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ABSTRACT. - Replacing a measure y by a distribution in the Levy

representation ~x~p = Rn s ~ IP dy (s) of a norm we define the genera-
lized representation which exists and is unique for every finite dimensional
Banach space. This representation leads to a criterion of isometric embeda-
bility of Banach spaces into Lp-spaces.
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RESUME. 2014 En remplaçant la representation Levy la mesure par la
distribution nous determinons la representation générale Levy qui existe
et qui est unique pour n’importe quelle espace de dimension definie. Cette
representation donne les criteres de possibilite de placer isometriquement
des espaces de Banach dans espaces Lp.
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1. INTRODUCTION

An old question going back to P. Levy is to characterize those Banach
spaces which embed linearly and isometrically into some Lp-space. It is
well-known that a Banach space is isometric to a subspace of a Hilbert
space iff it satisfies the parallelogram law [5], [12]. But as shown by
A. Neyman [27], for p # 2, subspaces of Lp can not be characterized by a
finite number of equations of inequalities.
For j~2, a popular idea of constructing isometric embeddings into Lp

is based on the connection between stable measures and positive definite
norm dependent functions which has been discovered by P. Levy [20]. Let
(E, ( ~ II) be an n-dimensional Banach space, and assume there exists an
even continuous function f : R - R such that f (0) = 1 and the function
f ( ~ ( x ~ ~ ) is positive definite on !R". By Bochner’s theorem, there exist a
probability measure ~, on M" and a probability measure v on R such that
~=/(!!~!!) and v=1 (we denote by "the Fourier transform). One can
easily prove that, for every x e tR", the measure v is the image of the
measure ~, under the mapping ~-~ (x, s ~/ ~ ~ x ~ ~, (here ( x, s ) is the
scalar product). If v has a finite moment of the p-th order then, for every
x E we have

Now we can embed E isometrically into Lp([0, 1]) taking functions from
Lp([0, 1]) with the joint distribution ~ (for details and generalizations of
this reasoning see [1], [25], [19], [21], [34], [14]).

This method was first used in [1] for constructing isometric embeddings
of the spaces I: into Lp where 0  p  q  2. The construction was based
on the well-known fact that, for q E (0, 2], the function exp ( - II x II:) is

positive definite on !R", where ... + 

The authors of [ 1 ] have also given a general criterion: For 1 _ p _ 2, a
Banach space (E, ~ . ~) is isometric to a subspace of Lp iff the function

is positive definite. This result was generalized by
J. L. Krivine in [ 18]: and 2r-2~2~4~ for some positive
integers r and k, then a Banach space E is isometric to a subspace of
some Lp-space iff for every choice of ei, ..., en E E and every choice of
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337GENERALIZED LEVY REPRESENTATION

where the sum is taken over all choices of integers 1 ~ iI, 
all choices of signs.
The criterions mentioned above have a disadvantage, namely, it is

usually difficult to find a positive definite norm dependent function or to
prove the absence of such functions. For instance, the following questions
posed by I. J. Schoenberg [30] in 1938 had been open for about fifty years:
For which p > 0 are the functions and exp(- positive
definite, where q > 2 and , ..., An answer turned

out to be the same for both spaces I: and l ~ : p E (0, 1] if n = 2, and p E 0
if n >_ 3. For the spaces l q, the result was obtained in 1991 [14], and for
the spaces the answer was given in 1989 by J. Misiewicz [26]. Moreover,
J. Misiewicz proved in [26] that, for ~3, a function f ( I x I (0) is positive
definite only if f is a constant function.
One can look at Schoenberg’s problems from another point of view.

