacement of the particle. Similar
results obtained by other authors for models of random walks in dynamical
environments are quoted in the reference lis ot [4].

In the present work we focus on the description of the influence of the
walk on the environment, i. e., on how the distribution of the random field is

changed by the interaction with the particle. One can consider the problem
in a fixed frame of reference (Part I), or in a "moving" one (Part II), i. e. in

a reference frame that moves with the random walk. In the first case one

would like to describe the relaxation of the system in time, as the random
walk goes away from any finite region. In the second case one would like
to know whether the system eventually reaches an invariant distribution for
the environment around the position of the particle.

For a better understanding of the results and of methods used in the

proofs we need a brief description of the model. Precise definitions can
be found in Section 2.

As in [4] and [5], the particle position is given by a random walk

~ Xt : t E 7~+ ~, and the environments is described by a random field

{çt ( x ) : x E E l~ + ~ . At each site x E ZV the environment ~t ( x )
takes values in some finite set S. The unperturbed model is described as
follows. The particle performs an independent homogeneous random walk
with transition probabilities ~ Po (x, x + y) = Po (y) : x, y E l~v ~ . The
evolution of the environment at different sites is independent and given by
a Markov chain, with transition probabilities ~ qo ( s’ , s ) : s’, s E ~S’ ~ , the
same for all sites. We denote by Qo the corresponding stochastic matrix,
and assume that the Markov chain defined by Qo is ergodic, with stationary
measure 7ro. Hence the unperturbed model admits a stationary measure
IIo = for the 

The "perturbed" or "interacting" model is a Markov process for which
are assume conditional independence, i. e., given the environment at time t,
the transition probabilities at time t for the particle and for the environment
at different sites are independent. We define the new transition probabilities
by adding a term of order E to the unperturbed ones, where E is a small

parameter:

Vol. 30, n° 4-1994.



522 C. BOLDRIGHINI, R. A. MINLOS AND A. PELLEGRINOTTI

This is the general form if the interaction is supposed to be localized at the
site Xt where the particle is located at any given time t.
Our methods of proof are based on the analysis of the spectrum of

the "transfer matrix" T, the stochastic operator associated to the Markov
process of the interacting model. T is considered as an operator acting
on the Hilbert space ~ of the square summable functions of £ and z,
with respect to the natural reference measure (the product of the counting
measure in z and the measure IIo). The main condition that we impose
is that the perturbation is so small that the spectral gap, which at c = 0
separates the leading invariant (with respect to T) subspace ("leading" in
the sense of the absolute values of the spectrum of T) from the rest, does
not vanish. The technical difficulties are connected with the construction

of the leading invariant subspace for c &#x3E; 0, and with the analysis of the
resolvent of T.

Once the leading invariant subspace Hle, is singled out, the restriction
of T to Hle, is reminiscent of the one-particle operator of Quantum
Mechanics. In the case of the moving reference frame (Part II) and for
models with two particles it reminds instead the two-particle operator. It

is then not surprising that the constructions and the methods of analysis
of the resolvent in our papers have close analogies in Quantum Mechanics
(see, for example, [6] and [7]).
One may regret that the techniques that we use sometimes leave little

room for probabilistic intuition. The main problem lies in the fact that from a
probabilistic point of view we deal with very complicated objects. Particles
interacting with an environment can be understood in physical terms as
"dressed" or "quasi-"particles, as they are accompanied by a "cloud" of
excitations of the medium. The cloud extends, as time goes to infinity,
on the whole space Z", although its intensity decreases exponentially with
the distance. In our language, however, one can describe this complicated
object in a rather simple way, by a "change of coordinates" in the space fi,
which changes to leading invariant subspace for c = 0 into the new, or

"perturbed" leading invariant subspace. We believe that methods of this
kind, which "disentagle" the interaction, can be useful in the study of other
types of many component stochastic models.

Similar ideas for "disentangling" the interaction are used in [4], though
the setting and the techniques are rather different. On the other hand [5]
is closely related to the present work and we will frequently refer to the
results there.

For the present paper the main result concerns the case when the drift
of the (perturbed) random walk is 0. We prove that the averages of local

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



523RANDOM WALK IN A DYNAMICAL RANDOM ENVIRONMENT. I

functions of the environment at time t tend to their equilibrium value (i. e.,
with respect to the invariant measure II0) with a speed (1 tv/2), as
t -~ oo . We also prove that the two-point correlation, between functions

f 1 (03BE0 ( x 1 ) ) and f 2 (03BEt ( x 2 ) ) , behaves asymptotically where C
is a constant depending on fi, f 2 , on the initial position Xo of
the particle and on the initial distribution of the field II. We further prove
that, if the random walk has a nonzero drift, then the correlations decay
exponentially fast in time. In the unperturbed reference model, of course,
correlations are zero if x2 and decay exponentially in t if xi = x2.

The results of the present paper provide a clear and simple example of a
well kown phenomenon, namely that by adding a conserved component to
a field with strong stochastic properties one forces a power-law decay of
the temporal correlations (see, for example [8]).

The plan of the paper is as follows. In Section 2 we define the model and
formulate the main results. In Section 3 we give the proofs. The Appendix A
contains the proof of some technical facts, while in the Appendix B we
study the constants appearing in the asymptotics of the correlations.

