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Non-polar points for reflected Brownian motion

Krzysztof BURDZY and Donald E. MARSHALL
Mathematics Department, GN-50,

University of Washington, Seattle, WA 98195, U.S.A

Ann. Inst. Henri Poincaré,

Vol. 29, n° 2, 1993, p. -228. Probabilités et Statistiques

ABSTRACT. - For each measurable function e: IR -+ [ - ~/2, ~/2], a

reflected Brownian motion X in a halfplane with the variable angle of
reflection e (x) is constructed. A new class of exceptional points on stan-
dard Brownian paths is studied. It is related to the problem of whether X
hits a fixed boundary point. -

Key words : Brownian motion, reflected Brownian motion, polar sets.

RESUME. 2014 Pour chaque fonction mesurable e: R - [ - x/2, ~/2], on
construit un mouvement brownien reflechi X dans un demi-plan avec un
angle variable de reflection 8(~). On etudie une nouvelle classe de points
exceptionnels sur le chemin brownien usuel, reliee au probleme de
determiner si X atteint un point fixe sur le bord.

1. INTRODUCTION AND MAIN RESULTS

Our main results are

(i ) a new construction of reflected Brownian motion X in a half-plane
with non-smooth angle of oblique reflection and
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200 K. BURDZY AND D. MARSHALL

(ii ) a theorem on existence of some "exceptional" points on the paths
of the standard 2-dimensional Brownian motion.

The link between these two seemingly disparate results will be formed
by some theorems related to the following question.

(iii) Which points are hit by the reflected Brownian motion X with
positive probability?

In order to state our results we introduce some notation. Let

identify 1R2 with C and aD * with R and suppose
that 9 : R - ( - x/2, ~/2) is C2. Then we may construct a reflected Brownian
motion in D* with the oblique angle of reflection 9 in the following way
[see, e. g., Rogers ( 1991 )].

Let Y = Y 1 + iY 2 be a standard 2-dimensional Brownian motion,

Then the equation

has a solution, possibly exploding in a finite time R. The process

t E [0, R), is the reflected Brownian motion in D*
with the angle of reflection e (x) measured in the clockwise direction from
the inward pointing normal at x.
We will consider the space of RCLL (right continuous with left limits)

functions equipped with the M 1 topology defined by Skorohod (1960).
The original definition deals with the functions defined on [0, 1] and can
be extended in an obvious way to an arbitrary non-random interval [0, tl.
We have to further extend the definition to functions defined on random

time intervals. We will say that processes Xk converge a. s. to X in M 1
topology if

(i) X and Xk, k >_ 1, are RCLL;
(ii ) X is defined on a random time interval [0, R), each process Xk is

defined on an interval [0, Rk) and Rk -+ R a. s.; and

(iii) for every fixed s>0 and Xk converges to X in the Mi-
topology of Skorohod (1960) on the interval [0, 0 v ((R- s) A a)] a. s.
Note that for every Borel measurable function 8: ~ -~ [ - ~/2, Tt/2] there

is a sequence of C2 functions 0~ : R - (- x/2, x/2) which converges to e
almost everywhere.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



201REFLECTED BROWNIAN MOTION

THEOREM 1.1. - Suppose that 8 : IR --+ [ - ~/2, 1[/2] is Borel measurable
and the functions 8k : [R --+ ( - ~/2, ~/2) are C2 and converge almost every-
where to 8 as k - ~. Then, on some probability space, there exists a

sequence of processes {Xk ~k > 1 such that
(i) for each k, Xk is a reflected Brownian motion with the angle of

reflection 8k and
(ii) Xk converge a. s. to a process X in M i topology.
Note that if X and X are the limit processes corresponding to two

different approximating sequences {03B8k} and {k} then the distributions
of X and X are identical since the theorem may be applied to the sequence
{81, 82, 82.... }.
We will consider Theorem 1.1 as the definition of the reflected

Brownian motion with an arbitrary measurable angle of reflection

8 : R - [ - x/2, 7T/2]. We are not going to present in this paper any other
characterization of X as a reflected Brownian motion, for example, as a
solution to a submartingale problem or as a solution to equations anal-
ogous to ( 1.1 )-( 1. 2). We plan to discuss these questions in a future article.
However, we will briefly indicate in Remark 2.2 how it may be proved
that the process X is strong Markov.
The process X is continuous if and only if there are no non-degenerate

intervals on which we have almost everywhere 8 = x/2 or 8 = - x/2; this
will be easily seen from our proof of Theorem 1.1.

If the limiting process X is continuous then Xk converge to X in the
topology stronger than Mi, namely uniformly on [0, 0 v ((R-s) A a)]. If
X is discontinuous then the convergence does not hold in Ji or J2
topologies of Skorohod ( 1960) (which are stronger than Mi) because
continuous functions cannot converge to a discontinuous one in either
one of these topologies.
Now we turn to exceptional points on Brownian paths. We will need

some more definitions and notation. A domain (i. e. an open and connected
set) will be called monotone if x + ib E D whenever x E D and b>O.
For a Greenian domain D, its Green function will be denoted GD ( . , . ).

For a monotone domain D, let

Let h = hD be defined by

The function h may be characterized as the (unique) bounded harmonic
function in D which is equal to |Re x| on 1is (see Lemma 3 .1 ).
For 8>0 let be the smallest non-increasing non-negative

function satisfying

Vol. 29, n° 2-1993.



202 K. BURDZY AND D. MARSHALL

Suppose that D is a monotone domain and xeD. Then x + ai converges
as a - oo to a prime end (independent of x) which we will call oo . Let

df

Rez=O, Imz>0}. If 0 ~ ~D and 1* c D then ai converges as
a ], 0 to a prime end which will be denoted 0 [see Pommerenke (1975) for
the definition of prime ends].

