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Limit theorems and variation properties for fractional
derivatives of the local time of a stable process
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Ann. Inst. Henri Poincaré,

Vol. 28, n° 2, 1992, p. 333. Probabilités et Statistiques

ABSTRACT. - We obtain limits theorems for the occupation times of
1-dimensional stable Markov processes. These results are refinements of
the classical limit theorems of Darling and Kac, and they generalize results
obtained by Yamada for Brownian motion. The resulting limit processes
are fractional derivatives and Hilbert transforms of the stable local time.
We also study the p-variation properties of these limit processes.

Key words : Stable process, local time, fractional derivative, Hilbert transform, limit

theorem, occupation time, p-variation.

RESUME. - Nous démontrons des théorèmes limites pour les temps
d’occupation des processus stables en dimension un. Ces résultats précisent
les théorèmes limites classiques de Darling et Kac, et généralisent des
résultats dus à Yamada dans le cas du mouvement brownien. Les processus
obtenus à la limite sont les dérivées fractionnaires et les transformées de
Hilbert des temps locaux. Nous étudions aussi la variation d’ordre p de
ces processus limites.
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312 P. J. FITZSIMMONS AND R. K. GETOOR

1. INTRODUCTION

We are concerned in this paper with limit theorems for the occupation
times of 1-dimensional stable processes, and with certain properties of the
limit processes.
To describe our results briefly let be a real-valued (strictly)

stable process of index a E ] 1, 2] with Xo = 0. By an extension ([Bi71], [K81])
of a famous theorem of Darling and Kac [DK57], then the

process

converges in law as ~ -~ + oo to the process

where (L?)t?o is local time at 0 for X. Now the integral in ( 1. 1 ) makes
sense even if f is only locally in and in this case it is natural to

ask if a limit theorem obtains, perhaps after a change in the exponent
(l-l/ex) and in the limit process (Lf). Such limit theorems have been
found by Yamada [Y85], [Y86] when X is Brownian motion. (See also
Kasahara [K77], [K81] and Pitman and Yor [PY86] for related results.)
One of our goals is to extend Yamada’s results to general stable processes.
Typical of the limit theorems we obtain is the following. Consider

f E (R) of the form

where 0y((x-l)/2 and g is a smooth function of compact support.
(Thus f is the one-sided fractional derivative of g, of order y.) Then as
x - + oo ,

where is the fl’uctuating continuous additive functional (CAF) of
X defined by

and where is local time at x for X. Concerning the convergence
of this integral, see the discussion following (2. 20).
The process defined in ( 1. 5) is exemplary of a class of CAF’s which is

a second focus of our study. Roughly speaking is not of finite
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313LIMIT THEOREMS FOR FRACTIONAL DERIVATIVES

variation, but it does have zero energy in the sense of Fukushima [F80];
see the remark following (4.9). More precisely consider the dyadic
p-variation of (H°)o _ t  ~ 1

and define Note that 1 po  2 since

0y((x2014 1)/2. We prove the following .

where 0  b  oo is a certain constant. It follows easily from ( 1. 7) that

(1 . 8) V~ ---+ + oo in probability as n - + oo, if 0  p  po.

Actually, ( 1. 6) is a consequence of a recent result of Bertoin [Be90], which
implies that the full p-variation of is finite on compacts almost

surely if and only However, as a by-product of our proof we
also obtain convergence in r-th mean (1 ~r oo ) in both ( 1. 6) and ( 1. 7) .
The proof of ( 1. 6) relies on moment estimates, while ( 1. 7) is a consequence
of the ergodic theorem coupled with the Darling-Kac theorem.
Very little seems to be known about the distribution of the process

(Hf). A notable exception is the computation by Biane and Yor [BY87]
of the joint Fourier-Laplace transform of (a symmetrized version of)

in case y = 0 [see (2 . 22)] when X is Brownian motion. We have
recently extended this result to cover a wide class of symmetric Levy
processes; see [FG91]. The general case remains a challenging open
problem.
The rest of the paper is organized as follows. Section 2 contains precise

definitions and basic facts. In section 3 we prove various limit theorems
for functionals of the type ( 1.1 ). The variation properties of H° are
studied in section 4.

Throughout we shall use the standard notation for Markov processes
(cf [BG68]).