We observe in conclusion that our methods can allow to deal with models
with a general local dependences, e. g., for which the functions c and q
depend on the values (x + y) for Iyl  r, where r is some positive
"interaction range". One can also consider models with two particles, as in
the paper [5], or more, which interact with the environment and with each
other. Extensions in these directions will be the object of further work.

2. DEFINITION OF THE PROBLEM AND
FORMULATION OF THE MAIN RESULTS

As in [4] and [5] the environment at the discrete time t E Z+ is described
by a random field ~t - ~ ~t (x ) : x E ll v ~ , the single variables ( x ) taking
values in a finite set S. We denote by S ~ the cardinality of S, and by
S2 = Slv the state space of the random field ~t . We assign to H the
topology of pointwise convergence. All measures are supposed to be Borel
with respect to this topology. Xt E E Z+ will denote the position of
the particle performing the random walk.

Vol. 30, n° 4-1994.
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2.1. Description of the model

Our model is, as in [4], [5], a Markov Xt ), t E ~+ ~ ~
with state space fi = H x Z", and conditionally independent transition
probabilities:

Here ( E H is a fixed configuration of the field A c H is an arbitrary
measurable set of configurations of the environment. For the factors on the
right-hand side of eq. (2.1) we make the following hypotheses.

2.1 A. Assumptions on the random walk transition probabilities
I. The random walk transition probabilities are given by

where Po is a probability distribution on Z" (which defines the
"unperturbed" random walk), and c ( . , .) is a function on Z" x S such that

In what follows we will consider c(., .) to be fixed, and E will be subject
to the condition of being small enough. In view of the arbitrariness of the
function c (., .) it is not restrictive to assume that ~ ~ 0.

Both Po and c are assumed to be of finite range: i. e., there is some
D &#x3E; 0 such that

where |u| is defined as

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



525RANDOM WALK IN A DYNAMICAL RANDOM ENVIRONMENT. I

We assume furthermore that the characteristic function

define on the v-dimensional torus Tv, is subject to the following conditions:
II. Ipo (~) ~ [  1, for all A E Tv, ~ ~ 0.
III. The quadratic form Ai A j associated to the Taylor expansion

ij 
’

in the neighborhood of A = 0 is strictly positive for 03BB~ 0.

2.1B. Assumptions on the field transition probabilities

IV. The distribution P (~t E ~ = z, = ~) is a product measure
for the random variables ~ ~t (x), x E each of which is distributed

according to the law

where qo ( s’ , s ) and s ) ( s’ , s E S ) are the matrix elements of two
stochastic matrices, which we denote by Qo and Qi, respectively. Qo
defines the unperturbed evolution of the environment, and Qi, is given by

The condition that Q 1, is a stochastic matrix implies for the elements
q (s’, s) of Q that

V. The stochastic operator Qo, acting on a function f : 5’ 2014~ R as

can be diagonalized. We denote by ~ ei ( s ) , s E ,~ ~ ~ S ~0 1 its eigenvectors
(the normalization will be fixed below) and i = 0, ~ ~ ~ , ~,S’ ~ [ - 1 ~
the corresponding eigenvalues. The labels are chosen in such a way that
the eigenvalues are nonincreasing in absolute value: 

Vol. 30, n° 4-1994.
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i = 0, ... , 1. (The general case, when Qo has Jordan cells, can
also be treated, only formulas are more complicated.)

VI. There is a nonzero mass gap in the spectrum of Qo:

Condition VI implies that the Markov chain with space state Sand

stochastic operator Qo is ergodic. We denote by 7ro the (unique) stationary
measure. We normalize eo by taking eo (s) = 1, for all s E S. The

eigenvectors { ei : i &#x3E; 0 } of the matrix Qo are orthogonal to the

eigenvector 7ro of the transposed matrix:

Consider the Hilbert space l2 (S, and the operator Qo (adjoint to Qo)
acting according to the formula

Its eigenvalues are

and we denote by ei (s) the corresponding eigenvectors. As above we
can take eo (s) - 1 and the eigenvectors are bi-orthogonal to the
eigenvectors 

We normalize the eigenvectors in such a way that

As in [5] we will need the coefficients of the following expansions:

Some properties of the coefficients are given in Appendix A.

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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2.1C. Further conditions on the transition probabilities

VII. The function c (., .) in eq. (2.2) is such that

This condition is not restrictive, and can be considered as some

kind of normalization: if it is not satisfied, then replace Po (x) by
Po (x) + L c (x, s) 7ro (s). It means that the average (over the measure 7ro)

s

of the perturbed random walk reproduces the unperturbed one.
We now come to the important spectral condition.

VIII. The following inequality holds

Condition VIII states that there is a finite spectral gap for e = 0.

2.2. Notation

We fix the initial position of the particle at time t = 0 to be Xo = xo,
and assign an initial distribution II to the random field ~o. Let f (~, z),
(~, z) E H, be a bounded function, measurable with respect to the variable
~. Its conditional average under the condition (~, x) E e., the average
with respect to the transition probability (2.1), is denoted by

where T is the stochastic operator of the Markov process, which, by
analogy with Statistical Physics (understanding time as an additional space
dimension) is sometimes called "transfer matrix".

