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229.

Conditioned Brownian motion in simply connected

planar domains

Philip S. GRIFFIN (*), Terry R. McCONNELL (**)
and Gregory VERCHOTA (***)

Department of Mathematics, Syracuse University,
Syracuse, NY 13244-1150, U.S.A

Ann. Inst. Henri Poincaré,

Vol. 29, n° 2, 1993, p. 249. Probabilités et Statistiques

ABSTRACT. - The purpose of this paper is to study Doob’s conditioned
Brownian motions in simply connected domains in [R2. We obtain the
precise value of the best constant in the lifetime inequality of Cranston
and McConnell and prove a related maximum principle. We also exhibit
a connection between these processes and the classical isoperimetric
inequalities.
Key words : Conditioned Brownian motion, expected lifetime, positive harmonic function,

isoperimetric inequality.

1. INTRODUCTION

Let D be a domain in !R" and p (t, a, P) the transition densities of
Brownian motion killed on exiting D. Let

positive harmonic function in D}.
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230 P. S. GRIFFIN, T. R. McCONNELL AND G. VERCHOTA

For h E H + D set

Let P a denote the measure on path space induced by these transition
densities and Ea expectation with respect to Pa. The canonical process,
which we denote by Zt [or sometimes Z (t)], is then a Doob conditioned

Brownian motion or h-process. Its lifetime is given by

If no confusion can arise we will often drop the subscript D and simply
write T for the lifetime.

In 1983, Cranston and McConnell [6] proved that for any domain
D ~ 1R2, there exists a constant cD such that

and furthermore

Note that ( 1.1 ) is only of interest when D has finite area. See [11] ] for
references to extensions, applications and related results.
To translate this result into analytic terms, we only need observe that

where G is the (probabilist’s) Green function for D, i. e., minus two times

the analyst’s Green function and m is Lebesgue measure.
One of the main results of this paper is an evaluation of the best

possible constant among all simply connected domains, i. e.

c* = sup { CD : D is simply connected}. _

We will prove that c* = 1 and furthermore that the su p remum can not be
attained. 

"

Examples of domains for which c D approaches - are given in section 3
7T

(see Theorem 3 . 4) and include long thin rectangles. The opposite extreme
to these domains is the disc and here we explicitly compute CD to be

(4 log 2 - 2)/~c ^-_~ . .7726jn.
If h is a Martin kernel (i. e. minimal) function with pole at 

where aM D = minimal Martin boundary of D, then we write P a and E~
for P a and Ea respectively. In this case we prove that, as a function of
a E D, satisfies a maximum principle; see section 2. It is not clear

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



231CONDITIONED BROWNIAN MOTION

how important it is that h be minimal in this result, but we should point
out that does not satisfy the maximum principle for all hEH+ D,
for example when h is constant.

In the final section we extend the best constant result to the case of

superharmonic h and discuss various topics including the connection with
the isoperimetric inequality; see Remark 5.4. -

The authors would like to thank Tadeusz Iwaniec for informing us of
the work of Carleman, Gerry Cargo for a simplification in the proof of
Theorem 2.1 and Eugene Poletsky for several enlightening discussions.
Finally we would like to thank the referee for pointing out an oversight
on our part in the statement of the strong maximum principle in section 2,
and for the observation that 0~4/71: for any planar domain. This bound
can be bound in Banuelos [2].

2. A MAXIMUM PRINCIPLE

In this section we will prove a strong maximum principle for

as a function of a E D whenever D c 1R2 is simply connected and I D  oo .

Here z) and K(3 is any kernel function for D with pole at
By replacing K(3 with the constant function we see that such a

principle cannot hold in general for positive harmonic functions. We will
also prove a maximum principle for simply connected domains of infinite
area in 1R2.

Before giving the strong maximum principle we make a few simple
observations. Let B denote the unit disc and aB its euclidean boundary.
Fix a E B, b E aB and let 03A6: B ~ D be the 1-1, conformal map of B onto
D such Here and elsewhere below we assume

that 03A6 has been extended to a homeomorphism of the Martin closures,
and we identify OM B with aB. Then by conformal invariance of Green
functions and kernel functions

where,

Vol. 29, n° 2-1993.