As it was mentioned above, for 0 p _ 2 the function exp ( - is

positive definite iff the space (E, ~ . ~) is isometric to a subspace of Lp.
Obviously for p > 2 the function exp ( - ~ II x lip) is not positive definite for
any norm. L. Dor [2] has proved that for /?~1, the space I: is

isometric to a subspace of Lp only in one of the following situations
(a) p  q _ 2, (b) q = 2, (c) p = q, (d ) n = 2, p =1, q is an arbitrary number.
Thus, to give an answer to the first Schoenberg’s question it suffices to
prove that, for q > 2, the space l q is not isometric to a subspace of Lp
with p E (0, 1). Since the space l ~ is not isometric to a subspace of the
smooth space Lp with p > 1, the answer to the second Schoenberg’s ques-
tion will follow from the fact that the space /~ is not isometric to a

subspace of Lp with p E (0, 1]. It is well-known that every two-dimensional
Banach space (E, ~ . I ~ ) is isometric to a subspace of L 1 (see [4], [ 10], [23],
[33]), and the function is positive definite for every p E (0, 1]
(note that is positive definite and use an easy fact from [31]).
For some other results concerned with isometric embeddings into

Lp-spaces see [24] and [ 11 ] .
In this paper we unite the results described above by giving a new

general criterion of isometric embeddability into Lp-spaces. We prove that
an n-dimensional Banach space (E, ( ~ is isometric to a subspace of Lp
with p > 0, p ~ 2, 4, 6, ... only if the distribution

Vol. 28, n° 3-1992.



338 A. L. KOLDOBSKY

is a finite measure on with finite weak moments of the p-th

order (i. e. Rn- 1 ( x, 03BE~|p dy (03BE)  00 for every x E Rn-1). Here

~=2~~~~~r((~+l)/2)/r(-~/2) and the Fourier transform is consi-
dered in the sense of distributions. In the case where is not a

regular distribution the expression in the right-hand side of (2) will be
clarified (for precise statements see Section 2).
We show in Remark 2 that this criterion does not differ much from the

criterion from [ 1 ] . Thus, our criterion has a similar disadvantage, namely,
it is usually rather difficult to calculate Fortunately, formulae
for ( ~’ x ~ ~q) ^ and ( ~ ~ x ! ~ ~) ^ have recently been obtained in [ 14], [ 15], [ 16].
In Section 3 we apply these formulae to study isometric embeddings of
the spaces l q and into Lp-spaces. In particular, we give concrete

expressions for isometric embeddings and prove Schoenberg’s conjectures.
Besides that, we prove that for every q > 2 and p E (0, q), p# 2 k, 
there exist two operators T 1: l q -~ Lp ([o, 1]) and T2 : lq - Lp ([0, 1 ]) such

for every (note that the space l q with
q > 2, n >_ 3 is not isometric to a subspace of Lp). If q = 2 k, k E this fact

is valid for every non-even positive number p.
In the case n = 2 the equality (2) can be rewritten in the form

y (~) _ ( 1 /c p) ( ~ ~ e 1 + ~ e2 I l p)~ p + 1 ~, where in the right-hand side we have the
( p + 1)-th fractional derivative of the function This expression
is particularly convenient if p is an odd integer. Here one has to calculate
ordinary derivatives.
The criterion (2) appears here as a result of generalization of the Levy

representation. Let (Q, o) be a finite measure space, /?>0, E be an
n-dimensional subspace of Lp (Q, a). Let fi, ... , fn be a basis in E and p
be the joint distribution of the functions fi, ...,/~ with respect to a.

Then for every x E R" we have

These equalities are usually called the Levy representation of the norm in
E with the exponent p and the measure ~.

Choosing different bases in E we can get the Levy representation with
different measures p. But if we assume that Jl is supported in the unit
sphere sn - 1 in !R" then such representation is unique (see [ 13], [27], [22],
[9] and a more general fact in [17]). It will be more convenient for us to
ensure the uniqueness of the Levy representation projecting ~ not onto
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339GENERALIZED LEVY REPRESENTATION

the sphere but onto a hyperplane: .

where y is the image of the measure under the mapping
(Sl’ ..., S2~Sn, ... , acting from [R"B{~ : s~ = 0 ) to

(thus, y is a finite measure on (~n -1 ).
The representation (3) was obtained under the assumption that E is a

subspace of Lp. But if we allow y to be a distribution (see Definition 1 )
then such generalized representation exists and is unique for every p > 0,
p ~ 2, 4, 6, ... and for every finite dimensional Banach space. Moreover,
the distribution y can be calculated out of the norm. Thus, we get formula
(2). Checking if y is a finite measure on with finite weak moments
of the p-th order we can verify isometric embeddability of the space into
some Lp-space.