The measure is clearly invariant under the unperturbed
evolution of the field. We set H = L2 ( S2, Ho), and denote by 
L2 (H, IIo ) @ l2 the Hilbert space with scalar product

We denote by P, or Pn, xo , the distribution on the space of the

trajectories { (çt (~/), Xt) : y E E 7~+ ~, which arises by the stochastic
evolution from the initial distribution n on H. Averaging with
respect to P will be denoted simply by ( . ).
Vol. 30, n° 4-1994.
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We shall consider correlations of the type

where and /i, f 2 are functions on S. Averages and correlations
with respect ‘ ~ any other measure v will be denoted by ~ - ~ v and ~ -, - ~ v ,
respectively

2.3. Main results

In [5] we proved, for E small enough, the local limit theorem for the
displacement of the particle with respect to its initial position, which implies
in particular that, as t --~ oo, we have the asymptotic expansion

Here the vector b E f~v is the "drift", and its components are given by

where is an analytic function such that p (~) ~E=o = po (~) (see
Lemma 3.1 below).
As is to be expected, the time asymptotics of the correlations depends

on whether b = 0 or 0. For b ~ 0 we have the following theorem.

THEOREM 2.1. - If conditions I-VIII above are satisfied and 0, then

where 8 E (0, 1) is a constant depending on the parameters of the model,
and C is a constant depending on the functions f l , f 2 , on the sites x 1, x2
and on the initial data xo, II.

If b = 0 then one should expect a power-law decay. For technical
reasons we need the following more restrictive assumption of symmetry
for the random walk.

IX. (Symmetry condition on the random walk.)

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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where V is the space reflection on H: (V ~) (x) _ ~ (-x). From (2.1),
(2.2) one can see that condition (2.13) is satisfied for all e small enough
if and only if

Condition IX implies that the drift is zero. Other consequences are stated
in Lemma 3.8 below.

THEOREM 2.2. - If conditions I-IX above are satisfied, then

with

Here are the coefficients in the expansion

and the constants ~2 , are given, to leading order in ~, by the expression

where A = ~ ai, ~ ~ is a positive definite matrix, B = ~ bi, ~ ~ = and

the coefficients q~ and c~ ( . ) are defined by eq. (2.6 f).
The matrix A has a complicated expression and will be explicitely given

in Section 3.

It is worthwhile to formulate a further result, which follows easily from
the proof of Theorem 2.2, and describes the "relaxation" of the environment
to the unperturbed equilibrium state IIo .

Vol. 30, n° 4-1994.
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A function F (~), ~ E SZ is called a local functional of the field, if it
depends only on the subconfiguration ~ (x), x E B, for some finite set
B c ll v . The following theorem holds.

THEOREM 2.3. - If conditions I-IX above are satisfied and F is a local
functional of the field, then for any ~ and ~o

where C° = F and the (1 t(v/2)+1) is uniformly small in 03BE.
The explicit expression of the coefficients = 1, 2 will be given

at the end of Section 3.

Remark 2.1. - The fact that the constant does not depend on the
starting point of the random walk x° is not surprising, since the asymptotic
expansion (2.16) does not hold uniformly in xo, i. e., the residual term

o t( v / 2 )+1 is not uniformly small in xo.
3. PROOFS

We report here for convenience some of the results of [5], and deduce
some consequences which are needed in the proofs.

3.1. Notations

In what follows the expression "const" may denote any positive absolute
constant, i. e., any constant independent of the variables and of E.

In [5] we introduced a F E E in with

Here r = {~(~/) : : y E is a multi-index, i. e. , a function
~ on Z" with values in {0, 1, - - - , ~ s i - 1} and finite support
supp T = ~ ~ E 7Lv : ~y ( y) &#x3E; 0 ~ . aK denotes the collection of all such
multi-indices. The functions {03A80393 ; i F E are a basis in H =

L2 (S~, no).
Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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We use the special notation 0 for the multi-index that takes the value 0
everywhere, i. e., r = 0 means = 0 for all x E Z". ~A~ will denote
the cardinality of a set A c 7L".

The norm of a vector f E ~-l can be written in terms of the components
{ fr } of the expansion f = ~~ fr W r as

r

The group {Uv : v E of all shifts on is a unitary group of
operators which acts on ?-~ as follows

where (ç + v) (~c) = ~ (x - v) is the space shift of the field ç. The space
fi decomposes into a direct integral

where dA is the normalized Haar measure on the v-dimensional torus T".
is the space of all generalized functions of the type

such that the components ~ f r ~ make the norm (3.1 b) finite. Such
functions are eigenfunctions of Uv with eigenvalue e-i ~~~ v&#x3E;, v E Z~.
The representation (3.2) means that we can write any vector f =

as

,

where { Jr (~) : 1 r E are the components of the Fourier transform

and r + z, z E Z" is the translation of the multi-index F, i. e., F = F + z
is defined by the relation j (x) _ -y (x - z).
We recall briefly some facts on the Fourier transform, referring to

Section 3 of [5] for details. Let l2 (3K) denote the space of the sequences
~ f r : 1 r E ~ ~, with norm defined by eq. (3.1 b). The Fourier transform

Vol. 30, n° 4-1994.
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(3.3 b) defines a unitary application of the space fi onto the Hilbert space
l2 (9Jl) x Lz (T", dA) of the functions / = { fr (A) : r E 9Jl, A E T" }
with norm

Since the transfer matrix T defined by (2.9) commutes with the shifts
E the representation (3.2) generates a corresponding

representation for T as

and the operator T (A) acts on Under the Fourier transform the operator
T is transformed in the operator T, acting on l2 x L2 (T", dA) as

Here

and the matrix elements of T are defined by the position

The explicit expression of the matrix elements of T is given in the

Appendix A (A.1 a). From (A.I) follows

For M &#x3E; 0 we consider the subspace C ?-~ of the vectors f for which

HM with the norm II . ~~M is a Banach space. If

as we suppose from now on, then the obvious upper bound

leads to the inequality

HM is obviously dens in H.