Suppose Y is a standard 2-dimensional Brownian motion and D is a
monotone domain such that 0 E aD and 1* c D. We will say that Y (to) is
a D-point if and there exists ’ to) such that Re Y (to) = 0 and
Y (tl, to) c D + Y (to). Here D such that ~+x=z}. We
will call Y (to) a right D-point if Y (to) is a D-point and for some tl E (0, to)
we have Re Y (s) > 0 for all to).

THEOREM 1. 2. - Suppose D is a monotone domain, 0 E aD and 1* c D.
(i) The standard 2-dimensional Brownian motion has D-points with posi-

tive probability (and, therefore, with probability 1) if and only if

(ii) The standard 2-dimensional Brownian motion has right D-points with
positive probability (and, therefore, with probability 1) if and only f for
some E>O

We will show in Remark 3 . 2 below that ( 1. 4) fails if and only if

It is not easy to verify ( 1 . 4) for an arbitrary domain so let us point
out some cases when this can be done. Suppose that

for some Then D-points do not exist by
Theorem 2 .1 (iii ) of Burdzy (1989); one can also relatively easily check
that ( 1. 4) is not satisfied. The property of having D-points is monotone
in D so we may want to consider domains of the form

where a E R and g : R - I~ is a non-negative Lipschitz function such that-

then D has an angular derivative at 0 [see Burdzy (1987, Definition 9 .1 )]
and we may show as in the proof of Theorem 1.4 (i), using Theorems
8 . 2 and 9 . 2 of Burdzy (1987), that ( 1. 4) does not hold; the converse is

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



203REFLECTED BROWNIAN MOTION

not true, i. e., ( 1. 4) need not be satisfied for domains of the form ( 1. 7)
even if ( 1. 8) fails. It would take too much space to present an example
to this effect. If I for some al > 0 then D-points exist by
Theorem 2.1 of Burdzy (1989).

Suppose for a moment that i5 = D. The ratio GD (E i, y)/GD (i, E i) con-
verges to the Martin kernel in D as E -+ 0 [see Doob (1984)].
Hence, by the Fatou lemma, ( 1. 4) implies

It seems that the converse is false. Let where

f is a function defined as in Lemma 2.1. Then

seems to be equivalent to (1.4). Our proof is long and complicated and
therefore we omit it.

Measurable functions 8 : ~ -~ [ - ~/2, ~/2J correspond to monotone

domains D ~ C. Lemmas 2.1 and 2.2 describe precisely the nature of
this correspondence and we briefly discuss it here. For a monotone domain
D ~ ~ there exists a univalent function f mapping D * onto D and such
that for almost all xEaD*, f’ (x) exists in the sense of the angular
limit and belongs to [ - ~/2, .~/2J. We let a (x) = arg f’ (x). Conversely, if
8 : R - ["7T/2, x/2] is given then there exists a univalent function f which
maps D* onto a monotone domain and such that for
almost all x. It should be emphasized that the correspondence between
a’s and D’s is not one-to-one. Our next result exploits this relationship
between 8’s and D’s. Let

with the convention inf 0 = 00.

THEOREM 1. 3. - Suppose that
(a) a measurable function 8: R - [ - ~/2, ~/2] is given and a monotone

domain D and a function f : D* -+ D are defined as in Lemma 2 . 2; if it is

possible, D and f are chosen so that 0 E aD, 1* c D and f (o) = 0;
or

(b) a monotone domain D is given; 0 ~ ~D, 1* c D and f : D* ~ D and
8 (x) = arg f’ (x) are chosen as in Lemma 2 .1 so that f (o) = o.

Under any of these assumptions we have the following.
(i) The reflected Brownian motion in D* with the oblique angle of reflec-

tion 8 hits 0 with positive probability if and only if 0 E aD, 1* c D and the
standard 2-dimensional Brownian motion has D-points a. s.

Vol. 29, n° 2-1993.



204 K. BURDZY AND D. MARSHALL

(ii) The reflected Brownian motion X in D* with the oblique angle of
reflection a hits 0 with positive probability and approaches it from the right,
1. e.,

(1.9)

if and only if 0 E aD, 1* c D and the standard 2-dimensional Brownian
motion has right D-points a. s.
Smooth a’s correspond to D’s with smooth boundaries and vice versa.

Hence, it may be interesting to have a look at D’s with highly irregular
boundaries, for example, at a domain D which lies above a "typical"
graph of a 1-dimensional Brownian motion. What can we say about the
corresponding a and reflected Brownian motion X in this case?
Theorem 1.4 (iii) and its proof provide some information about this

process.

Suppose that reflected Brownian motion X in D* with the oblique angle
of reflection a satisfies X (0) E D~ a. s. Let ~/ be the set of all non-polar
points for X, i. e., the set of all points such that

How large is the set d? The answer depends on 8 and we start our
discussion with a few examples.

Example 1.1. - (i ) IfO(x)=O for all x then X has the normal reflection
at aD* and it is well known that d= 0.

(ii ) Fix some a>O and let 8(0)=0, 8(x)=a for x  0 and 
for x > 0. by the results ofVaradhan and Williams (1985).

(iii) An easy modification of the previous example shows that for
some 0, j~ may be equal to the set of all integers.
Can d be uncountably infinite? Can d be equal to aD*?
Let À denote the Lebesgue measure on 

THEOREM 1.4. - (i) ~({~e~:e(Jc)6(-7T/2, 71:/2)})==0~ every 9.
(ii) For every 0, the set is dense in 

(iii) There exists 0 such that ~, (ID~Es/) = O. One can choose 0 so that
all of the following conditions are satisfied.

(a) For every a  b

and

(b) There is a set Jt’ c d such and for every 
X can approach x from one side, i. e., for each x E ~ we have either

and ~e>0: ReX(t)x for all T{x}))>0

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



205REFLECTED BROWNIAN MOTION

or

(c) The process X is recurrent and so 
’

(cl) 

The reflected Brownian motion X discussed in Theorem 1. 4 (iii ) is
continuous despite the fact that 6 (x) ~ = ~/2 a. e.; the reason is that e is
not constant on any interval.