2. LOCAL TIMES AND FRACTIONAL DERIVATIVES

Throughout this paper will denote the cano-
nical realization of a real-valued strictly stable Levy process, of index
(xe]l,2]. Thus is a cadlag process with stationary independent
increments, and the Levy exponent B)/ of X, defined by

Vol. 28, n° 2-1992.



314 P. J. FITZSIMMONS AND R. K. GETOOR

takes the special form

Here at > 0 and a2 E [ 2014 1,1] are constants, and a2 = 0 if 03B1 = 2.
The transition probabilities of X have continuous densities relative to

Lebesgue measure:

where p is computed from (2 .1 ) and (2 . 2) by Fourier inversion:

Clearly (2.2) and (2. 3) yield

where 0  B  00 is a constant depending only on a and al.
It is well-known ([Bo64], [BG68]) that for each there is a local

time process at x. This is an increasing CAF of X such that the
support of the measure dt Li coincides almost surely with the closure of
{~:X~=~}. Local time is normalized so that

Subject to this normalization there is a version of local time such that

(x, t) ~ L: is jointly continuous and

for all ~0, x e R almost surely. This fact is due to Trotter [Tr58] when X
is Brownian motion (a = 2), and to Boylan [Bo64] for 1  a  2. Moreover, a
good deal is known about the modulus of continuity of Define

Then from the work of Barlow [B85] we know that p serves as a modulus
of continuity for x H L: in a sense detailed in Theorem (2. 7) below. Note
that Õ (u) __ C u0152 - 1, so

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



315LIMIT THEOREMS FOR FRACTIONAL DERIVATIVES

Thus x - Lo is Holder continuous of any order P(a- 1)/2, a fact which
follows already from the work of Boylan.
For ease of manipulation in later computations we want to choose as

"perfect" a version of local time as possible. The properties of one such
version are outlined in the following theorem. The key point (vi) is due
to Barlow [B85] as already noted, and the other points follow by well
known perfection arguments (e. g. [GK72], [G90]). We omit the proof. As
usual ff’* denotes the universal completion of ~: = 6 { Xt : t ? 0 ~ .
(2 . 7) THEOREM. - There is a function (x, t, (0) ~ L: (00) from
(~ x [0, oo[ x Q to [0, oo [, and a set with P"(A)= 1 for all x E (~ and
03B8t  c A for all t > 0 such that:

(i) For each T > 0, (x, t, co) - L: © £3 ([0, T]) (x) (ff’T n ff’*)-
measurable as a map from R x [0, T] x S2 to [0, 00[.

(ii) For each x and co, continuous and increasing with

L~ (0) = 0, and the measure dt L: (00) is carried by ~ t : X (00) = x ~ .
(iii) (00) = Lo (00) + LS (6t w), V s, t > 0, 00 E A, x E R .

(iv) and all bounded or

positive Borel functions f.
(v) L~((o)=0 whenever I x ] > sup ( 0 _ s _ t ~ .
(vi) For each t and t~ there is a constant 0  C (t, (0)  00 such that

(2.8) Remarks. - (a) Barlow [B85] has shown that if X is any Levy
process for which 0 is regular for {0 } and for which

and if 8 is as defined in (2.5), then

is a sufficient condition for X to have a local time for which p defined
below (2. 5) is a modulus of continuity. Consequently Theorem (2.7) is
valid for any such process.

(b) It follows immediately from (2 . 7) (ii ) (vi) that is jointly
continuous in (x, t) for each 03C9 ~ 03A9.
We now introduce certain "fractional derivative" transforms which play

a central role in the sequel. Let ~f(P) denote the class of functions

/: [R -~ R satisfying a global Holder condition of order P:

Vol. 28, n° 2-1992.
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Given y E ]0,1 [ we define

provided n L1 (R) for some The Holder condition on f
ensures that the integral in (2.9) is absolutely convergent. [Note that if
f E ~ ([i) n L1 (R) for some @ > 0 then f(x) - 0 as x ~ --~ 00.] Of course,
D~ and D’~ are the familiar one-sided fractional derivatives of order y.
We shall write

for the symmetric fractional derivative.
Since y-1 is not integrable at +00, the definition of D~ must be

modified slightly to allow y = 0. Accordingly we define

L1 (I~), (3 > 0. [The minus sign in front of the integral is the
ghost of r(-y).] Note that is the Hilbert transform

(modulo a factor of I /x). For information on fractional derivatives and
the Hilbert transform the reader can consult [HL28], [S70], [T48]. The
following two lemmas contain the facts that we will need in the sequel.