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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3.2. Preliminary results: invariant subspaces

The following result is an obvious consequence of Lemmas 3.5 and 4.2
of [5].

LEMMA 3.1. - Assume I-VIII. Then T (03BB) has, for all 03BB E T", a unique
eigenvector x (~) E with eigenvalue p (~), such that p (~) ~E=o = 
Furthermore ~ (~) and can be extended to analytic functions in some
complex neighborhood

of the torus T v .

Moreover, x ( ~ ) has the following properties:
(i) xr (0) = 0 for r ~ 0;

(ii) if x ( ~ ) is normalized by setting xo ( ~ ) = 1, then one can find a
constant q E ( 0, 1 ), depending only on the range D and on such
that for any positive M and E small enough the following estimates hold
for all a E T v

where dB, B c denotes the minimal length of the connecd graphs
connecting all points of the set B.

Proof - The proof follows the same lines as for Lemmas 3.5 and 4.2
of [5]. We will explain here only the main points, referring to [5] for the
details.

The invariance condition for the vector x leads to the following equation

...., .~ ~ , . ,

where the coefficients (~) are defined by (3.4 a, b, c). Setting
b = min |0 (03BB)| - | 1|, by condition VIII we have b &#x3E; 0, and one
can find d &#x3E; 0 so small that

Vol. 30, nO 4-1994.



534 C. BOLDRIGHINI, R. A. MINLOS AND A. PELLEGRINOTTI

Consider the Banach space Lq of the vectors { xr : 0 }, analytic in
the neighborhood Wd with the norm

The right-hand side of eq. (3.6 c) defines a map B : Lq. Existence
and uniqueness of x will be established if we show that B is a contraction
in Lq in some sphere for x small enough.
By the formulas (3.4 a, b, c) and (A.! a) of Appendix A, we see that

R, r, (A) is easily computed, and we find

Here we have used the inequality

and the relation

Choosing q in such a way that

we see that the Lq norm of the term A ~ .Ho , ~ r, r ( ) xr , ( ) is

bounded by , with /3 E (0, 1).
Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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In the same way one can prove that the term containing has

Lq norm less than const ~~x~, and that the quadratic (in x) term of (3.6 c)
has norm bounded by The last term, that does not depend
on x, is explicitely computed in the Appendix B [eq. (B.3)], and has also
norm of order 6.

Hence the map B is a contraction for small ~, in some small sphere.
The estimates (3.6 a, b) are an easy consequence. As for the function p (A),
its expression [5] is given by

Its properties follow once again from the expression of the coefficients
Rr, r’ (À). The lemma is proved..
From now on x (A) will denote the eigenvector of T (A) of Lemma 3.1,

with the normalization described in the lemma.

Remark 3.1. - The expansion in ~ of xr, for small ~, is given by
Proposition B.2 of Appendix B.

x (A) identifies an invariant (with respect to T) subspace, as is shown
by the following result.

LEMMA 3.2. - One can find a subspace ~L1 c invariant with respect to
T and a E in 1 of the form

where the coefficients hr z are given by

Proof. - Let g ( a ) be an analytic function of A on TV. Consider the
vector E ~C with components

Clearly the space Q of all functions for g analytic, is left invariant by
T. By expanding in Fourier series g (A) == ei ~~~ ~‘&#x3E;, it is easily seen

u

that Q is spanned by the functions {03C8u: u E Zv} , with the coefficients
given by (3.7 b). 1 is then obtained by taking the closure of g in the
norm of fi.
Lemma 3.2 is proved..

Vol. 30, n° 4-1994.
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We need some bounds on the coefficients which are provided by
the following result.

LEMMA 3.3. - There is a constant q E (0, 1) such that, for M as in
Lemma 3.1,

Proof. - The proof follows from the expression (3.7 b) and Lemma 3.1
(see [5], Lemmas 4.1, 4.2)..

It is easy to see, by Lemma 3.1, making use of formulas (3.3 a) and
(3.3 b) for the Fourier transform and its inverse, that the action of T on
the basis {03C8u} is given by

where

The decomposition of the space  in invariant subspaces is stated by the
following lemma.

LEMMA 3.4. - (i) The space ~-C can be decomposed into two invariant
subspaces

(ii) in the subspace 1 on can find a basis {03C80393, u : 0, u E 
for which the inequality

holds for some 0 E (0, 1 ) , any M &#x3E; M*, and ~ small enough.

