MICHEL TALAGRAND
Approximating a helix in finitely many dimensions

Annales de I'l. H. P, section B, tome 28, n°3 (1992), p. 355-363
<http://www.numdam.org/item?id=AIHPB_1992_ 28 3 355_0>

© Gauthier-Villars, 1992, tous droits réservés.

L’acces aux archives de la revue « Annales de I'l. H. P, section B »
(http://www.elsevier.com/locate/anihpb) implique ’accord avec les condi-
tions générales d’utilisation (http://www.numdam.org/conditions). Toute uti-
lisation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

NumbaM
Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=AIHPB_1992__28_3_355_0
http://www.elsevier.com/locate/anihpb
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Ann. Inst. Henri Poincaré,

Vol. 28, n° 3, 1992, p. 355-363. Probabilités et Statistiques

Approximating a helix in finitely many dimensions

by

Michel TALAGRAND

Equipe d’Analyse, Tour 46, U.A. au C.N.R.S. n° 754,
Université Paris-VI, 75230 Paris Cedex 05, France

AsstrACT. — Consider a€]0, 1[. We prove that there exists a constant
K (o), depending on o only, such that for p=1, there exists a map F from
R to R? such that for s, 1€ R, we have

[|F@-F@]|/s—tP—1|=K (@)/p*

ResuME. — Pour a€]0, 1[, il existe une constante K (a), dependant de o
seulement, telle que pour p>1, il existe une application F de R dans R”
telle que, pour tous réels s, ¢ on ait

I|F@-F@]]s—t]-1|<K (@)/p*
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356 M. TALAGRAND

1. INTRODUCTION

A helix is a map h from R to a Hilbert space H such that
|2 (s)—h () ||=||h(s—1)|| for 5, € R. Within isometries, a helix is determin-
ed by the function

M v =|lr@]>

It is a theorem of 1. J. Shoenberg that the functions V¥ (¢) given by (1) are
exactly the functions of negative type. In this note, we are interested in
the case ||4(7)||=]|¢[% for a certain a€]0, 1[. The case a=1/2 corresponds
to Wilson’s helix, that is realized by Brownian motion.

P. Assouad and L. A. Shepp raised the question whether the helix
corresponding to || A (2)||=]¢|"/* (Wilson’s helix) can be approximated in
the p-dimensional euclidean space. This was settled by J. P. Kahane [2]
who obtained the following result. (Throughout the paper, ||.| denotes
the euclidean norm.)

THeoOREM 1 (J. P. Kahane). — There exists a universal constant K such
that for p>1, there exists a map F from R to R” such that
Vs,teR, 1-— Eéw__gH.E_
p |s—¢|'? P
On the other hand, P. Assouad [1] proved that for all a€]0,1], p=p,,
there exists a map F from R to R? such that

1_IFO-FO|
K

) Vs, teR, <
|s—2]*

where K depends on a only. The estimate of (2) does not improve when
p — . The purpose of the present note is to improve upon (2).

THEOREM 2. — Given a.€]0, 1], there exists a constant K (o), depending
on o only, such that for p=1, there exists a map F from R to RP that
satisfies
3) vsrer, 1- K@ NFO-FOI )

K (o)
P |s—tf P

o

In the case o= 1/2, this gives an error in K/_/p, and unfortunately does
not recover the error K/p of Kahane’s Theorem 1. It is not difficult to see
that this error K/p is of optimal order in Kahane’s theorem; but when
a#1/2, we do not have a nontrivial lower bound for the error in (3).
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APPROXIMATING A HELIX 357

2. THE APPROACH

We fix a€]0,1[, and p>1. For convenience, we assume that p is a
multiple of 4 (so that p>4). We set, for n>0,

D,,={L;0§i§p2"}.
p2

For 0<g<2"*1 -2, we set
q 4qt2
Im{ﬁ’ it ]

Thus I, , = [0,1]=I, o. For n21, 0<¢=<2"*'1 -2, we find /(9)(=1,(¢))
such that I, , = I,_; ;- When 0<g<2"*'—2, and when g is even, there
are two possible choices. We make an arbitrary choice; the construction
will actually not depend on that choice.