(2 . 12) LEMMA. - family of functions from fl~ to

R such that for some constants [3 > 0, 0  C  00,

and

Define f = Dg cpt, where 0 __ y  ~3. Then there is a constant 0  K  00 such

that for all x, y E IR

and

Proof. - We consider only the case y = 0; the argument is easier when
y > 0 and the reader may consult [HL28]. We shall only prove (2.13) ; the
growth estimate (2. 14) is straightforward. Fix ç : R - R with

I (p (x) - (p ( y) I -- and supp (p c [ - C, C], and consider

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



317LIMIT THEOREMS FOR FRACTIONAL DERIVATIVES

f= - D~ cp. (The argument for Di is the same.) We have

Evidently

Combining these estimates with the obvious inequality we

obtain (2 .13) (for y = 0)..

Remark. - Even if (p E ;ýf (?) is merely integrable, it is still true that

D~ (p is bounded and continuous provided 0~yP. In fact when y > 0 it
is easy to see that D~ When y = 0 one can argue as in the
proof of (2.12): the estimate for 11 remains valid, while

by the Cauchy-Schwarz inequality. Thus D~ p is (Holder) continuous. A
similar application of the Cauchy-Schwarz inequality shows that D~ (p is

bounded.

(2 .15) LEMMA. - Fix 0 ~ y  1 and suppose f, g E ~P (~i) n L (R) for some
(3 > y. Then

Vol. 28, n° 2-1992.
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Proof. - By the preceding remark both D~ f and D’~ g are bounded
and continuous. For E > 0 define Ft (x) by the R.H.S. of the + case of
(2 . 9) or (2 . 11 ) with the range of integration restricted to ]E, E -1 [, and let
Gt denote the analogous approximation of D’~ g. It is easily checked that
Ft ---+ D~ f (resp. Gt ---+ D~ g) boundedly and pointwise as E! 0, A trivial
application of Fubini’s theorem reveals that

By virtue of the dominated convergence theorem we can now let E ,~ 0 to
obtain the conclusion of the lemma..
The significance of the following consequence of the "switching identity"

(2.15) will become apparent in the next section. We should emphasize
that D~ are excluded from consideration here.

(2.16) PROPOSITION. - Let D denote one of the transforms
D~(0yl), DY(O~y 1). Let where (3 > y, and

assume Then When y=O we also have

Proo, f : - If h: [R ---+ fR and a > 0 we write ha for the function 
The crux of the matter is the scaling identity
(2.17) 
For definiteness we assume the other cases are entirely similar.
By (2 . 15) and its "dual", if cp is any smooth function of compact support
with then

If 0  y  1 then, since Dcp is bounded and f, gEL ([R), we can let a ~ 0 in

(2 . 18) to obtain When y = 0, upon letting in (2 . 18) we

obtain

Varying p we conclude that 

Remark. - When D=D~ (2 .17) must be replaced by

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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A variant of the above argument now yields the following: if

f= D~ = for y ~ 0, where g, h E 9V (P) U L1 (R) for some p > y, then

and both of these integrals vanish if, in addition,

y>0. Moreover, where (R) for some P>0, then
f cannot be integrable.
We close this section by defining the additive functionals that will

concern us for the remainder of the paper. By (2 . 6) and (2 . 7) (vi) we
have

for any (3 E ]o, (oc - 1 )/2[. Together with (2 . 7) (v) this allows us to define

By Lemma (2 . 12), for each 0) E Q, x i--~ Ht (y ~ ; ~) is Holder continuous

of order Õ for and

both of these statements holding uniformly in t confined to compacts. It
follows from (2. 7) (iii) that (Ht (y ~ ))t > o is an additive functional of X.

Moreover, a dominated convergence argument shows that 
is continuous. Thus is a CAF of X and (~)~H~(y±) is
continuous. 