232 P. S. GRIFFIN, T. R. McCONNELL AND G. VERCHOTA

is the Green function for B with pole at a and

is a kernel function for B with pole at b E aB. We can always find such a
conformal map for which a = 0 and b =1. In this case 0 maps the interval

[ -1, 1] onto the hyperbolic geodesic through a and P. Thus the strong
maximum principle is a consequence of the following stronger result:

THEOREM 2. 1. - Let F not identically zero be holomorphic in the disc B
and FeL2(B). let

Then L’ (0)  O. 
’ ’

Remark. - This result is stronger than the strong maximum principle
in two ways. First it allows us to replace C’ in (2.2) with an arbitrary
holomorphic function Fe L 2 (B), and secondly it shows that if uo is on
the hyperbolic geodesic connecting a point ex E D = D U OM D to P, iD
increases as ao moves along the geodesic away from P.

Proof. - One easily sees that the derivative of the numerator may be
taken inside the integral. Evaluating the derivative one gets

Let akzk. In polar coordinates dm (z) = r dr d8 so that
by orthogonality 

while

Thus integrating in 8 first and then in r, the theorem follows if the

inequality

holds.

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



233CONDITIONED BROWNIAN MOTION

By taking absolute values, it suffices to prove (2. 3) for nonnegative ak.
Let aM be the first nonzero coefficient. Then by the geometric-arithmetic
mean inequality

This shows the inequality in (2. 3) is strict provided all quantities in (2.4)
00 k

are finite. To see this observe that if then b~. Thus
j=O ;=o

by the Cauchy-Schwarz inequality,

and the last quantity is finite since F E L2 (B)..

. 

COROLLARY 2. 2. - Let D be a nonempty simply connected plane domain
of finite area. Let 03B1, 03B2 belong to OM D and exo lie on the hyperbolic geodesic
r joining ex and 03B2. Then

where the kernel functions are normalized to be 1 at,some point, call it ç,
on h.

Proof. - We begin by showing that if a" converges to a in the Martin
topology then

To see this, map the unit disk 1-1 and conformally onto D so that
-1, 0, and 1 are mapped to cx, ç, and P respectively. Then (2 . 6) follows
from its counterpart in the unit disk, which reads

This is a straightforward computation.

Vol. 29, n° 2-1993.



234 P. S. GRIFFIN, T. R. McCONNELL AND G. VERCHOTA

Now let I> denote the conformal map described above. Choose a strictly
decreasing sequence wn of negative real nurnbers such that lim wn = -1.

n ~ o0

It follows from Theorem 2 .1 that is strictly increasing. Thus

By [ 11 ], Corollary 1. 2, the integrands on the right-hand side of the last

inequality are uniformly integrable. Thus we obtain (2. 5) from (2.6) by
passage to the limit as n - oo. M

Remark 2.3. - Essentially the same argument shows that if an is any
sequence converging to a in the Martin topology, then

where the kernel functions are normalized at some point ~ lying on the

hyperbolic geodesic joining cx and ~. The right-hand side is the expected
lifetime of Brownian motion in D started at the entrance boundary point cx
and conditioned to die at the boundary point ~. (See [13].) Accordingly,
we denote it by Ea ’to

COROLLARY 2.4. - Let D be a nonempty simply connected plane domain
with a Green function. Let belong to aM D and CXo lie on the hyperbolic
geodesic r joining oc and ~. Then

Proof. - By conformal invariance it is enough to prove

for any conformal map 03A6 defined in B.

By monotone convergence the right hand side of (2. 8) may be written as

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



235CONDITIONED BROWNIAN MOTION

The left hand side may be written

The first integral converges by monotone convergence and the second by
dominated convergence. For the third the functions

may be extended to {z: l/2~z 1 and Rez>0} so that con-

verge uniformly there to /(z) = ’20142014L log -2014-. This function is uni-

formly bounded away from zero. As has already been noted the functions

gr (z) = (r2-|z|2)2 |r2-z2|2 for {z:|z| r}, extended to be zero outside { z: |z|r},

increase monotonically on [z: z|  1} to g (z) = -2014’ . . Thus given
any E > 0, by Fatou’s lemma, uniform convergence to f and monotone
convergence, we have

If the same is true of since f is bounded

away from zero. Thus the left side of (2. 8) is

Now by Corollary 2. 2 for each r > 0 the integrals in (2. 9) are strictly
greater than those in (2 .10) and (2. 8) follows..