Consider a map ¢t — x(f) from R to a Hilbert space H that satisfies

|| x(@®—x(s)||=|2—s|*. We first construct affine maps 6, , from H to R?
that satisfy

) Vs, teDy NI, g |18, (x (@)= 0, (x| =|1=s5["
(5) Vtel)n—l rWI}l,qs en,q(x(t))=en—l,l(q)(x(t))'

We proceed to this easy construction, by induction over n. A basic
observation is that D, N1, , has p+1 points. The affine span of these
points is isometric to RP; thus for each n, ¢, one can find an affine map
€, o from H to RP? that satisfies

Vs, teD, ML, [[&,x) =&, (x 6D ||=|1=s]"

We take 0, (=& ,. If all the maps 6, , have been constructed,
for a certain n and for all ¢<2"*'-2, we take 0,,, ,=U°&, .,
where U is an isometry of R? such that U(§,,, ,(x(2))=6, ;. (x () for
teD,_; NI, , By isometry we mean that ||U(x)—U(y)|=|x—y| for
x,yeRP?. The existence of U follows from the following elementary fact,
that will be used repeatedly: if S is a map from a subset A of R? to R? such
that ||S(x)—S(»||=||x—»|| for x, ye A, then we can find an isometry U
of R? such that U (x)=S (x) for xeA.

For the simplicity of notation, we will write x, , ,=6, ,(x (). The idea
of the preceding construction is that the points x, , ,, teD, NI, , have
the correct position with respect to each other. Also, a certain degree of
consistency is obtained through (5). One would like to have F(f)=x, , ,
for teD, N1, , The problem is that it is not possible to insure that
Xp g t=Xn q+1,¢ for teD,NI, NI, ;. To solve that difficulty, for
tel, ,, we will construct an isometry R of R?. We require the following

n, 9> n,q,t
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358 M. TALAGRAND

properties.
(6) ForteD,NI,,NI, 4+, we have
Ry gt g, 0 =Ry i1, (X g41,0)-
(7) ForteD,_ NI, . y=X, 4,0=Xn—1,1(),» WE have
R, i (=R, 119,: ()
(8) Fors,tel, ,, x,yeRP, we have

IRn, g5 ) =Ry g, s () =Ry 4, ) =R, o ) [|EK | x=p]| | £=5].

(There, as in the sequel, K is a constant depending on o only, that is
not necessarily the same at each occurence; on the other hand, K, K,, ...
denote specific constants depending on o only).

©® Ifx=x,,,foruel, ,ND,, then fors,tel, ,ND,, we have

n(1—a)

2
”Rn,q,s(x)_Rn,q,r(x)IléK |s—t|.

(10) For ¢ in [(¢+1)27""1, (¢g+2)27""1], the isometry R} °R, ,,;,
does not depend on ¢.

The construction of these isometries will be done in section 3; but,
before, we provide motivation by proving Theorem 2.

For teD, N1, ,, we set

(11 F()=R,,,:(Xs4,0-

Givne n, there are two consecutive values of g for which tel, ; if follows
from (6) that the value of F(¢) does not depend on which value of ¢
we use. Also, it follows from (7) that the value of F (¢) does not depend
on which value of n we consider. Thus, (11) actually defines F(¢) for
teD= U D,.
nz0
Consider now u,veD, such that |u—v|<27""!. Thus u,vel, , for
some g. Let t=(g+1)27"" 1. It follows from (4), since R, g« 1S an-iso-
metry, that
“ Rll, q, T (xn, q, ll) - Rn, q, 1(xn, q, D) || = | u—v lu'

Thus, by (9), used for s=u, t=1, and for s=v, =1, we have
(12) ||[F@—F@)||—|u—2[*|<||Ra, gu(¥n, 4,0) —Rn, g,s F, g, ) |l

2‘”&

+“Rn,q,v(xn,q,v)_Rn,q,r(xn,q,v)néK pa *

It follows in particular that
(13) ||F(@)—F(@)||sK27"2
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APPROXIMATING A HELIX 359

LEMMA. — For s, teD, we have | F(s)—F (1) || <K |s—t]"

Proof. — Consider the largest n such that |s—¢|<27", so that

"<2|s—t| We observe that, given se€[0,1], we can find ueD, such
that |s—u|<27"/p<27""2 We thus construct sequences (i), (vk) k=n,
such that u,, v, e D, _ 2,|u,¢—s]<2 ¥ |oe—u|<27% Thus |u,—v,|S27"*2,
|e— sy | | k= vi41|S27%"2. We can and do assume that u,=s, v, = :
for k large enough. Then

|F@)~F@|||F@)-F@,)|
+ Z (” F(u)—F (u 1)||+” F () —F (v 1)”)

k2n
By (13), this implies that
|IF@-F@||sK27*"<K|s—t]*. O
The lemma implies in particular that F can be extended by continuity
to the closure of D, i.e. to [0, 1], and that
(14) IF©)-F@[<K]|s—tf

for s, tef0,1].