2. GENERALIZED LEVY REPRESENTATION

We need some preliminary remarks. As usual, we denote by S = S (!R")
the space of infinitely differentiable rapidly decreasing functions, and
S’ = S’ (IRn) is the space of distributions over S. If Q is an open subset of
!R" then ~ (Q) stands for the space of functions from S (IRn) having compact
supports in Q. We refer the reader to [6] for definitions and facts concern-
ing distributions. Note that the authors of [6] use the multiplier exp (itx)
in the definition of the Fourier transform, and we use exp ( - itx), so the
sign in some formulae may differ from that in [6].
We start with a simple fact which could be found in [14] or [17]. We

shall, however, give a proof here, because the fact is crucial for further
considerations.

Vol. 28, n° 3-1992.
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Proof - It is well-known that for all p > 0,
/~2, 4, 6, ... [6]. By the Fubini theorem

The function t - ((p)" (t ç) = (2 7~)" p ( - t ç) is the Fourier transform of the

function ~-~ cp (x) dx (it is a simple property of the Radon

transform, see [7]). Therefore, we can continue the equality (5):

Denote by Ri the x,,~0}, and, for p > 0, define a mapping

for every 

Proof. - Let u be an infinitely differentiable function on R supported

in the segment [ 1 /2, 1 ] and such that For a given

function ~r E ~ ((~"-1) define a function cp on !R" by

for every Ç1’ Ç2’ ..., ~n-1, Then p E ~ and ip (cp) = W.
Note that similarly we can get an arbitrary function S (IRn - 1) using

a function (peS(W) supported in Besides that, if Q is an open
subset of Ri and then

tp (~(Q)) = P¿ (01), .
We shall generalize the Levy representation replacing the measure y in

(3) by a distribution.

DEFINITION 1. - We say that an n-dimensional Banach space

E=span(el’ ..., en) admits the Levy representation with an exponent
p > 0, p ~ 2, 4, 6, ... and a distribution ’Y E S’ (IRn - 1) if for every function

Annales de l’Institut Henri Poincare - Probabilités et Statistiques



341GENERALIZED LEVY REPRESENTATION

(p E S (!R") with (P we have

/
The correctness of this definition is ensured by the condition

P e @ (IR:). Indeed, it follows from (4) that

By Lemma 2 the function B(/ belongs to ~ (!R" 1) and the distribution y in
(6) is unique (if it exists) under a fixed basis in E.

Definition 1 becomes senseless if p = 2 k, In fact, one can open
brackets in the right-hand side of (6) and use the connection between
differentiation and the Fourier transform to verify that all the moments
of the function (p with are equal to zero:

for every multi-index ..., aj.

DEFINITION 2. - Let y E S’ (!?"’ ~). Then I t 1- 1 - P dy (ç) denotes the distri-
bution on ~ (!R") satisfying

for every function cp E !Ø (RJ.
It is easy to see that this distribution is even and homogeneous of the

order - n - p.
Let us point out the connection between the defined Levy representation

and the Fourier transform.

THEOREM 1. - If p > 0, 2, 4, 6, ... and an n-dimensional Banach
space E admits the Levy representation with the exponent p and a distribution

Vol. 28, n° 3-1992.
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then:

(b) if, additionaly, is a continuous function on an open
set Q c Rnn then the distribution y is a continuous function on

the set Ql={(~i/~, "~2/~ and, for every

~=?1....~.-Jen,

Proof. - Let p be an arbitrary function from ~ (RJ. It follows from
(4) that

and the statement (a) is proved. Since (II x is a homogeneous distribu-
tion, (b) is an easy consequence of (a).
Theorem 1 describes the distribution y completely in the most important

case where is a regular distribution. Now we are going to treat
the general case where may be non-regular. We shall prove that
the generalized Levy representation exists for every finite dimensional
Banach space and every /?>0,/7~2, 4, 6, .... 