Proof - Following [5], Section 3, one can introduce in H a new basis
{03A8*0393 : r E bi-orthogonal to the basis {03A80393 : 1 r E and a

corresponding r E E 7Lv ~ in ~C of the form

where ej are the eigenvectors of the matrix adjoint to Qo [with respect
to the scalar product in l2 (S, The is bi-orthogonal to
the 

’
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If T* denotes the operator adjoint to T [with respect to the scalar product
(2.10)], one finds, reasoning exactly as above, a new subspace invariant

with respect to T*, and a E in given by

where is given by eq. (3.7 b), in which x (A) is replaced by the
eigenfunction x* (A) of T* (A) (see [5], Section 3). x* (A) is normalized

by setting xo (A) = 1 for all A E T", and satisfies the same inequalities
(3.6 a, b) as x.

By the bi-orthogonality property it is easy to see that the functions

are orthogonal to the functions of They satisfy the estimate (3.10), as
one can see by observing that the quantities satisfy the same estimate
(3.8) as [This follows from the validity of the estimate (3.7 b) for x*.]

Consider the set of functions {03C80393,z : r E E Zv} , where the
functions ~~ are given by eq. (3.7 a). If we show that this

system is a basis in it follows that Hi is identified with the span

of { which completes the proof of the lemma. One
can also see that Hi = (~li )1.
By (3.7 a) and (3.12) we can write

where ~ denotes the identity matrix, and the matrix elements of the operator
C, defined by the position

are easily computed, to find that Cr, z, r~, z~ = 0 if r = r’ = 0, or 0,
T’ ~ 0, and

Let f and f’ = C f. The relation between the Fourier transforms
f (A) and /’ (A) [computed by means of formulas (3.3 a, b) and (3.7 b)] is

given by the formulas
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If now g = (~ + C) f some simple algebra shows that

Observe that by the estimate (3.6 b) and the analogous one for x* it follows
that I y~ Xr’ (~) xr, (~) I  const E2. Hence for E small enough £ + C

r~~o
is invertible, and the set ( z : T E z E is a basis in fi. The
lemma is proved..
Remark 3.2. - One can prove, exactly in the same way, that the

decomposition 
’

holds, where the subspaces ~Ci and ?-Ci are invariant with respect to T*.
Moreover ~Cl is spanned by the given by formula (3.11 ), and

~C1 is spanned by the basis

3.3. Projections on the invariant subspaces

We now want to separate the contributions to the correlation that come
from the invariant subspaces 1 and 1.
The functions f 1, f 2 can be expanded in the basis {ej ( s ) ~ ~ -o, 

of the eigenvectors of the matrix Qo

Recalling that eo (s) - 1, the correlation (2.11) becomes
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and it is enough to study correlations of the type
, , ,

B v the definition (3.1 a) of the functions Wr, z we have for j ~ 
0

where denotes the multi-index r such that and

’Y (~) - - .7 ~ Setting F~ (~, x) = (~ (~i))~ - 1 , 2 (note that the functions

= 1, 2 are constant in x), we find

The convergence of the series on the right-hand side 
of equations (3.17 a, b)

is established by Lemmas 3.5 and 3.7 below.

By Lemma 3.4 we have

The expansion of 03A8(1)0393(X1) e #ii in the basis ( qbu ) can be written as

Since the vectors are orthogonal to the subspace 
we have the

following equation for the coefficients 

Vol. 30, n° 4-1994.



540 C. BOLDRIGHINI, R. A. MINLOS AND A. PELLEGRINOTTI

where (., .) denotes as usual the scalar product in Eq. (3.11) gives

and

By the estimate (3.6 a, b), and similar ones for x*, the series under the
integration sign converges, and we can write

where r~ (A) may depend on e, but is uniformly bounded in e (and has
a limit as e ~ 0). Furthermore it is an analytic function in the complex
neighborhood Wd of the torus T", as a consequence of the analiticity of the
functions xr (A) and xr (A) (Lemma 3.1). Hence if e is small 1 + s2 r~ (A)
is bounded away from 0, and the function (1 + (~))-1 is analytic.
From (3.19-22) we find

By applying Tt to both sides of the decomposition (3.18) we find

We first study the projection in 

LEMMA 3.5. - The series

converges absolutely, uniformly in ~, xo, and for any r E ~ we have

where the function
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is analytic in Wd.

Proof. - By Lemmas 3. l, 3.2 and equation (3.9 a) we get

where

From expression (3.23), and the analyticity of x*, by shifting the integration
path to complex values of A, it is easily seen that for d small enough

By formulas (3.27), (3.23), and (3.28), using some simple algebra, it is easy
to see that eq. (3.26 a) holds with the function gr is given by eq. (3.26 b).
The analyticity of gr follows from (3.26 b), and the analogous estimate for
x* , and the fact that x* , x, and x are analytic functions..

3.4. Estimate of the projection on Hi

The proofs of Theorems 2.1 and 2.2 are based on formula (3.26 a). We
first need to show that the second term in (3.24) gives an exponentially
(in t) vanishing contribution to the correlations (3.16).

For f E Hi we write the expansion

Let A c Z" be a finite subset. We denote by d (A, u) the distance of a
point u E 7Lv from the set A and fix M &#x3E; M*. Consider the subspace
HA, q C Hi of the vectors f E Hi such that the norm

is finite. Clearly with the norm (3.29) is a Banach space. The

following assertion holds.
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LEMMA 3.6. - On can find q E (0, 1) such that for E small enough and
any finite A C l~v the space is invariant with respect to the restriction

1 
and

where 8 E (0, 1) is some constant independent of A.

Proof. - The proof is analogous to the proof of Lemma 4.8 of [5] and
is deferred to the Appendix A..