In view of Theorem 1. 4 (iii) (c2) we propose the following

PROBLEM 1.1. - Does there exist e such that for some set ~ c aD*
we have ~, (aD *B~) = 0 and

A construction of reflected Brownian motion with non-smooth angle of
reflection was presented by Tsuchiya (1976, 1980) under the assumption
that for some E>O. In recent articles, Motoo ( 1989,
1990) presented a more general construction. See also Takanobu and
Watanabe (1988).
Theorem 1. 2 is a more accurate version of Theorem 2.1 of Burdzy

( 1989).
The question of whether the reflected Brownian motion in a wedge

hits the vertex was treated by Varadhan and Williams (1985) under the
assumption of the constant angle of reflection on each side of the wedge.
Rogers (1991) attacked the same problem for reflected Brownian motion
in a half-plane with a variable angle of reflection of class C 1 and obtained
some partial results. The complete solution of the last problem was
obtained independently by Rogers ( 1990) and Burdzy and Marshall ( 1992).
A perfectly explicit integral test in terms of 0 determines whether the

process hits a fixed boundary point with positive probability. The same
test applies in our present context, i. e., when 8: R - [ - ~/2, ~c/2] is allowed
to be any measurable function. We omit the proof as it does not require
any new ideas.

Let us briefly discuss the sources of our techniques. We use conformal
mappings in the manner of Rogers (1989, 1991). A connection between
reflected Brownian motion and standard Brownian motion goes back to

Levy (1948) in the 1-dimensional case. El Bachir (1983) and Le Gall
(1987) adapted the idea to the 2-dimensional processes. The proof of
Theorem 1. 2 (i ) uses an idea of Davis (1983).
We would like to express our gratitude to Chris Bishop, Joe Glover,

Ron Pyke, Chris Rogers, Michael Sharpe and Ruth Williams for the most
valuable advice.

Vol. 29, n° 2-1993.
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2. A CONSTRUCTION OF REFLECTED BROWNIAN MOTION

The set

is called a Stolz angle. Suppose f is a function defined on D*. If the limit

exists for every then it is called the angular (or non-tangential )
limit of f at x and denoted f(x). In particular, the angular derivative f’ (x)
is defined as the angular limit off’ at x, if it exists. If f : D~ -~ C is analytic
and f (x) exists for some x E oD* then f’ (x) exists if and only if the angular
limit of the function z -~’f (z) exists; if both limits exist then they

z-x

are identical [Pommerenke (1975, Theorem 10.5)].
LEMMA 2.1. - Suppose that D is a monotone domain with non-empty

complement. Then there exists a univalent analytic mapping f of D* onto D
df

such that f(x) and f’ (x) exist, f’ (x) ~ 0 and e (x) = arg f’ (x) E [ - ~/2, 
for almost all x E If 0 is a prime end of D, we may choose f so that

lim 

Proof. - Choose regions Dk c D such that Dk c UDk=D, and
such that aDk is the graph of a smooth function, k = 1,2, ... Fix w0 ~ D1
and choose zo E D* and conformal mapsfk ofD~ onto Dk withfk(zo)=wo

Likewise, let f map D * conformally onto D with f (zo) = wo
and f’(zo»O. Then, by Theorem IX .13 of Tsuji (1959), the sequence

converges to f normally on D* (i. e., uniformly on compact subsets
of D *). Since for xEaD*, we conclude for zED*.
Taking normal limits, clearly Re f’ (z) > 0 for zED*. Thus we can choose
a branch of arg so that arg f’ (z) E ( - ~/2, ~/2) for all z E D*. By Corollary
2. 6, p.114, of Garnett (1981), f’ E HP for all p  1. Thus, by Theorem 2 . 2,
p. 17, of Duren ( 1970), the angular limits f’ (x) exist a. e. and by Corollary
4. 2, p. 65, of Garnett (1981) are non-zero a. e. By Theorem 5.12, p. 88,
of Duren ( 1970), f E Hq for all q  oo and thus the angular limits f(x) exist
a. e.

As for the conditions f(O) = 0 and f ( oo ) = 00, it is well known that the
value of the function f at two boundary points (even three boundary
points) may be chosen in an arbitrary way. D

In order to avoid trivialities we will assume from now on that

e (x) is neither identically equal to - x/2
nor identically equal to x/2. (2 . 1 )

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



207REFLECTED BROWNIAN MOTION

LEMMA 2. 2. - Suppose that 6 : ~ -~ [ - ~/2, ~t/2] is a Borel measurable
function. Then there exists a univalent analytic mapping f of D* onto a
monotone domain D such that f(x) and f’ (x) exist, f’ (x) ~ 0 and
arg f’ (x) = 8 (x) for almost all We may choose f so that
lim I . f (Z) 1=00.

Proof - Let e: D* --~ R be the bounded continuous harmonic extension
of our original function S: R - [-03C0/2, 03C0/2] and let  be the harmonic
conjugate of S such that 0 (i) = o. Define f : D* -+ C by setting f(i) = i and

Since we assume (2 . 1 ), e (z) E ( - x/2, ~/2) for all z E D * . Hence,

As in the proof of Lemma 2.1, the angular limits f (x) and f’ (x) exist
and f’ (x) # 0 for almost all x E Let y (t) = tz + (1 - t) w where z, we D~.
Then y’ (t) = z - w and

Since the real part of the last integral is strictly positive, j(z) = f (w) if and
only if z = w. In other words, the function f is univalent.
To see that D is monotone, e>0. By (2 . 2),

when Im z=lm w. Thus Re fE (x) is increasing on The curve

df

is an analytic Jordan curve. It must divide
the plane into two regions, since £ extends to be univalent in a neighbor-
hood of aD*. The boundary of fE (D*) must be contained in ’Yt U ~ 00 },
and thus is monotone. Since ~ is arbitrary, D = f (D*) is also
monotone. 0

LEMMA 2. 3. - Suppose that e: R - [ - ~t/2, ~/2] is measurable and
R - ( - ~/2, ~/2) are C2-functions which converge almost everywhere to e

as k - ~. Let D, f correspond to e and Dk, fk correspond to 8k in the same
way as in the proof of Lemma 2.2. The monotone domains Dk converge to
D in the following sense.