-

Owing to the singularity of at 0, each of the CAF’s

(H~ (y + ))t >_ o~ (H~ is of unbounded variation over any time interval

during which X visits x. More precisely, for almost every 0) E Q and all

and likewise for This assertion is a consequence of Theorem (4. 3)
(b) when 0  y  (a -1 )/2. Since the case y = 0 is not covered by (4. 3) (b),
we shall sketch the proof here, restricting attention to the symmetric case.
Thus we shall prove that (2.24) holds [with ro) replaced by
HJ(0; m)] for each coeA [see (2 . 7)]. There is no loss of generality in

assuming x = s = 0. Moreover, since t H y -1 Lyt dy is clearly of bounded
variation on finite t-intervals, it suffices to check (2. 24) with 
replaced by the CAF

Vol. 28, n° 2-1992.



320 P. J. FITZSIMMONS AND R. K. GETOOR

It is not hard to check that the variation process Vt: t~ is

increasing, and continuous except perhaps for a single infinite jump which
may ocur at ~=0. The same remarks apply to the positive and negative
variation processes (V~), (Vt-), and of course Now fix (0 E A
and t > 0, and suppose that Vt  ~. Then

But if [~]c:{~:~~- X~(co)>0} then H, (o) is increasing on [a, b]
(because is constant on [a, b] for all ~>0), so we have

Y~)-Y~)=V,(co)-V,((D)

Consequently

as measures on [0, t]. Hence these measures have the same total mass, so

(2 . 25) implies oo > y -1 Li dy which precludes L° (o) > 0 because

y H Li (00) is continuous. This yields (2 . 24).

3. LIMIT THEOREMS

We present in this section several limit theorems for rescaled additive
functionals of the form

for certain f E (R). (Except for the trivial case f = 0, all of the f’s we
consider take both signs.) The method is a simplification of that of
Yamada [Y86], but since the proofs are short we give a detailed account.
The key to our limit theorems is the scaling property of stable processes,

which is conveniently formulated as follows. For each c > 0 define a
transformation C~: Q by

Using (2 . 1 ) and the fact that ~r (c -1 ~°‘ ~,) = c -1 ~r (~,) [by (2 . 2)], it is easy to
check that

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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On the other hand, (2. 7) (iv) implies that

provided co E A (A). Here A is as in Theorem (2. 7), hence PY (A) =1
for all y and (3. 4) holds for almost all 03C9 ~ 03A9. When combined, (3. 3) and
(3.4) yield the following equality in distribution between two-parameter
processes:

Here are the main results of this section. We shall denote Lebesgue

measure on IR by m, so m (g) = g (x) dx.

(3 . 6) THEOREM. - Let ye]0,((x2014l)/2[ and suppose , where

Then under the law P°,

where H~ (y + ) = D% (L;) (0) is the CAF of X introduced in section 2.

Here and elsewhere " ~ " means weak convergence of the laws that the
indicated processes induce on the space C ([0, 00[, R), which is equipped
with the topology of uniform convergence on compact time sets.

(3 . 8) THEOREM. - Suppose f= Di g where some

~ > o. Then under pO

and

aS ~1, -~ + 00.

(3 .11 ) Remarks. - (a) As will be evident from the proofs, the limit
laws announced in (3 . 6) and (3 . 8) are all "linked" in the sense of Pitman
and Yor [PY86]. That is, if f = D~’ ~i~ gi, then (writing
p (i) = [ I - ( 1 + y (i ))/a]) the vector of processes

Vol. 28, n° 2-1992.
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converges in distribution as À ---+ + ~ to the vector of processes

(m (gi) H° (Yi + )) 1  i  n. Similarly, the limit laws of (3. 8) are linked with
each other and with those of (3 . 6).

(b) Of course the duals to the results of (3.6) and (3.8) (obtained by
exchanging +’s and -’s) are equally valid, and they are linked with
the announced limit laws. In particular, by subtraction one obtains the
appropriate limit theorems when f = DY g, 0 - ’Y  (a -1 )/2.