The estimate of the second term in (3.24) is given by the next lemma.

LEMMA 3.7. - The following estimate holds, for some constants o,
q E (0, 1)

Proof. - We prove first 
, zo 

q, for A == { z0}. To do

this we shall first construct a 0393 ~ 0, u e Zv} in *1,
bi-orthogonal to the in We have

Setting

where £ denotes the identity matrix, some simple algebra shows that B has
to be a solution of the equation

It is convenient to consider the matrices D and B* as operators acting on
the Banach space lA, q on the double sequences f = ~ f r, z : r 7~ 0, z E

with the norm given by (3.29). Using the explicit expression for the
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matrix elements of D and the estimate (3.6b) we have for A = 

Here we have used the triangular inequality and the obvious relation

!~-~’!. Taking~’ = ~+~ ~ = ~+~, g e (g, 1),
the right-hand side is bounded from above by the quantity

with r = $ . Here we have used the inequality ru jo + ]v - w ] &#x3E;

ru jv juj o j . We can take M and M in such a way that

The proof that this choice of M implies the convergence of the series (3.32)
is complicated and is deferred to the Appendix A.
Hence for the operators on lA, 4 defined by the matrix D and its adjoint

D* we have  const ~2, ~D* ~  const e2, so that the operator

and its adjoint B* exist as bounded operators and have norms of order
c~ (~a).
Next we write the expansion

The coefficients, using the explicit expressions (3.15) and (3.31) for 
and ~r, u , are given by
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Taking A = ~ zo ~, and recalling that the operator norm of B* in is

finite, we see 
a zo 

E g.

We can now apply Lemma 3.6, which implies

In order to get the estimate (3.30) we write the expansion

With the help of (3.10), (3.33), we get for some M &#x3E; M*

where we have assumed that q is larger than the constant 9 appearing in
the estimate (3.10), and have set q = q. Lemma 3.7 is proved..
Remark 3.3. - From Lemma 3.7 it follows immediately that

3.5. Proof of Theorem 2.1

In order to prove Theorem 2.1 we have to find the asymptotics of the
first term in (3.24).

In formula (3.26 a) we can deform the integration contour in a complex
neighborhood of the point A = 0 in such a way that along the deformed
contour the inequality ~p (a) ~ I  1 holds. In fact we can write the power
series expansion of p (A) in a neighborhood of A = 0 as

where b E R" is the drift, which in [5] is shown to be given by eq. (2.12),
where p is given by eq. (3.6 d). By assumption III, (A A, A) is a positive
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quadratic form for ~ small enough (see Section 3 in [5]). Setting A = T+i cr
we get

Since we know that ~p (~) ~ [  1 for T ~ 0, ~r = 0 (see Lemma 3.5 of [5]),
we have

On the other hand, setting a = a b for c~ &#x3E; 0, we get

for a  ~o sufficiently small. We now take a sufficiently small sphere
IT I  ~1 on the torus T" in such a way that outside of this sphere

[  B  1. We then deform the interior of this sphere to a "contour"

where the function a (T) is chosen in such a way that ao &#x3E; a (T) &#x3E; 0 and
a (T) = 0 on the boundary of the sphere ~T~ [ = By (3.36), (3.37), we get

Since the contour E is within the region of analiticity of the functions p (A)
and g (A), the integration region in the integral (3.26 a) can be changed to

The assertion of Theorem 2.1 follows from Remark 3.3, which gives the
decay in t of the second term of (3.24), and from relations (3.26 a), (3.38),
which given the analyticity of gr~.x2 &#x3E; , lead to the result.

J2

3.6. Proof of Theorem 2.2

We first prove the following lemma:

LEMMA 3.8. - For the symmetric random walk p ( a ) is an even real

function of ~.

Proof. - Consider the following antilinear transformation (reflection) R
acting on the functions on SZ
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The symmetry condition on the random walk implies that T commutes
with R, and moreover

where Us is the translation operator. It follows that the space which
is an eigenspace of the group with eigenvalue ei ~S° ~&#x3E; [see (3.2)], is
transformed by R into itself. Moreover, as Rand Tcommute, the vector
R X (A) E is an eigenvector of T (~) with eigenvalue It was

proved in [5] that the eigenvector of T (A) with eigenvalue of maximum
absolute value is unique, hence R x (A) = f3 X (À), where /3 is a constant.
This implies p (a) = 

If we now consider the linear transformation R

then by observing again that 7Z commutes with T, we can repeat the above
arguments to find that

i. e. , p(A) = p ( - a ) . The lemma is proved..
To accomplish the proof of Theorem 2.2 we need the asymptotic

expansion of the integral (3.26 a) for r = T~~ 2 ~ . Note that by formula
(3.28), and the fact thatxr (0) = 6j, r (Lemma 3.1) we have (0) = 0.

~ 
J2

In the asymptotic expansion of the integral (3.26 a) one has to take into
account that A = 0 is the absolute maximum of the function p (A), A E TV.
The proof is technically complicated and is deferred to the Appendix B ..

3.7. Proof of Theorem 2.3

The first step is the extension of the results of Lemma 3.7 and Remark 3.3
to any function Wr,z , r ~ 0, of the basis. Namely inequality (3.30) holds
if I‘~ i 1 ~ is replaced by any F 7~ 0, ~ rl ~ being the projection of wr on

Similarly inequality (3.34) holds if we replace r~i 1~ by T ~ 0, and
r~2 2 ~ by The proof of these facts does not differ from the previous
proofs and we omit it.