’

For an arbitrary function and p > 0 define the function cpp on .

by
r

LEMMA 3. - There exists a number k > 0 such that

Proof - Since cp E S for every m >-_ n + p + 1 there exists a number
such that Iyl)-m for Then we have
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In order to make the general case clear we start with the two-dimensional
case where the reasoning and the final result are rather simple.

Let E=span(el, e2) be a two-dimensional Banach space, 
p#2, 4, 6, ... As it was mentioned after Lemma 2, for every function

there exists a function cp E S (f~2) with supp cp c such that

for every 03BE ~ R [here we changed variables z = y/x and used (4)].
Since we can use the connection between the

Fourier transform and convolution [6] to verify that ~ (t) = Cp It - i - p (pp (t)
for every t#0. The functions ~ and (pp are continuous, so we

have cp cpp (t) _ ~ t ~p + ~ ~[r (t) for all t E R. That - is why
~Pp=(H~~M)~==~~ is the (p + 1)-th fractional derivative of the
function 03C8 (v stands for the inverse Fourier transform).
Let us define the (p+ 1)-th fractional derivative of the function

II ei + as a distribution over S such that for every 03C8 E S (IR)

(the convergence of the integral follows from the equality ~~ ~’ + 1 ~ = Cp cpp
and Lemma 3).

THEOREM 2. - If p > ~, p # 2, 4, 6, ... then every two-dimensional
Banach space admits the Levy representation with the exponent p and the
distribution y = 

Proof - For an arbitrary function cp E S ((R2) with cp E !Ø (~~) we define
a function B)/ by (8) and use (9) and the equality 

We are done.

Vol. 28, n° 3-1992.
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Let us consider now an arbitrary n-dimensional Banach space
E=span(el’ ..., en). Let p > o, p ~ 2, 4, 6, ... For every function

S (Rn-1) there exists a function cp E S with supp  c Ri such that
an equality similar to (8) holds:

for all (~ 1, ..., ~" -1 ) E (~" -1, where o is the charge of bounded variation
which is the image of the charge ... , yn) ~2 ... dyn under the
mapping ( y2, ... , yn) -~ y2 ~2 + ... +~-1 acting from tR"’ ~
to R.

Thus, for all we have

where the Fourier transform is computed over the variable ~ 1. Further,
li (t) = $~ (t §~ , ..., t). Therefore, for every ( y~ , ..., we

have

where the inverse Fourier transform is computed over the variables

Ç2’ ... , 1~ t.

Define a distribution F E S’ similar to (9). For every function

(the convergence of the integral follows from ( 11 ) and Lemma 3).

THEOREM 3. - If p > 0, p ~ 2, 4, 6, ..., then every n-dimensional Banach
space admits the Levy representation with the exponent p and the distribution
y = F.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



345GENERALIZED LEVY REPRESENTATION

Proof. - For an arbitrary function with we define
a function’" by (10). It follows from (10) and ( 11 ) that

and we are done.

3. ISOMETRIC EMBEDDINGS INTO L-SPACES

The Levy representation can be used as a criterion of isometric embedda-
bility of Banach spaces into Lp-spaces. The following theorem is a conse-
quence of (3) and the uniqueness (under a fixed basis) of the distribution
y providing the Levy representation.

THEOREM 4. - Let p > 0, p ~ 2, 4, 6, ..., E be an n-dimensional Banach
space which is isometric to a subspace of Lp (Q, cr) with (Q, cr) being a
finite measure space. Then the distribution y providing the Levy representa-
tion of the norm in E is a finite Borel measure on with

Generally speaking the inverse statement is not true. The reason is that
the equality (6) is valid only for functions cp with cp E ~ (RJ. However, we
prove a fact which can be effectively used as a sufficient condition of
isometric embeddability.