(i ) If B is open and such that B n 0, there is a ko = ko (B) such
that B n 0 for all k ? ko.

(ii) If B is connected and open, with B n D ~ 0 and B c Dk for infinitely
many k, then BcD.

(iii) If K is compact and K c D then K c Dk for all k >_ ko = ko (K).

Vol. 29, n° 2-1993.



208 K. BURDZY AND D. MARSHALL

Proof. - By the Koebe-1 /4 theorem, Theorem 2 . 3, p. 31, of Duren
(1983) and Schwarz’s lemma, if g is univalent

for all Z E D*, where dist (a, K) is the Euclidean distance from a to the

set K.

for all weD. Actually the 4’s can be removed in the above inequalities,
for choose weD aD). By the above
inequalities applied to w,

Thus lim dist (~, aDk) = dist (Ç, aD) for all ~ E D.
k - 00

To prove (i), take w i ED n B with dist (wi, ~D)  dist (wl, 5B)/2,
and let f(zl)=wl. For aB)/2, and

Thus dist (wl,  3 dist (w i , aB)/4, pro-
ving lD~ n for 

Statement (ii ) follows from statement (i ) for if B 41 D, then B n 0.
’ 

To prove (iii), note that K ~ af .f -1 (K) is a compact subset of D~. Choose
a large open disc A with and Ki c A. The sequence {fk}
converges uniformly on 0394 to f For some E > 0 and all k>ko,

K) >_ E. The winding number n ( fk (a0), w) converges to

w) =1 uniformly for w e K. Since winding numbers are integers,
K for all k >- ko . D

Remark 2 .1. - (i ) It follows from Lemma 2 . 3 (i ) that if x ~ ~D then
there exists a sequence { such that xk E aDk and xk -> x.

(ii) If XkEODk then xk’s cannot converge to any point xeD, by
Lemma 2 . 3 (iii ).

(iii) Lemma 2. 3 (ii ) is false if the assumption B U D # 0 is removed.

Proof of Theorem 1. l.

Step 1. - First we will establish a relationship between reflected
- Brownian motion in D*, standard Brownian motion and monotone

domains. In this step we will assume that 8 : f~ ~ ( - ~/2, x/2) is of class

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



209REFLECTED BROWNIAN MOTION

c2. Let be a mapping corresponding to 9 defined in
Lemma 2. 2. Since 9 is of class C2, the mapping f is C2 on D*. This may
be proved as in Step 2 of the proof of Theorem 1.1 of Burdzy and
Marshall (1992).

Let for that is let V (x) be the vector of
reflection. We may write ( 1.1 )-( 1. 2) as

and the Ito formula yields

where f’ is interpreted as the Jacobian of f. The process X spends zero
-t

time on aD* and f is analytic outside aD* so f(X (o)) + f’ (X (s)) dYs is
a time-change of a Brownian motion Z, i. e., it is equal to Z (c (t)) where

vv

Note that c(0)=0 and c is continuous and strictly increasing because
for The local time L does not increase unless X is

at the boundary ofD~ and for so

has null real component. Let us time change the process in (2. 3) ; in other
words let us define

Then we have

Hence, W is a reflected Brownian motion in D with the vertical vector of
reflection.

. We will provide a different representation of A (t), following Skorohod
( 1961 ) [see Lemma 3 . 6 .14 of Karatzas and Shreve (1988)]. Recall that
D = f (D*). We will show that

Vol. 29, n° 2-1993.



210 K. BURDZY AND D. MARSHALL

First note that

Let A(0 be the right hand side of (2 . 4). It is immediate that both A (t)
and are non-decreasing and continuous, they both satisfy (2. 5),
A(0)=A(0), and and Z(t)+iA(t)ED for all t.

Suppose that for some Let

Then

for t E (to, and, since D is monotone, Z (t) + i A (t) E D for t E (to, tl). By
(2 . 5), A (t) does not increase between to and ti, so A (to) = A (tl). Then

This is a contradiction and it shows that A (t) _ A (t) for all t. For similar
reasons A (t) -_ A (t) and (2 . 4) is proved.
The mapping of {X (t), 0  t  R } onto {Z (t), 0 _ t  ~} is one-to-one

a. s. so the above reasoning may be reversed. Suppose 8: [R -~ ( - x/2, x/2)
is C2 and let f: D~ -~ D be the corresponding mapping defined as in
Lemma 2 . 2. Suppose that Z (t) is a standard 2-dimensional Brownian

motion, Z (0) ED and A (t) is defined by (2 . 4). Let

The function ( f -1 )’ is bounded away from 0 and oo on bounded subsets
of D, so a (t) may be infinite only if lim W (s) = oo . Hence X (t) is well-

s -~ t

defined until possible explosion, i. e., on a random time interval [0, R)
such that lim X (s) ( = oo . The process X is a reflected Brownian motion

s - R

in D* with the oblique angle of reflection e.

Step 2. - Now suppose that 9:[R-~[20147c/2, 7r/2] is Borel measurable
and that R - (2014 7~/2,7t/2) are C2 functions which converge almost
everywhere to e as k - oo . One way of constructing such a sequence is as
follows. Extend e to be bounded, continuous and harmonic way on D*
and let for xEaD* [recall our assumption (2.1)].