As a consequence we have the asymptotics
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as t -~ oo . Here, 8 E (0, 1) is the projection of Wr, z on 
Furthermore, by the same procedure as in Lemma 3.5, it is easy to see that
the first term on the right of eq. (3.39) is equal to

where

In analogy with the proof of Lemma 3.5 one can see that gr (.; ~, xo ) is

analytic in Wd for d small enough, and its derivatives in Wd are bounded
uniformly in ~. We are in a situation in which the classical Laplace method
for the asymptotic (in t) expansion applies (see [9], Chap. 8). We obtain

where

A is again the matrix in eq. (3.35), and the function (~, xo) turns out
to be given by the formula

In the first sum the indices run over all the ordered pairs ( 1~1, 1~2 ) , and in
the second sum over all ordered quadruples ( 1~1, k2 , k3 , ~4 ) , 1~i = 1, ~ ~ ~ , v,
i = 1, 2. are the matrix elements of B = A-1, and
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The assertion of Theorem 2.3 follows easily from relations (3.40 a-c), and
the quantities in formula (2.16) take the form

where the coefficients { F0393} refer to the basis {03A80393 : 1 T e 

CONCLUDING REMARKS

Theorem 2.1 could be made more precise, with some more work, by
finding out the exact asymptotics, which, under some general assumptions,
should be of the type

where a and ry depend on the parameters of the model. In general one
should have 03B3 = v or ry = v according to whether the "one-particle" or
the "two-particle" branch of the spectrum dominates the asymptotics. This
problem requires a more detailed investigation, and we plan to come back
to it in a future paper.

Condition VIII is certainly strong, but it has the advantage of making
proofs much simpler. One could replace it by a weaker one, requiring
inequality (2.8) to hold only in some neighborhood of A = 0, and using
ideas similar to the ones introduced at the end of Section 3 of [5]. We hope
to come back to this problem as well.

There is a simple intuitive (or "physical") explanation of the results of
Theorems 2.2 and 2.3, which can be formulated as follows. By the local
limit theorem for the position of the random walk (see [4] and [5]), the
particle starting at the point, say, xo = 0, in the absence of drift, falls at
some large time t on any fixed point x E at a finite distance from

the origin, with probability tv/2. 
Since the "information" on the field is

carried by the particle performing the random walk, one can say that the
"fraction of information" on the value of the field ço (0) which gets to the

point x at the moment t falls off as tv/2 . Actually 
the correlation tends to

zero faster, as cancellations occur in the computation, due to the fact that
the coefficient in front of 1 . in (3.30) does not depend on xo and ~.
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APPENDIX A

Proof of Lemma 3.6. - The coefficients in the expansion (3.4 b), computed
in [5], are given by

Here Aj (x ) F, j = 0, ~ ~ ~ , ( S ~ - 1, x E denotes the multi-index which
is obtained from F by replacing its value at x by j, and

The coefficients are given by (2.6 f), and the following properties, which
are easily derived

It follows in particular that
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We introduce, as in [5] the subspaces 01, spanned by the vectors ( 03A8,u:
u E and spanned by the r ~ 0 u E l~ v ~ . The
operator C defined by formulas (3.13 a, b) can be written as an operator
matrix

where Coo : 01 ~ 01, C01 / 01 ~ 01, and

C" : ~~. We have C~ = 0 and C" = 0, and, setting for

convenience Cl° = S, C°~ = S*,

The spaces 1 and Hi are written as

Writing T as an operator matrix, in the same way as C in eq. (A.2), the
invariance under T of 1 and Hi is easily seen to be equivalent to the
following conditions

Eq. (A.3) implies that if g E Hi is written in the r 7~ 0,
z E as g = L gr, z then

h~0, z

Hence the operator is represented in the basis { z } by the matrix

Consider now the norm (3.29) for g as before. The estimate of 
can be reduced to the separate estimate of three terms. The first one is
bounded from above as follows
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Choosing q by setting log g = ~ with 1] E (0, 1) the right-
hand side is bounded by The second term, corresponding
to the second term on the right of eq. (A.1 b), taking into account that

1, and that for fixed r’, ~c F can take only S ~
values, is estimated by

const ~ M sup (03B3’ (U), 03B3 (u); u - 
" 

r,r~,z

~ 

The third term corresponds to the second term on the right in equation
(A.3) and, using the estimate (3.8) for h*, is estimated by

where we used the inequality r’~z~v &#x3E; Taking q E (q, 1),
and setting q = /3 q we find that the last expression is bounded by

and the series converges since /3 E (0, 1). Putting all together we find

which proves the Lemma.

Proof of the convergence of the series in (3.32). - We shall prove for
simplicity the convergence of the series

for q E (0, 1) and /3  ( C e ) -1, with C = L This implies the

convergence of the series in (3.32).
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We have

where y~ denotes the sum over all tree-graphs with vertices at the points
Tn

of the set supp r U ~ 0 ~ . If 0 coincides with some point of supp r it is
convenient to consider it as distinct, so that the trees Tn have always n + 1
vertices, two of them may be at distance 0. Passing from summation over
supp r to summation over the ordered sets of points {x1, x2,..., xn},
and changing the summation order, we find that the right side of (A.5)
is bounded by

where the sum is over all the abstract trees Tn with n + 1 vertices. The
sum over x 1, ~ ~ ~ , xn is estimated by Cn , and, as the number of abstract
trees with n + 1 vertices is estimated by (n + 1)’~, we get that the series
is majorized by the series

which converges if C {3e  1.