THEOREM 5. - Let p > o, p ~ 2, 4, 6, ... Let E = span (el, ..., en) be
an n-dimensional Banach space such that the distribution y providing the
Levy representation of the norm in E is a finite Borel measure with finite
weak moments of the p-th order. Then there exist a finite measure space
(Q, cr) and a linear operator cr) such that am u/axn = 0 on f~n,
where m E N and

Proof. - Consider a finite measure space (Q, 6) and measurable
functions 11’ ..., f" -1 on S2 such that the measure y is the joint distribu-
tion of the with respect to o. Define a linear

operator T : E ~ Lp (03A9, 03C3) by Tei=fi, 1~i~n-1, Ten(03C9)=1 for all 03C9 ~ 03A9.

Vol. 28, n° 3-1992.
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By the definition of the Levy representation, for each function p E S (!?")
with (p E !!) we have

Thus, (M, (p)=(M, (p)=0 for every p with cp E.@ (RJ, i. e. u = 0 on Ri.
Consider the multiplier ..., on S(!R"). By Lemma 4 from
[8], g’" u = 0 on !R" for some m E therefore ~/~=0 on !R".
Remark 1. - Assume the conditions of Theorem 5 are fulfilled. It is

clear that E is isometric to a subspace of Lp if the expression for 
does not contain a separate summand which either does not depend on
the variable Xn or is a polynomial with respect to x". contains
such a summand then the distribution ( II x contains a summand which
is a linear combination of the 8-function and its derivatives with respect
to Çn’ In this case one has to study the behaviour of the norm on the
hyperplane x" = 0.
For example, consider the space with the norm

x = (xl, ..., x") E where n >_ 3 and 1  p  q _ 2. This space satisfies the
conditions of Theorem 5, because the space I: is isometric to a subspace
of Lp and the !R"-Fourier transform of the p-th power of the norm in 1 ~ 1
is supported in the hyperplane 03BEn = 0. On the other hand, E is not isometric
to a subspace of Lp, because the space l ~ 1 is not smooth. If we take the
space lT -1, P~~2, instead of l ~ 1 then E is isometric to a subspace of
Lp, although It x lip contains a separate summand.
Remark 2. - J. Bretagnolle et al. [1] have given a criterion for 1 __p  2:

A Banach space is isometric to a subspace of Lp if and only if the function
is negative definite (or, the same, exp ( - is a positive definite

function). The "if" part was discussed at the beginning of the paper. On
the other hand, for an arbitrary finite dimensional subspace of Lp([0, 1]),
the norm admits the Levy representation with some probability measure
Jl on M". For every ç E (~", ~ ~ 0, the function exp ( - ~( ~ !;) Ip) is positive
definite on R", since it is the characteristic function of the one-dimensional
standard p-stable measure placed on the line {~, in !R". Now it
suffices to note that positive definiteness is preserved under multiplication

and pointwise limit procedure to verify that exp (- j ( x, 03BE~ Ip dfl (03BE)) is
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a positive definite function. For p > 2, this reasoning is not valid because
the function exp(- It IP) is not positive definite on R. Thus, for 0 p  2
the Levy representation criterion and the criterion from [1] are equivalent
for trivial reasons. Theorems 4 and 5 extend the criterion from [1] to all
positive p’ s, N .

Let us pass to examples and applications. First, we shall discuss the
well-known fact that every two-dimensional Banach space is isometric to

a subspace of L 1.

Example 1. - Let p= 1 and E = span (el, e2) be a two-dimensional
Banach = II e211 =1.