Let Z be a standard 2-dimensional Brownian motion and let f, A, W,
a and X be defined in the same way as in the last part of Step 1. Define
he, Ak, Wk, 6x and Xk in the analogous way relative to Z and 0~. We do

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



211REFLECTED BROWNIAN MOTION

not know any more whether a takes finite values so at this point X (t) is
well-defined only for some values of t.
We will prove in this step that W~(t) - W (t) a. s. for every t. It is

obvious that ReWk(t)ReW(t) as koo. It will suffice to show that
Ak (t) - A (t) a. s. Fix some t> o.

Suppose that A (t) = oo . Let to be the smallest s such that A (s) = oo .
Note that to  t a. s. We must have

for all a E R, 8>0, and, by Lemma 2. 3 (i ),

for all E>O and k>ko (a, E). With probability 1, Z(0, t) contains a
closed loop around Z (to). It follows that lim Ak (to + E) = oo a. s. for every

k -~ 00

E > 0 and since to  t a. s., we have lim Ak (t) =00 a. s.
k -~ 00

Now suppose that A (t)  oo. Then W (t) E D a. s. because Z (0, t) contains
a closed loop around Z (t). Let

Note that a (t)  t a. s.

- - df

First we will show that A (a (t) + ) >_ A (a (t)) where A (s) = lim inf Ak (s).
k ~ o0

If a (t) = 0 then A (oc (t) + ) >__ o = A (o) = A (a (t)). Suppose that a (t) > 0 and
df -

so xl df Z (a (t)) + i A (a (t)) E aD. Assume that A(a.(t)+ )A(a.(t)). Then,
for some Eo>O and all EEo and Ö=8(E»0 the interior of the set

is contained in

for infinitely many k. For each rational s  t, W (s) E D a. s. because Z(0, t)
contains a loop around Z (s). Hence B(s)~D~0 and, by
Lemma 2 . 3 (ii ), B (s) c D and

It follows that
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Therefore the line segment J joining xi and x2 lies in aD. By
Remark 2.1 (i ), there exist vertical line segments Jk c D~ with endpoints
converging to x1 and x2 as k - oo .
Now we consider two cases. In the first case the range of the process

intersects both intervals

and

for every s>0. Then lim because Wk(t) cannot
k - oo

intersect Jk. In the opposite case Re Z has a local extremum at a (t). This
event has probability zero, because ex (t) corresponds to a vertical line
segment J in aD and there is only a countable number of such line

segments. This completes the proof We deduce
that

Now suppose that lim sup Ak (t) > A (t). We will prove that this assump-

tion leads to a contradiction. By passing to a subsequence if necessary we

may assume that lim ak (t) af oc (t) and lim Ak (t)) af (t)) exist. We
k - 00 k - 00

have

so A(x~))-A((x(~))>0. The fact that W (a (t)) E D and the definition of
A imply that for all &#x26;>0. The 

converges to W (oc (t)) + i (~ (oc (t)) - A (oc (t))) and its elements belong to
lD~ so its limit belongs to D~, by Remark 2.1 (ii ), which is a contradiction.
This completes the proof that Wk (t) - W (t) a. s. for every t.

Step 3. - In order to simplify the argument, we will assume that
There will be no loss of generality. Fix some and let

It is possible that T = oo with positive probability. First we will assume
that T  oo a. s. and show that
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Suppose that (2. 6) is not satisfied. By passing to a subsequence if necessary
we may assume that there exists a sequence { such that tk - too E [0, S]
and Wk (tk) - a i >__ a. By assumption,

Recall that the functions Ak (u) are monotone and they converge a. s. to a
monotone function A (u) simultaneously for all rational u. It follows that
with probability 1,

If A is continuous at too then

and this contradicts (2. 7).
If A has a jump at too then and Since

lim + ), any cluster point of Wk (tk) must be contained
k - 00

in D~. It follows that 0 which again is a contradiction.
This completes the proof of (2. 6).
We proceed to prove that lim crk (t) = a (t) a. s. for every t. Fix some

s > 0 and define stopping times

Let

and define rk (s) by

Note that rk (s) is well defined for since is a

strictly increasing function on (0, Uk+ 1)). By the strong Markov
property of W applied at Tk’s and the conformal invariance of Brownian
motion, the processes
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are independent 1-dimensional Brownian motions starting at s>0 and
killed upon hitting 0. Let

It is evident that when s - 0 the distribution of Tg converges to the
distribution (say, 2) of the starting time of the first excursion of height
greater or equal to a of reflected 1-dimensional Brownian motion. More-
over, Tg - 6 (S) a. s. as E - 0. Hence a (S)  oo a. s. and by considering all
a > 0 we see that o is finite for all t.

Since Wk (t) - W (t) a. s. for every t, the Fatou lemma implies that 
.

lim sup crk (t) ~ o (t) a. s. for all t. It follows from (2 . 6) that the starting

points Vk of the first excursion of height greater or equal to a of Im Xk
converge a. s. to 6 (S) and by the same argument as in the case of a (S),
each Vk has the distribution This and lim sup ak (S) ~ o (S) imply that

k - 00

If lim sup 6k (t) ~ o (t) + a then lim sup (7~ (s) ~ a (s) + a for all s >_- t. This
k - 00 ~ ~ 00

and (2 . 8) applied for all a > 0 show that lim crk (t) = a (t) for all t a. s.
k ~ 00

The case when T = oo with positive probability may be treated in a
similar way.