(c) Suppose f = g as in (3. 6) and assume f ~ L1 (R); this happens,
for example, if g has compact support. Then by the extended Darling-
Kac theorem

The apparent conflict between (3 .12) and (3 . 7) is resolved by Proposition
(2 .16), which tells us that m = 0. Thus, in the present case, (3 . 7) should
be viewed as a refinement of the (degenerate) limit law (3.12). Likewise

with for 0yP, then (3 . 7) and
its dual are compatible by virtue of the remark following the proof of
(2. 16). Similar remarks hold in the context of Theorem (3 . 8).

Proof of (3 . 6). - For this proof only let us set p =1- ( 1 + y)/a. Then
under P °

But for T > 0 and mEQ we have, by (2 . 20) and (2.12)

and

Thus the last integral in (3 .13) converges to g (x) dx . H° (y + ) uniformly
in t E [o, T] for each T > 0 (and each fixed (0). The theorem is proved..

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Remark. - The argument used in the above proof gives a very simple
proof of the extended Darling-Kac theorem for the stable processes under
consideration here.

Proof of (3 . 8). - In this proof we write p =1-1 /a. Arguing as in the
proof of (3 . 6) but now using (2. 19), we obtain

and

Clearly (3 .14) [resp. (3 .15)] yields (3 . 9) [resp. (3 . 1 0)] ..
In the limit theorems (3. 6) and (3. 8) we required f to be in the range

of one of the fractional derivative transforms D~. Analogous results can
be obtained by replacing the kernel (y v 0) -1-’~/r ( - y) of D% by a
suitable regularly varying function. We will state the resulting limit theo-
rems, leaving the proofs to the interested reader.
For 0~y((x-l)/2 let k,~ : f~ ~ [0, oo [ be a regularly varying function

of the form

where I is slowly varying at + oo. Since only the asymptotic behavior of I
at + oo is relevant we may assume with no loss of generality that I is

continuously differentiable, I (x) > 0 for all jc>0, and /(0+)=1; see

[BGT87], Thm. 1. 3 . 3. Note that l(x)=o(x03B2) as x ~ +00 for any 03B2>0

([BGT 87], Prop. 1. 3 . 6), so when y>0, LX) dx~. Consequently,

L (R) for some (3 > y and 0  y  (a -1)/2, then the formulas

define bounded continuous functions.

(3 . 1 6) THEOREM. - Let 0  y  (u - 1 )/2 and suppose f = K% g where
g E 9V n L 1 (R) for some ~3 > y. Then under pO one has, as À ---+ + 00,

where H~(y~)=D~ (L~) (0), as usual.

Vol. 28, n° 2-1992.
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Like D~, K~ requires special consideration. We define

and set

Using [BGT87], Thm. 1 . 3 . I , one can check that I (a)/q (a) ---+ 0 as a - + 00.

(3 1 7) THEOREM. - Suppose f = K ~ g where g E ~ (Ø) n L 1 (R) for some
ø > O. Then under P°, as À ---+ + ~, 

-

and

(3.18) Remark. - For the reader interested in providing proofs of
(3. 16) and (3. 17) we note that the key extra ingredient is the following
observation. be a family of functions subject to the
conditions of Lemma (2.12). If 0 ~ y  P then as a - + oo,

uniformly in (x, t) E D x [0, T] for each compact D c R. This can be proved
by a judicious use of Potter’s theorem [BGT87], Thm. 1. 5 . 6.

The limit theorems announced in (3.16) and (3.18) are linked with
each other and with those announced in (3.6) and (3.8). In particular,
one can obtain limit theorems for f= KY g: = K + g - K~_ g.
The results of this section provide limit theorems for rescaled additive

functionals

for p in the range ]( 1-1 /a)/2, 1 - 1 /u[. The Darling-Kac theorem lies at
one end of this spectrum (p =1-1 /a). At the other end of the spectrum
(p = ( 1- 1 /a)/2) is the "2nd order" limit theorem of Kasahara [K81].
(Actually, Kasahara’s theorem is in the spirit of the Darling-Kac theorem
and applies in much more generality than the stable context considered
here.) The boundary seems to be natural - we know of no

analogous limit theorems for On the other hand, Yamada

[Y86] has obtained limit theorems for Brownian motion when p > 1 2014 I/a

Annales de l’Institut Henri Poincare - Probabilités et Statistiques



325LIMIT THEOREMS FOR FRACTIONAL DERIVATIVES

( =1 /2 when a = 2). Analogous limit theorems obtain in the stable case
considered here. These theorems require f to be of the form 
continuous and of compact support, where 1~ are the one-sided fractional
integral transforms. The reader can consult [Y86] for details.