APPENDIX B

We assume Conditions I-IX, which imply that the functions cj (A),
j = 1, ~ ~ ~ , ~ 1 and po (A) are even in A.
We first prove a result which is interesting by itself on the behavior of

the function { ~r (~) : r ~ 0 ~ solution of eq. (3.6 c) for small e.

PROPOSITION B.I. - As e -~ 0 the following asymptotics holds.
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where Cj (A) = 03A3 cj (u) ei (03BB, u). Moreover the function {03C10393: 0393 ~ 0} is
u

uniformly bounded in the norm of ,C q .
Proof - We recall that denotes the multi-index with supp r = ~ x~

and ~y (x) = j.
As in the proof of Lemma 3.1, we consider equation (3.6 c) as an equation

in the space Lq, and we rewrite it in the form

with

-

Here 7Z (A) is the operator with matrix elements (po (03BB)-1 Rr, r’ (03BB), and we
have used relations (3.4 a, b), (A.1 a). Fo denotes the multi-index obtained
by deleting the point 0 from supp T. We can write

~ (a~ _ (A) + ~ o~z ~a~, (A) = 
and (A) is identified by eq. (A.! a). The Neumann series (of operators
on Lq)

converges, since, by reasoning as in the proof of Lemma 3.1, one can see
that the norm of the operartor R (A) is less than 

| 1|+ I S/2 + (e). Hence

the operator 1 - R (A) is invertible.

Substituting (B.4) in (B.2) we get
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Taking into account the estimate (3.6 b), we see that the only contribution
of order 6 in (B.5) is given by the term

the rest being at least 0 (E2) in the norm of Lq. By the above expression
for hr, one sees that ~pr is different from zero only if supply ] = 1, i. e., if

r = r~~~ for some x E = 1, ..., 1. Assuming that f = h~x~ ,
taking into account that R, r, (A) = ~~ br, r~ +u ~’o (u) e2 ~~‘’ u&#x3E; , we get

Using the Fourier transform in the x variable we get

This concludes the proof of Proposition B.I..

We now turn to the asymptotics as t -~ o0 of the integral on the right-
hand side of eq. in (3.26 a), which we shall denote by I ( t) . By applying
the classical Laplace method (see [9], ch. 8) we find

where is the matrix given by (3.35) B - ~ bi, ~ ~ = A-1,
and the function gr (~) is given by eq. (3.26 b). We are interested in the

expansion (B.7) for r = 0393(x2)j2. We shall write g, instead of g0393(x2), for

brevity. The expansion in E of the leading term in right-hand side of

eq. (B.7) is given by the following proposition.
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PROPOSITION B.2.

where

and 9 is finite -~ 0.

Proof. - We recall that the quantities cj (u) and are defined by
eq. (2.6 f), and po is given by eq. (2.3 d). For the proof of Proposition B.1
we need the asymptotics as ~ ~ 0 of the various terms appearing in the
expression for the second derivatives of g. The proof is based on the
following two lemmas.

LEMMA B.I

LEMMA B.2. - We have

where a (cv ) is defined in eq. (B . 8 b) and (  oo .

zo

We postpone the proof of the lemmas and complete the proof of
Proposition B.2.

By Proposition B.I the derivatives of pr (À) are uniformly bounded in
Wd, since the functions pr (a~ are analytic in Wd, and the Lq norm of pr
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is bounded as c -~ 0. Hence r = we have

with 03A3|03C6 (x)|  ~. Proposition B.2 now follows from Lemmas B.1

and B.2. We actually need to take the sum on zo, and we get as the
dominant term of the expression (B.8 a)

We now pass to the proof of the lemmas.

ProofofLemma B.l. - The proof is a straightforward calculation, namely
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The first term on the r.h.s. of (B.10) is zero, as xr (0) = 0 for 0. For
r = 0 we have 1 and obviously

72

For the second and third term in (B.10) we need to compute

03B8 03B803BBk xr (a&#x3E; a-o . .
Obviously aak xo (03BB) = 0 for all 03BB E T", and if r = 0 then a

straighforward calculation, which makes use of the symmetry of the function
c (~, ~), gives

(B . 1 2) is a linear equation for the quantities  xr (03BB) I , r ~, which
aa~ À=O

can be considered, for example on a subspace of Since the operator
with matrix elements {0393,0393’ : 1 r, 0393’ ~ 0} is bounded in this space, as

it follows from formulas (A.l a, b), and (3.6 c), with a norm [ +0 (c),

eq. (B.12) has, as a unique solution, the ~ ~03BBk xr (À) I = 0 . Lemma B.I

is proved..
Proof of Lemma B.2. - The proof could be based on a small E expansion

for xr similar to the one established in Proposition B.1 for xr. To be

short, observe that the following equations holds, as a consequence of the
invariance of x* under T* [5],

where

Lemma B.2 is then proved by solving this equation with the methods used
above..
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