Step 4. - Now we will prove that Xk -+ X in M 1 topology.
Since A is non-decreasing, it has at most a countable number of

jumps. We have proved that Wk (t) - W (t) a. s. for every t. It follows that
Wk (t) -~ W (t) for almost all continuity points of W, with probability 1,
by the Fubini theorem. Since for all t a. s., we see that

Xk (t) - X (t) a. s. for every continuity point of X. This shows that the
condition 2.3.3 (a) of Skorohod (1960) is satisfied. In view of his

Theorem 2.4.1 all that remains to be shown is condition 2.4.1 (b).
We will assume that the condition fails, i. e., there exist sequences

such that and the

distance dk from Xk (t;) to the line segment Xk (t~ )] does not

converge to 0 as k - oo . By passing to subsequences, we may assume that
the following limits exist:
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If is a point of continuity of W then it is easy to see that

xi == ~ = ~3 and 

Suppose that W has a jump at and let J be the line segment

It can be shown using arguments similar to those in the previous steps
that any cluster points zJ (~)), y= 1,2,3, can lie only on J c aD
and, moreover, by monotonicity of Ak’s, z2 lies between zi and z3. The
mapping f-l takes J into a line segment on oD* and it follows that

d= 0. D .

Remark 2. 2. - Let us indicate how one may prove that X is a strong
Markov process.

Let Z and A be defined as in Step 2 of the proof of Theorem 1 . 1. The
Brownian motion Z is strong Markov and so is the vector (Z, A) since
A (t) is defined in terms of Z (s), s  t. The process W is a function of
(Z, A) and it is clear that the distribution of {W (s), s >_ to ~ depends only
on W (to) = Z (to) + i A (to) but otherwise it does not depend on the values
of Z (to) and A (to). By Theorem 13. 5 of Sharpe (1988), W is strong
Markov. The process X is obtained from W by first applying a one-to-
one mapping and then a time-change. According to Theorem 65.9 of
Sharpe (1988) the second operation preserves the strong Markov property.
In order to make this argument rigorous one would have to verify carefully
the assumptions of Sharpe’s theorems and analyze the extension of

f : D* -+ D to a univalent mapping of D* onto the Martin compactification
of D. We postpone this discussion to a future article.

3. EXCEPTIONAL POINTS ON BROWNIAN PATHS

Evidently, the existence of D-points depends only on the local properties
of D near the imaginary axis so we will assume without loss of generality
that for all z E D, i. e., i5 = D.

In this section, P~ and EZ will denote the distribution and expectation
corresponding to the standard 2-dimensional Brownian motion starting
from zeC and Y will denote its trajectories.

LEMMA 3 . 1. - The function h defined in (1 . 3) satisfies
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Proof. - Let g (z) be the function on the right hand side of (3.1).
Then ] on aD. It is easy to see that both g and hare
bounded so it will suffice to show that they are harmonic in D. It is a
standard fact that g is harmonic in D and h is obviously harmonic in
DBI. All that remains to be shown is that h satisfies the mean-value
property at each point ibo E I. (In this proof z will stand for a complex
number and bo, b, r and (p for real numbers.)

Fix some ibo E I and choose r > 0 so that for every po
Elementary calculations show that

If then GD ( . , ib) is harmonic and, by the
mean value property,

If  r, write

where f is harmonic in D. Thus for 

Note that

and the function I is harmonic in {z:~l} since
bo-b

r> ] bo - b ]. Hence the last integral in (3.4) is equal to log 201420142014 . . We
bo-b

have 
.
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Now we combine (3 . 2)-(3 . 5) to obtain

Remark 3 . 1. - The following probabilistic argument may elucidate the
relationship between formulae (1.3) and (3. 1). We leave it to the reader
to supply the rigorous justification of the argument.
The local time of Y on I [say, L (t)] is also the local time of IRe Y /

at 0. The process is a Brownian motion and hence
a martingale. By the optional sampling theorem and Theorem V. 1 of
Revuz (1970)

Let D1= ~ z E C : Re z > 0 }. Recall that D stands for a monotone domain
and dE, was defined in Section 1. See Doob ( 1984) or Burdzy ( 1987) for
the definition of minimal thinness and its relationship to Brownian motion.

LEMMA 3 . 2. - The set D‘ n Dl is minimal thin in Dl at 0 if and only if
there is an E > 0 such that 

’

Proof - (i ) Suppose that (3 . 6) is satisfied for some s>0 and let

By Theorems 9.1 (b) (ii ) and 9 . 2 (i ) and (iii) of Burdzy (1987), 
is minimal thin in D i at 0. Since for some neighborhood U of 0 we have

DC n D 1 is also minimal thin in D 1 at 0.
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(ii) Now suppose that (3 . 6) is not satisfied for any 8>0. Let

and let dk : R - R be the smallest non-increasing non-negative function
such that

Let

Note that dk = so

for every k. By Theorems 9.1 and 9.2 of Burdzy (1987), for each k, the
set D 1 BDk is not minimal thin in D 1 at 0.
For xED1, P ) will denote the distribution of a Brownian motion Z

in D 1 starting from x and conditioned by the harmonic function

Since the set is not minimal thin in D 1 at 0 it follows that

inf ( s > 0 : Z (s) e D( ) = 0, P )-a, s . [Doob (1984, Theorem 3 . III . 3)] and,
therefore, there exists t = t (k) > 0 such that P f (T (t)  oo) > 1 /2.
For each there is an a >_ Re x such that 

’

By symmetry, the process Z under P f, will hit the 
with equal probability below and above a+ ilm x. Hence by the strong
Markov property applied at T (t), the P0f-chance of hitting Mk is at
least 1 /4. Let k - oo to see that
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exist constants such that for all x E D

The density of T (J) under Ex is given by [Theorem 7. 5. 3 of Karlin and
Taylor (1975)]

where xl Then

On the other hand, with u = t/xi,

Step 2. - In this step we will estimate the expectation of another
stopping time. Let

We will prove that for some c2  oo we have

for xeD n J. First, observe that T3 >_ T4 - T (D~). Use this fact, the strong
Markov property applied at T (DC), (3. 7) and Lemma 3 . 1 to see that
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We also have

The same reasoning which leads to (3. 8) yields

The process (Re Y (t))2 - t is a martingale so by the optional sampling
theorem we have for a  00

By the dominated convergence theorem and the monotone convergence
theorem we can let a ~ ~. Since for z ~ ~D, we have by
Lemma 3.1,