Remark 2 . 5. - If D 1 = 00 then it is possible that ’t = 00 for CXo E D

so that the above proof can not give us a strict inequality in (2.7).
However it would be interesting to know whether or not the strict

maximum principle holds in the case where the maximum expected life-
time in D is known to be finite but D has infinite area. -

Vol. 29, n° 2-1993.



236 P. S. GRIFFIN, T. R. McCONNELL AND G. VERCHOTA

3. THE BEST CONSTANT

In this section we show that - is the best constant in the lifetime
7T

inequality when the terminal point lies on the boundary, or, more

generally, when the conditioning function is positive harmonic. The ine-
quality continues to hold with the same constant even when the terminal
point lies in the interior. The more difficult proof of that fact is deferred
to section 5. The precise result to be proved here is the following

THEOREM 3.1. 2014 Let D be a nonempty simply connected plane domain
of finite area, u e D, and /!>0 harmonic on D. Then

and the constant 1 is best possible.
It suffices to prove (3 .1 ) when h is minimal, say h = K03B2, 03B2~~MD.

Moreover, by the results of Section 2 we may assume Recall (see
Corollary 2. 2 and Remark 2. 3) that if ç lies on the hyperbolic geodesic
joining a and P, and if K" and K~ are normalized so that K" (~) == K~) = 1,
then

If O is the unique 1-1 conformal map of the unit disc B onto D such
that c~ ( -1 ) = cx, d~ (0) =~, and 0 ( 1 ) = P, then

The unit disc here may be replaced by any other model simply connected
domain, . and it is more convenient for our purposes in this section to

replace it by the infinite strip

An easy computation using e. g., the fact that log ( 20142014) maps B to S,shows that 1 - z

Annales de l’lnstitut Henri Poincare - Probabilités et Statistiques



237CONDITIONED BROWNIAN MOTION

where ’P maps S 1-1 and conformally onto D with 03A8 ( - oo) = a, W (0) = ç,
and (This formula has been noted independently by
R. Banuelos and T. Carrol [3].)
By the half-angle formula,

where

The proof of (3 . 1) thus reduces to showing that the second term on the
right-hand side of (3 . 3) is strictly negative, which, in turn, is an immediate
consequence of the following two results.

LEMMA 3. 2. - Let f be a strictly increasing real-valued function and g a
strictly decreasing function on a finite interval [a, b]. Then

LEMMA 3. 3. - The function H defined in (3 . 4) above is strictly increasing

To complete the proof of (3.1), apply Lemma 3.2 with [a, b] = 0,- ,
f=H, and g(y)=cos(2y).. 

Proof of Lemma 3 . 2. - Let 1=20142014 f(y)dy and choose 

such that f~I on [a, y] andf>I on (y, b]. Let/=/-!. Then

We should remark that this result is a special case of an inequality of
Chebyshev. See, e. g., Theorem 43 (2.17.1) in [8].

Proof of Lemma 3. 3. - We begin by showing that H is bounded on

[0, A] for each 0A03C0 2. Fix B such that AB03C0 2. Since

Vol. 29, n° 2-1993.
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it follows from Fubini’s Theorem that we may further assume B is chosen
so that H (B)  00. By similar reasoning applied to integrals over vertical
line segments we may choose Xn -+ oo and a constant C independent of n
such that

Let z0=x0+iy0 satisfy and let rn denote the positively oriented
boundary of the rectangle [- x~, xn] X [ - B, B]. By the Cauchy integral
formula we have for xn> 1 Xo I

It follows from the Schwarz inequality and (3. 5) that the contribution to
this integral from the vertical ends of rn vanishes in the limit as n - oo .
Thus we obtain the representation

valid for all z~ = xo + iyo satisfying A.