Since (t2 ~)" _ - ~r" for the second fractional derivative

of the distribution ~1+~2!! is equal to the ordinary derivative

"!!~i+~2!r’ Besides Ci==-2, so by Theorem 2 we have

y(~)==(l/2)~~+~~. It is easy to see that the distribution

(1/2)!! ~1+~2!!" is a probability measure on I~ having finite first moment.
By Definition 1 and Remark 1,

for every x, 
It is clear now that E is isometric to a subspace of Li. In fact, consider

a function fo on the segment [0, 1] having the distribution y with respect
to Lebesgue measure. Define a function f on [0, 2] as follows: 1=10 on

[0, 1] and /(o) = 1 - ! ~7 ?) for every o e (1, 2]. Define a linear opera-
tor 2]) by Te1=f and Te2(03C9)=1 for 1 ], 
for ro E (1, 2]. Then T is a desired isometry.
Assume ~1+~2!~ ~ a continuous function on fR"’{ 0 ~ without an

atom at zero. Then easy calculations show that

If E is a smooth space there is no second summand in the latter formula.

For example, for q > 1, we have

If E=lf then y is the unit mass at zero. If E = l~ then

y (ç) = ( 1 /2) (max (1, ~))" is the sum of two 1 /2-masses at the points ± 1.
We have + 

Vol. 28, n° 3-1992.
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Example 2. - Let us consider the spaces l ~, n >_ 2. We shall use the

following formula obtained in [15]: Let f be an even continuous functions
on R with power growth at infinity (i. e. lim (f (t)/ ~ t = 0 for some

j i j - m

cp > 0). Assume that the distribution g = ( f (t) (sgn is a continuous
function on [RB{0}. Then
(/(!N!J)~)

for such that 1  k  n, and

8~i+...+8~~0 for every 8=(8i, 1  k _ n
(Denote by G the set of such vectors ~). The sum in (12) is taken over all
changes of signs.

Then

for every (see [6]) and we have

.71 JG

for every (~1, Ç2)EG. By Theorem l, for every p ~ N, ÇE -1, l,
we have

If p> 1 then the function y is not integrable near ±1, so y is not a
measure. By Theorem 4, the space l ~ is not isometric to a subspace of Lp
with p> 1.

If 0 p  1 then y is a positive function bounded near zero and integrable
near ±1. Besides that, y behaves at infinity Thus, y is a
measure on (~ with finite moment of the p-th order. So for every /?e(0, 1)
the space l ~ is isometric to a subspace of Lp, and we have

for every x, y e R (it is easy to see that puting y = 0 we get an equality, so
there are no additional summands in the right-hand side, see Remark 1 ).
Note that the latter formula remains valid for p E ( - 1, 0).

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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For the case p =1, see Example 1. If p =1 the Fourier transform of the

distribution I x Ip sgn x is supported in zero.
Let us prove now that, for every p > 0, the space l with n >_ 3 is not

isometric to a subspace of Lp.
It suffices to treat the case n = 3. I tip. Then

for every 
Hence,

for every 03BE ~ G. By Theorem 1,

and, obviously, y is not a measure [For instance, y(3, 1)0]. By
Theorem 4, the space l ~ is not isometric to a subspace of Lp with ~>0.
As it was mentioned in Introduction, this result gives an answer to the
second Schoenberg’s question.

Example 3. - Let us consider the problem of isometric embedding of
the spaces In into Lp-spaces. A formula for the Fourier transform of the
function was obtained in [14], [16]: for every p E ( - n, nq) such
that U { 0 } and for every ç = (~1, ..., çn) E !R" with non-zero coor-
dinates, we have

where (t) = (exp ( - ~ z (t), t E IR. By Theorem 2, for every p E (0, nq),
/?/~ ~, the distribution y providing the Levy representation

of the norm in l q with the exponent p has the form

for every (~ 1, ..., Çn -1) E ~n-l, Çk # 0 (if q is an even integer ( 13) remains
valid for all k E 
The properties of the function ~yq are well-known [28], [29], [32], [3]. If

0  q  2 then y~ is an even positive function on R which is equal (up to a
constant) to the density of the standard q-stable measure. For q > 2, the

Vol. 28, n° 3-1992.
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function yq is not positive. The behaviour of the functions y~ at infinity is
as follows: for every q > 0,