By combining (3 . 9)-(3 .11 ) we obtain 
Step 3. - Choose 8>0 so small that the set

is contained in D. Let e denote the usual shift operator for the Markov

process Y and let

Fix some s > 0. Let To = 0 and

A moment’s thought confirms that for every s>0 so

Ao c n Ag. Now suppose that n Ag holds, in particular, for every
S>0 £>o

positive integer m, the event Al/m holds. Let k = k (m) be the smallest k
such 1} n Bk holds with E =1 /m. By compactness, a subsequence
of ~ T k ~m~ ~ m > 1 converges to a point to E [0, 1]. It is easy to verify that to
satisfies the definition of Ao. We conclude that n Ag c Ao and, therefore,

. 

n 
e>0
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Let B = {T (M) +1  T (DQ }. The functions and x - G~ (i, x)
are positive and harmonic in DBM and vanish on aD. Thus, for x ~ D in
a neighborhood of 0,

To see this, one may map conformally D onto the half-plane D*. The
conformal invariance of harmonic functions and the boundary Harnack
principle applied inD~ [see, e. g., Theorem 4 of Dahlberg (1977) or

Theorem 2.1 of Burdzy (1987)] yield the above inequality.
By the strong Markov property applied at Tk and the translation

invariance of Brownian motion we have P° (Bk) = P~i(B) and, conse-

quentlv,

Let N be the largest k such that 1.

In view of (3 .12),

The random variables are i. i. d., positive and

By Wald’s identity [Feller (1971), XVIII 2]

This and the fact that 1 ~ TN + 1  2 a. s. imply that

The P °-distribution of Ti - To is the same as the pei-distribution of the
stopping time T3 of Step 2 so

This and (3.13) imply that

Now we see that ( 1. 4) is equivalent to P ° (Ao) > O.
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Step 4. - It is now easy to finish the proof. First of all, it is evident
that P ° (Ao) = 0 if and only if with probability 1, there are no points Y (t)
such that Re Y (t) = 0 and Y(t,tl) c D + Y (t) for some tl>t. Finally, the
last condition is equivalent to almost sure non-existence of D-points, by
the time reversal.

(ii) We will assume without loss of generality that the Brownian motion
Y starts from i. Assume that ( 1. 5) is satisfied. Let 

-

Note that a. s. Hence {Y (t), T  t  TK ~ is an excursion of Y
from the imaginary axis. Since ( 1. 5) holds, the set DC + Y (T K) is minimal
thin at Y (TK), by Lemma 3 . 2. By the time reversal,
the local path behavior of Brownian excursions is identical at both ends
of an excursion, so Lemma 8.1 (ii ) of Burdzy (1987) shows that

{Y (t), T  t  TK ~ does not intersect immediately prior to TK
a. s. Now standard arguments show that, with positive probability, the
whole piece Y[0, TK) of the Brownian path is disjoint with DC + Y (T K)

’ and this means that Y (TK) is a right D-point with positive probability.
Now suppose that ( 1. 5) does not hold. Assume that Y (to) is a right

D-point. Then Y(to) is the endpoint of an excursion of Y from the
imaginary axis. By Lemma 8. 1 (ii) of Burdzy (1987) and Lemma 3.2,
every of Y from the imaginary axis must
hit D~ + Y (s2) immediately prior to s2 and this holds for all excursions
simultaneously with probability 1 since there is only a countable number
of excursions. In particular, Y must hit immediately prior to to
and, therefore, Y (to) is not a right D-point. This proves our assertion. D

Remark 3 . 2. - It is not hard to see that A£1 c AE2 for E2. Hence,
is a monotone function of E and (3.14) implies that ( 1. 6) is

equivalent to the negation of (1.4).

Proof of Theorem 1. 3. - (i ) First suppose that the prime end 0 is
well defined in D and, therefore, we may find f with /(0) = 0. Then
Theorem 1.3 (i) follows immediately from the construction of reflected
Brownian motion given in the proof of Theorem 1.1.
Now suppose that we cannot find D and f as in Lemma 2. 2 and such

that the prime end 0 is well defined in D. Let f be any function defined
as in Lemma 2. 2 and let y be the prime end in D which is the image of 0
under f. If y corresponded to an Xo E aD such that x0 + ai ~ D for all a > 0

then we could define f 1 ( y) = f ( y - xo) and we would have f l (0) = 0, con-
trary to our assumption. Hence y must correspond either to a point
Xo E aD which is in the middle of a vertical line segment J c aD or y is
the limit of oo for some xo e D. In either case the process
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W defined in the proof of Theorem 1.1 does not aproach y a. s. and
therefore X does not approach 0 a. s.

(ii ) We can prove as in part (i ) that the a. s. existence of right D-points
is equivalent to

such that ImX(t)=O»O.

It has been shown in Step 1 of the proof of Corollary 1. 3 of Burdzy and
Marshall (1992) that the last condition holds if and only if ( 1. 9) is
satisfied. D

4. SETS OF NON-POLAR POINTS

FOR REFLECTED BROWNIAN MOTION

Proof of Theorem 1. 4. - (i) Let f be the function defined in Lemma 2. 2
and D = f (D*). For X-almost all such that both

f(x) and f’ (x) exist and arg f’ (x) = 8(jc). Consider a point x with all these
properties and assume without loss of generality that f (x) = 0. In view of
Theorem 1. 3, in order to show that it will suffice to prove that D-

points do not exist a. s.
We have the following explicit formula [Doob (1984), 1. VIII (9 . 3)].

For every Stolz angle

with and x, we have

Hence

for x, where ex = min ( 1 /8, (arccos ~p) /4) . We will take
p = x/2 - 8 (x) l)j2. Then it follows from the definition of the angular
derivative and conformal invariance of the Green function that
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for x, y E f (~~), ~ y ~ _> 21 x in particular, for x, y E I, y I >__ 21 x Hence,
for small s>0,

We see that and by
Theorem 1. 2 D-points do not exist a. s.