Since H (B)  00, one may apply results from the theory of HP-spaces
with p = 2 (e. g., the corollary on p. 172 of [10]) to each of the two integrals
above to conclude that

Next, by a well-known Paley-Wiener Theorem (see, e. g. [9], p. 174)
is the Fourier transform of a nonzero function cp such that

ey|03BB|03C6(03BB)~L2(R) for each |y|03C0 2. Thus, by Plancherel’s Theorem the

function H (y) is a positive multiple of cosh(2y03BB)|03C6(03BB)|2d03BB, which
is clearly strictly increasing in y..

To show that 1 is best-possible, let Dp denote the image of B under the
7T

0pl. Then a direct, but lengthy, com-

putation shows that .

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Alternatively, one may apply Theorem 3.4 below (see esp. example 3.6)
but perhaps the easiest way to see this is by means of a probabilistic
argument, which we sketch at the end of this section.

Since strict inequality always holds in (3 . 1) there are no extremal

domains, but domains such as DP above for p close to 1 may be considered
"near extremal". The following result shows that there are many near
extremal domains and provides some additional insight into how the
geometry of the domain influences the expected lifetime.

THEOREM 3 4. - Let D be a bounded convex domain which is symmetric
with respect to one of its diameters. Let R = R (D) denote the supremum of
radii of all open discs contained in D, P = P (D) the perimeter, and 0394 = 0394 (D)
the diameter of D. Then there exist points cx E aD and 03B2 E aD such that

Remark 3 . 5. - J. Xu [1 5] has shown that there is a positive constant y
so that

for all convex plane domains.

Proof of Theorem 3 4. - We may assume that D is symmetric with
respect to the x-axis and that there are points a and 03B2 on the x-axis so
that [a, P] is a diameter of D. For technical reasons it is convenient to

replace D with a slightly smaller convex domain having smooth boundary.
Thus, let D be a 1-1 conformal map of B onto D such 
D(1)==P. Let for 0pl, and let Dp be the image of B
under Op. Then Dp is also convex by Study’s Theorem (see, e. g. [12],
p. 224) and symmetric with respect to the x-axis.

- . Note that ’Pp maps S conformally onto Dp, is
real on the x-axis and maps the upper boundary of S to the upper
boundary of Dp. It is easy to check that Dp has a smooth boundary and
also that

is analytic in an open set containing the euclidean closure of S, (3 . 7)

) lP§ I is bounded on the euclidean closure of S, (3 . 8)

Vol. 29, n° 2-1993.
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and

Since the left-hand side of (3 .10) equals Ea i and the right-hand side
represents the limit of the analogous quantities for the Dp, it is sufficient
to prove (3. 6) for the domains DP, with the quantity A (Dp) replaced by
the length of the intersection of Dp with the x-axis. To simplify the
notation, we shall assume for the remainder of the proof that D = Dp for
some 0  p  1, and drop the "p" throughout.
Our method now is to find a lower bound for the second term on the

right-hand side of (3 . 3), i. e.,

Let u, v real, and note that, by (3 . 7) and the Cauchy-Riemann
equations,

Here all expressions are evaluated at O~~~Tr/2,
and K is the curvature of the curve ~ -+ ’P (t, y). Thus, since D is convex

we have  ~ ~y(|03A8’|2~0 for y=03C0 2; since ’P maps the x-axis to

the x-axis we have ~(|03A8’|2)=0 for y=0. On the other hand,
ly

=Re [.q"J 1- so that the =2K ~ is
12 2 

’ ’

harmonic on S, and bounded on S by (3.8). By the maximum principle

we may conlude for 03C0 2, -~x~.

Recalling that the expression in (3.11) is negative and integrating by
parts on y, we have

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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By Koebe’s distortion theorem

(See e. g., [14], p. 147, where the result is stated for the unit disc. The
version we use is easily obtained by conformal mapping.) Thus,

which completes the proof..