Consider now s,7€[0,1] and the largest n such that |s—r[<27"71,
so that 2~ "<4|s—t| Consider g such that s,7€l, ,. Thus we can find
u,vel, ,MN D, such that |s—u|<27"/p, |1—2|=2" "/p By (14), we have

IF )~ F(u)II<K§,"; IF@O-Fo|s 52"

Thus

IFO-Fol-[F@-F| <527

From (12), we have

[IF@-F@|-|u—vsf|=

K2 no

Thus, since |s—¢|=27""2, we have
- IFO-FOI _,| K| lv=of _
|s—t|" T |s—t]*

We have ||u—v|—|s—¢||£27"*"!/p. Using that |(1+x)*—1|<K|x| for
| x| <4, we get that

<K,

uzof _ < K < K
[s—e]" p 0
Thus, we have constructed a map F from [0, 1] to R” such that
(16) Vs,te[(), ]]’ M é
|s—1]* P

Vol. 28, n° 3-1992.



360 M. TALAGRAND

There is no loss of generality to assume F(1/2)=0. Consider an ultra-
filter % on N, and define

G(9)= lim n“F(% + 5).

n—u n

1
The limit exists since, from (14) and F(5)=O, we have

n~||F<1+1>||gK|t|«.
2 n

Moreover it is immediate to check that, for s, teR, we have
G ©®—G®||/|s—t|*—1|<K/p" This completes the proof of Theorem 2.

The reader has observed that conditions (8) and (10) have not been
used. Condition (8) is used during the construction as a preliminary step
for conditions (9). Condition (10) helps to keep control of the situation as
the induction continues.

3. CONSTRUCTION

The construction proceeds by induction on n. For t€[0,1], we set
Ry, o,,=Identity. We now perform the induction step from n—1 to n.
Consider g, —1<g<2"*2—2, and set

t=(q+1)27""1, T=(g+2)27 ", I=[r,1'].
For tel, we construct isometries T, a1 O, g,+ Of RP, such that the following
holds (where we set /(—1)=0)
a7 Too:=Ru-t, 10 S g v=Ruct, 1+ 1), v
18) VieIND,, T, 4. q0=S 4 q+1.0)
(19) ForteD,_, NI, we have
T g e g, )= Roz 1,140, ¢ (X, g, 0)
Sn, q,r(xn,q+ 1,t)=Rn—l,l(q+1),x(xn,q+1,t)‘

(20) For s, tel, x,yeRP, we have

| T, g5 ) =T g, s ()= (T, 0,0 ) =T, 0 M) | SK, 2 s=2] || x|

[, 0,5 ) =Sp 4, s (D= (S, 4, e )= Ss 4. ON | SK, 2" [ s 1] || x =y

(21) For u,s,teIND,, x=X, 4 4» V=X, 441, We have
n(1—a)

2
[T, 0.s )= Ty 6. (D) | <K, |s—1]

o

n(l—a)

2
[ENOENRRGTES & |s—1].

o

(22) For tel, the isometry T, ; ,°S, ,+;., does not depend on ¢.
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Before we proceed to the construction of the isometries T, g 1 Sp 40
we show how to construct the isometries R, ,, for 0<g=<2""'-2.
Forte[g2™"", (g+1)27" JwesetR, , , =S, 4—1,5 for tel(g+1)27"" 1
(g+2)27"7'], we set R, . ,=T, .. Condition (17) ensures that
Spq-1,:=Th g S0 that R, , . is well defined. It is simple to see that
conditions (6) to (10) follow from conditions (18) to (22) respectively.

We now construct the isometries T, , 1 S, 4 Set [=1(q), I'=Il(g+1).
Thus, we either have /’=] or I'=1+1. For te[(/+1)27", (+2)27", we
have by induction hypothesis and (10) that, if /'=/+1,

(23) 11 °R,_q, 1, ,=Constant isometry: =V.
If I'=1I, the above also holds, for V=identity. We set for simplicity
A=R,_; ,B=R,_, ;.. Itis simple to see that te[(+1)27" (+2)27";
thus, by (23), we have A™1-B=V.

Given teIN\D,_,, we have

Rn— 1, l,t(xn— 1,1, t)= Rn— 1, l',t(xn— 1,1, t)'

This is obvious if =1 if I'=1I+1, this follows from (6). Remembering

that R; Y, ; ,°R,_1, 1, =V=AT!°B, we get
VteIND,_y, AXu-1,1,0=B&n-1,1,,0-

It then follows from (5) that
29 VteIND,_;, A, 4 )=B(Xsq41.0-
Since A, B are isometries, it follows from (4) that

VS’ tEI m Dm ”A('xn, q, s)_A(xn, q, t) “= ” B(xn,q+ 1, s)— B(xn,q+ l,t) ”
Thus, there exists an isometry U of R? such that

25) VteIND, U*A(t, ¢ =B gs1,0-

Since card I N\ D, =p/2+ 1 <p, we can assume that detU=1 (by compos-
ing if necessary U by a reflection through a hyperplane containing the
points A (x,, , ), teIND,.) It is then clear that we can find a semi-group
U (¢) of isometries of R?, with U (1)=U, such that

{ Va,beR, Vx,yeRY,
(26)
U@ ®-U@@»)-UE®+UG0|SK;s|b—a| [|x=y|

(actually one can take K;=2m).