(ii) Consider any interval (a, b), a  b. If

then (a, 0 by part (i). 
’

If e(x)=-7r/2 for almost all x e (a, b) then the function f defined in
Lemma 2. 2 maps (a,b) onto a vertical line segment K c aD. It follows
from the construction of the reflected Brownian motion [see
especially (2.4)] that with probability 1, W never takes values in K, so X
does not take values in (a, b) a. s. The same argument takes care of the
case when for xE(a, b).

Finally, suppose that I 8 (x) ~ _ ~/2 for almost all x e (a, b) but e is not
almost everywhere constant in (a, b). Note that D lies above the graph of
a function g, possibly taking infinite values. The interval (a, b) is mapped
onto a part of aD. If g is monotone on any interval between Re f (a) and
Re f (b) then e must take values of one sign on the corresponding interval
and the previous argument may be applied. If g has a jump then aD
contains a vertical line segment and again we may apply the previous
argument. If g is not monotone on a subinterval of (Re f (a), Re f (b))
and g has no jumps on this interval then g must have a finite local

minimum, say at Re f (xo), xoE(a, b). We may suppose without loss of
generality that f (xo) = 0. One can easily check using Theorem 1. 2 that
D*-points do not exist; this has been already proved in Burdzy [1989,
Theorem 2.1 (iii)]. Since the property of having D-points is monotone in
D and D c D* locally, we conclude that D-points do not exist a. s. Hence, r

(iii) Step 1. - For a domain D1, x~C and E > 0 let be the

smallest Lipschitz function with the Lipschitz constant r~ > 0 such that

Next, let
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Suppose that D is a monotone domain and let f : D* -+ D be defined as in
Lemma 2.1. Let

and suppose that X (M~, ~) > 0 for some -7i:/2+r~~&#x26;7r/2-r~r~>0.
Then we can argue as in the proof of Theorem 2 . 6 (i ) of Burdzy (1989)
to show that for ~=~1/2 there exit E > 0 and such that the
harmonic measure of

is strictly positive in a connected component of K (x, E, D, T~, c). Since
K (x, E, D, ~, c) is a union of Lipschitz domains, Theorem 1 of Dahlberg
(1977) implies that the linear measure of N is positive and, therefore the
Lebesgue measure of the projection of N onto aD* is positive, by our
choice ofrti and 11.

Hence, if ~(M_ ~2,~/2)~0 then there exists a set F c R of positive
measure such that if x ~ ~D and RexEF then there is 8=8(jc)>0 such
that

One can show in a similar.way that if for some set A c aD* we have
~(A)>0 and arg f’ (x) ~=7c/2 for xeA then the projection of f (A) on the
imaginary axis has a strictly positive measure.

Step 2. - Let B 1 (t) and B2 (t) be independent standard 1-dimensional
Brownian motions starting from 0 and let D be a (random) monotone
domain defined by

Let f : D* -+ D be the function defined in Lemma 2.1 and let X be the
reflected Brownian motion in D with the oblique angle of reflection

df

6 (x) = arg f’ (x). We will show that with probability 1 (with respect to the
distribution of B1 and B2) the function e satisfies Theorem 1.4 (iii) (a)-
(b).

By the Fubini theorem, the set of all x E aD such that there is 8>0 with

has measure 0, with probability 1. By Step 1, _ ~/2 for almost
all xEaD*.
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Consider an x0 ~ ~D* such that arg f’ (xo) = 03C0/2 and suppose it is

mapped by f onto to + B1 (to) i for some to > 0 (the argument is analogous
for to  0). It follows from the definition of the angular derivative f’ (xo)
that B 1 (s)  B 1 (to) for all to + E) or for all to) for some

8>0. Hence, to is the endpoint of an excursion of B 1 from (to). For
definiteness, suppose that B 1 (s)  B 1 (to) for all to + E).

It is well known that excursions of 1-dimensional Brownian motion
have the same local properties as the 3-dimensional Bessel process [see,
e. g., Williams ( 1979)] . By Theorem 3 . 3 (ii ) of Shiga and Watanabe ( 1973),

and since there is only a countable number of excursions of B 1 from a,
the same property holds for all endpoints of all excursion from a a. s. If
we move D so that to + B1 (to) i becomes 0, we see that (4 .1 ) implies
that (1.5) (or its mirror image) holds and therefore right (or left)

i )-points exist, by Theorem 1. 2. Thus the reflected
Brownian motion X hits xo with positive probability and approaches it
from one side, by Theorem 1. 3.
By the Fubini theorem, the set of levels a such that (4 .1 ) is violated

for at least one excursion from a has measure 0. It follows from Step 1
that the set of x E aD * which cannot be approached from one side with
positive probability has measure 0.

Since B’ is not monotone on any interval with probability 1, it follows
that cannot have one sign almost everywhere on any
interval (a, b), a  b. This completes the proof of (a) and (b).

Suppose that reflected Brownian motions Xl and X2 in D* have oblique
angles of reflection 81 and 82 which correspond to two monotone domains
D1 and D2 such that D1 c D2. It follows from our construction of
reflected Brownian motion that if Xl is recurrent then X2 is recurrent as
well. If D ~ =D~ then X 1 is a reflected Brownian motion with the normal
reflection on aD* and it is well known that it is recurrent. Now replace
in the definition of D Brownian motions B~(~), ~=1. 2, with Brownian

motions with drift BJ (t) = BJ (t) - t. Then c D for some a>O since
- - oo as t - oo . The reflected Brownian motion X corresponding

to this new domain D is recurrent and it also satisfies (a) and (b) since
the constant drift does not change the local properties of the 1-dimensional
Brownian motion.

The recurrence of X implies cl). Condition (c2) follows from (cl) and
the Fubini theorem. D
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