Example 3.6. - Take for D the rectangle C- ~ ~ 21 x C 2’ 21’ Thenby the proof of Theorem 3 . 4 
~ ~ ~ ~

We conclude this section by sketching a simple probabilistic argument
to show that long thin rectangles are near-extremal. For given E > 0 let Dn

denote the rectangle [ - En, n] [-03C0 2,03C02]. Let h (z) = ex cos y, so that h is
positive harmonic on Dn. Finally, let tn = We will show that E© tn ’" n

as n - ~, hence E© Dn 1-+ 1 as n - 00.

n(l+E)
The h-process Zt = Yt) started from 0 satisfies the stochastic differen-

tial equation

with Zo=0. Here Wt is a standard 1R2-valued Brownian motion started
from 0. Let 03B2t denote the x-component of Wt. Since the drift is given by
V/x ’

2014(z)=(l, - tan y), we have that and moreover, 
,

h 
( ) ( ~ .v)~ t at > >

(Note that Zt cannot leave Dn through the top or bottom boundaries
since h vanishes there.) Since both points - E n and n are accessible for
the 1-dimensional diffusion fl~ + t, it follows that oo . Thus, by Wald’s

Vol. 29, n° 2-1993.
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identity, E ~3~n = o. We conclude that

The desired result follows if we can show pð = n) - 1 as n ~ ~. One
way to see this is to note that -+ 0, a. s., as t - 00 by the strong law,
hence ~3t + t has sample paths which are almost surely bounded below.

4. THE DISC

As we have already indicated, the extremal domains in the best constant
problem are long thin rectangles. The opposite extreme to these domains
is the disc. We will explicitly compute the best constant in this case. By
the maximum principle of section 2, the worst case occurs on the boundary,
i. e. Brownian motion conditioned to go from one boundary point to
another. The first step is to show that the boundary points are diametri-
cally opposite. We will do this probabilistically, by a coupling argument.
We begin by recalling some basic facts about h-processes. Let D 1 and

D2 be two domains and C a 1-1 conformal map of D 1 onto D~. We
will write where z = x + iy and w = u + iv. If h2 is a positive
harmonic function in D2, then is a positive harmonic function
in Di. If Zt is an hi-process in D 1 then 03A6(Zt) is a time change of an
h2-process in D2; to be precise, there exists an h2-process Wt such that

As an immediate consequence, we have that

If we apply this with D1=B, D2 = ~ w : u > 0 ~, h2 (w) = u and

~ (z) _ ( 1 + z) ( 1- z) -1, we see that Furthermore the

h2-process W = (U, V) is very simple; U is a Bessel process of index 3
and V is an independent 1-dimensional Brownian motion. If we
let be the inverse of ~, and apply the above
in reverse, we can conclude that

where H is the half space M>0. and ’tH = 00 a. s., to show
that iB is maximized when Z starts at z = -1 is equivalent to showing

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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is maximized when W starts at w = O. Since we already know the maximum
occurs on the boundary, we only need consider starting points on the
imaginary axis u = O.

PROPOSITION 4 . 1. - Let w~ 
= iv~, j =1, 2, be two points on the boundary

of H such that I v21. Then on the same probability space, one can
define two h2-processes W and W 2 starting at w l and w2 respectively, such
that

Proof - Let W1 = (Ul, be an h2-process started at w 1 defined on
some probability space. Let

Define W~=(U~, V2) by U2 = U1 and

By the reflection principle V; is a Brownian motion starting at v2 indepen-
dent of U2. Thus W2 is an h2-process started at w~ and by construction
V; = V; and I V; I ~ for all t. Since

it follows that for all s,

from which the result is immediate..
As a consequence of the previous result we have that

Thus by the Poisson representation of positive harmonic functions in B

the best possible constant c B for the unit disk is 1 03C0 E1 1 which we now

compute. 
"

Vol. 29, n° 2-1993.
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PROPOSITION 4 . 2. - is = 4 log 2 - 2 ~ . 7726.

Proof. - Recall that by (3 . 2)

Among convex domains the disc is at the opposite extreme to the long
thin rectangles, i. e., it minimizes the perimeter for a given area. Thus it
seems reasonable to ask

Open Question. - Amongst all convex domains D of area x, is

minimized when D = B?
If we remove the convexity assumption then the result is false. Indeed

by an example of Xu [ 15] there are simply connected domains of infinite
area having sup E~ r as small as desired.

a, fi e D

It is interesting to note that in the case of unconditioned Brownian
motion (i. e., A= 1), the disc is in fact the worst case, i. e.,

and in the simply connected case, equality holds iff D is a disc. This is a
consequence of classical isoperimetric theory which says that the distribu-
tion function of the Green function is pointwise maximized over domains
of equal area only in the ball; see [1].