For tel, we set
T ,=R,,_1,,_,°A_1°U((p(t))°A

n,q,
Sn,q,t=Rn—1,l’,t°B—1°U((P(t)_l)°B
where @ (1)=2""1(¢—1). Thus ¢ (t)=0, @ ()= 1. Thus (17) holds.
It remains to prove (18) to (22).

Vol. 28, n® 3-1992.



362 M. TALAGRAND

Proof of (18). — It follows from (25) that, for t<D, NI, we have
A, ¢ )=U""*B(x, 411,
so that
27 U@@®)A(x,,4,)=U (@)= 1)°B(x, 441,0)-
Since R, , ,°R,_, ;. ,=A~ !B, we have
R, 11, °B7'=R,_;,°A7",
and, combined with (27) and the definition of T, , ,, S, ,. ,» this implies (18).

Proof of (19). — We consider only the case of T, . and leave the

other case to the reader. By (24), (25), we have
tEImDn—l = UoA(xn,q,t)=A(xn,q,l)
so have
U()°A (X, 4,0 =A(x, 4,0
for all seR. Thus
AT U@ (0)° A Xy, g, )= Xn, 4,0

which implies the result.

Proof of (20). — We prove this inequality for the constant K, =4K,

where K; occurs in (26) and we again consider only the case of T, e
We have

[ Th,qs () =T g s (M) = (Tp 4. ) =T, o, . (M) || S M +(AT)
where
M=]Ry-1,1, A7 U (@ (D) A(X)—R,_y ;,,c A" = U (0 (1)) * A ()
“R,_ AT U(@@) A+ R,y AT U (9 () A ()|
(II)=“Rn—1,l,t(x’)_Rn—l,l,t(y,)_Rn—l,l,s(xl)+Rn—l,l.s(yl)”
for x'=A"1U(p(s)°Ax), =A"1U(@(s)°A(y). Since A and
U (¢ (5)) are isometries, we have || x'—y'||=||x—y||. We observe that (8)
holds with the same value K=K, of the constant K than (20); thus, by
induction hypothesis, we have
D<K, 2 s 1] [l x-p|
Since R,_; , ,°A~! is an isometry, we have
D=[U(@®)-AX)-U@@)-A»-U@©) AX+U@E)° AQ)||-
Since |A(x)—A ) ||=||x—y|, |® (H|s2"*|s—¢]|, by (26) we have
M=K 2 s =1 [x=y].

Thus
O+dADn=(KK, 2"‘1+K32"“)|s——t| ||x—y||§K1 2"|s—t| ||x—y||
since K, =4K,.
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Proof of (21). — We prove (21) for K,=2°K, (1-2"""®)"', and again
we consider only the case of T. We proceed by induction, observing
that (9) holds with the same constant K,. We find v in IND,_; with
|u—v|<27"*!/p. We set z=x, , ,. We have

[ T, 4,5 )~ Ty o, D) | SM+AD

M=|Ty 4@~ Thq. @
() =||T, 4 () =Tn gD~ (Tn 4,s(X) =Ty 4, s @D |-
We recall that by (24), (25)
U°A(2)=B(x, 441,00 =A(2),
so that, by definition of T, , ,
D= “ Rn—l,l(q),s(z)— R, l(q),t(z) ”

and, by induction hypothesis,
2(n -1)(1-a)
OsK,——— .|s—t|.
P

where

If we recall that (20) holds for the constant K; we have
(DK, 2"|s—¢t| || x—z].
Since, by (4),
[x—z||=[u—v[* <20 D%pt,
we have (I <K, 2*2"* "9 |s—¢|p~* Thus

2n(1—u) 2n(1—a)
[2°K,+K,274 9] |s—¢|=

M+aD= K, |s—1]

o o

Proof of (22). — We have, for tel,
T, 1,-S

o
nq,t n,q,t

=A—1°U(_(P(t))°A°Rn——11,1,:°Rn—1,z',t°B—1°U((P(t)"1)°B-
Since, by (23), we have R}, ; ,°R,_; ;. ,=A~'°B, we have
T-1 oS =A"1eU(—(?)°U(@@)—1)eB=A"1-U" !B,

n,q,t °
and this does not depend on ¢.
The proof is complete.

n,q,t
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