If q is an even integer y~ decreases exponentially at infinity. Thus, for

ex: E (- 1, q), the integral converges absolutely. For

a>q, this integral diverges if and it converges if q = 2 k,
k E N . The numbers Sq(a.) can easily be calculated [32], [14]: if ae(2014 1, q)
a. =1= 0, 2, ..., 2 [q/2], then

Let us go back to the distribution y providing the Levy representation.
Consider the integral

If all the numbers ..., a~_ ~ 2014 a~ 2014 ... 2014 + p belong to the inter-
val ( -1, q) then all the integrals in (15) converge absolutely and the
Fubini theorem is applicable. If q = 2 k, then the interval ( -1, q)
may be replaced here by the half-line ( -1, oo ).

LEMMA 3. - Let j9>0, and either or q is an even
integer. Then the distribution y is a charge in such that its variation is

bounded and has finite weak moments of the order p.

Proof - Note that all the integrals remain convergent if we replace y
by its variation l’Yql ] everywhere in (15) (We shall use the notation 1/
instead of ~). Now the desired result follows from the fact that

..., CXn - 1)  00 for ai=...==a~==0 and for ...,0~.1)
such that one of the a’s is equal to p and others are equal to zero.
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Thus, if/?>0, k ~ N and either Opq or q = 2 k, then
the norm in the space l q admits the Levy representation with the charge y:

One can easily verify the absence of additional summands (see Remark 1 )
puting Xn = 0 and using the reasoning at the beginning of the paper with

Let 0  p  q  2. Then ~yq is a positive function. Since the numbers

h ( -p/2) and r ( - p/q) are both negative, y is a measure on IRn-l and the
equality (16) gives an isometric embedding of the space 1= into L p (see
Theorem 5).

Let q > 2, 0  p  2, n = 3. Put (Xi=(X2=-l+8 in (15), where 8e(0, 1)
and (2 +~ - min (4, ~))/2  8 ~/2. Then (Xi, a~ e (- 1, 0) and

It follows from (15) and (14) that

f((Xl’ a~)0. Hence, the charge y given by (13) is not a measure, and,
by Theorem 4 the space l q is not isometric to a subspace of Lp with
0 p  2. This result gives an answer to the first Schoenberg’s question
(cf [14]).

Example 4. - Let E be an n-dimensional Banach space and p > 0,
p ~ 2 k, ke N. Assume that the corresponding distribution y is a charge
on (Rn -1 such that its variation y I is bounded and has finite weak p-th
moments. Then is the difference of two measures on IRn - 1. Let

The spaces E ~ and E2 with the norms

are isometric to subspaces of Lp ([0, a)] and Lp ([0, b)], respectively. Besides
that ~x~pE=~x~p1-~x~p2 for every x e E. Since Eland E 2 are isometric
to subspaces of LF ([0, 1]), we have proved the following fact.

LEMMA 4. - If E and p are as above there exist two operators
T 1 : E ~ Lp ([0, 1 ]) and E -~ Lp ([0, 1]) such that

Lemma 3 and Lemma 4 show that the space I: can be renormed, so
that it becomes embeddable into some Lp-space.
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THEOREM 6. - 
Then there exist two operators T 1 : lq ~ L ([0, 1]) and

T2:lnq ~ Lp([0, 1 ]) such that ~x~pq = ~T1 x ~p - /IT 2 x ~p for every x e l q.
Example 5. - Let q > 3, p = 3. Consider the space l q . By Theorem 2,

the distribution y providing the Levy representation of the norm with the
exponent p = 3 is equal to (1/03) (~1+~2!!~)~’ So, we have to compute
the forth derivative of the function (1 + I ç Iq)3/q. One can easily verify that

The function y is integrable near zero, since q > 3, and it decreases at

infinity Thus, y is a charge with bounded variation having
finite weak moments of the third order. On the other hand, it is clear
that y is not a measure. So, the space l q is not isometric to a subspace of
L3, but it can be renormed in the sense of Theorem 6.
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