5. THE SUPERHARMONIC CASE

In this section we wish to establish (3 .1 ) in simply connected domains
with finite area in the plane when h is superharmonic with nonnegative

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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boundary values. See [7]. To do this it suffices by conformal mapping and
the Riesz Representation Theorem to prove the following result.

THEOREM 5.1. - Let F not identically zero be holomorphic in the unit
disc B with F e L2 (B). Then for all b e B

Our proof is based on a lemma that has a very close relationship with
Carleman’s generalization of the isoperimetric inequality [5]. Denote rd 9
by dc and

LEMMA 5.2. - Let F1, ..., Fn+l’ n =1, 2, ..., not identically zero be
holomorphic in B with F1F2...Fn+1 ~ L2(B). Then

Proof. - Let Fj(z)= 03A3 a(j)k zk, 1 - j _- n + 1. The square of the modulus
k=0

of the jo-th coefficient of F 1 (z)... (z) is

by the Schwarz inequality.
Let I denote the left side of (5 . 2). Integrating in 8 and using (5.3)

Vol. 29, n° 2-1993.
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By an induction on n >_ 1,

for all J >_ O. Thus

Proof of Theorem 5 . 1. - It suffices to take 0  b  1. Since

it follows that

Thus

Apply the lemma for each ~1 with F~=F~= ...F~+i= 201420142014.
Using the harmonicity of -2014’2014L m B

~l-&#x26;z~

Thus (5.4) is less than

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Now use the identity

valid for all 0~1. N

Remark 5. 3. - An alternative approach to Theorem 5. 1 would be to
obtain a maximum principle similar to the one in section 2 but with both

points lying in the interior. Unfortunately, we have been unable to prove
this.

Remark 5.4. - The proof of Lemma 5.2 is a generalization of Carle-
man’s proof when n =1 and the log and the weights (1- z|2)n are not
present. Many different lemmas of this type may be stated. This one
is devised for Theorem 5.1. In [4] Beckenbach and Rado generalized
Carleman’s result to deal with integrands that are logarithmically sub-
harmonic.

Carleman’s result can be used to give an alternative proof of Theo-
rem 3 .1, which we very briefly sketch below leaving the details to the
interested reader. Using Carleman’s isoperimetric inequality, the Cauchy-
Schwarz inequality, and the coarea formula, we have

The second inequality is strict except when F is a constant multiple of

201420142014, i, e., the derivative of the conformal map taking B to an infinite

strip. This is consistent with the observation that long thin domains are
extremal for the expected lifetime. Furthermore in this case

is the Jacobian of a linear fractional transformation. The isoperimetric
inequality is then also sharp since the t ~ are discs.

Vol. 29, n° 2-1993.
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Remark 5. 5. - A simple computation shows that K -1 is logarithmi-
cally harmonic. Hence, by conformal mapping, given any two kernel
functions K°‘, KP for a simply connected domain D c R2, is loga-
rithmically harmonic. Thus

for all zeD. More generally, given any kernel function K and any positive
harmonic function h for D, h/K is logarithmically subharmonic. This is
because when transferred to the disc, by the Poisson integral representa-

tion, h/K has the representation I(z)= f" |F03B8(z)|2 d (03B8) where Fo (z) is

holomorphic in B for each 8 and dJl is a positive Borel measure. Taking
the log and then applying the Laplacian yields

which is positive by the Schwarz inequality. As a consequence

Given an h-process the quantity ~h is called the drft. We have thus
h

proved the following.

PROPOSITION 5. 6. - In a simply connected domain D c [R2 the magnitude
of the drift at a point z e D is maximized over all positive harmonic functions
h in D precisely by the kernel functions, and this maximum is attained by
the drift associated with every kernel function for D.

Remark 5. 7. - The quantity G03B1(z)G03B2(z) G03B1(03B2) dm (z) can be obtained as
the limit of quantities D G« ( ~)

where BE is a small disc shrinking to a point and 03B2 e aBE. Thus 1 /03C0 is the
best constant in the lifetime inequality with terminal point on the boundary
in a doubly connected domain when the hole is small enough. Saying
anything more than this about the best constant in multiply connected
domains’ is an open problem.
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