4. p-VARIATION

We now turn to the variation properties of t H H° (y ~ ). Let (Ht) denote
one of the processes (H~ (y::l: )), (H~ (y)) and define

where n E N, and t is a dyadic rational of the form k 2 -n, k E f~ . We
complete the definition of V~(-) by linear interpolation on each interval
[(~-l)2~/c2~]. Given ye[0,(a-l)/2[ set

so that 1 _p°  2. The cases H? (0+) and H? (0-) are excluded from
consideration in the following result.

(4 . 3) THEOREM. - (a) then as n - +00, a. s.

P ° and in 

p0
cular lim sup V~ (t) = + 00 a. s. pO f t > 0. (Here " ---+ " denotes convergence

in pO-probability.)

where Moreover in for each
and 

Remark. - As noted in section I, Bertoin [Be90] has shown that the
full p-variation of is finite on compacts a. s. P ° if and only

(Bertoin is concerned only with Brownian motion, but his argu-
ment works just as well in the present context.) In particular, the dyadic
p-variation of H~(0±) is finite (hence zero) for ( = I when y = 0),
settling a point left untreated by (4. 3) (a). By the discussion at the end of
section 2 the 1-variation infinite over any interval 

such that L~-L~>0.

Vol. 28, n° 2-1992.
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For the sake of definiteness we assume in what follows that

H,=H~(y)=H~(y+)-H~(y-), The proofs for 

0y I, are quite similar. In the sequel we often suppress y in our

notation, writing Ht for 
Everything in this section relies on the joint scaling property of 

and (Lf). Since we have excluded H~(0±) from consideration, the required
scaling property results on combining (2.17), (3. 3) (3.4) and the analog
of (3 . 4) for (H~). For each c > 0 we have

Our first task is to establish the finiteness of certain moments of Ht. This
could be accomplished by direct estimation but we prefer to use a variation
on Burkholder’s inequality due to Bass [Ba87]. The argument given in
[Ba87], where X is assumed to be Brownian motion, readily adapts to the
case of a general strong Markov process. See also Davis [D87] in the
context of stable processes.

(4 . 5) LEMMA. - Let be a continuous increasing (t)-adapted real-
valued process with Ao = O. Assume that:

(i ) At + K. 9t, v s, t >_ 0, for some constant K > 0;
(ii) there is a constant q > 0 such that lim sup Px (AA > ~,l~q z) = 0.

Z -+ 00 ~, > 0 , x E (1~

Then for each p > 0 there is a constant 0  Cp  00 such that

Remark. - In fact, (4. 6) remains valid (with the same constant Cp) if
t is replaced by any stopping time T, tPlq being replaced by P° 

Proof. - We apply (4 . 5) and

Clearly (At) satisfies condition (i ) in (4. 5), and for any c > 0

by (4 . 4). Also, writing for the translation (o’2014~D(-)+~, we
have L~ (iy m) = (co) by (2 . 7) (iv) and so 

.
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Since X is spatially homogeneous [i. e., iy (pO) = P’’], it follows that the
PY-distribution of (At) does not depend on y. Thus, by (4. 8),

so condition (ii ) in (4 . 5) will hold provided A 1  oo . But

which is finite by (2 . 20) and (2.12). Thus (4.5) applies and the proposition
follows..

(4 . 9) PROPOSITION. -  oo if p > 1, and even f p = 1 when y > 0.

Proof. - Recall that Ht = H~, and note that lip denotes the norm
in LP (!R) then

J J

Once again we appeal to Lemma (4 . 5) with g = a/(a -1- y) as before,
but now

Clearly (At) satisfies (i ) of (4 . 5), and owing to the translation invariance
of the LP (R) norm, the PY-distribution of (At) does not depend on y. So
condition (ii ) of (4 . 5) will follow by scaling provided A1  00. But this
follows since x - Ht is continuous and O (~ x I -1-’’) as ~-~+00
uniformly in t E [0,1], by (2 . 20) and (2.12). N
Remark. - Using (4. 4) one easily finds that

But y(a-l)/2 and so (2(x-l-2y)/a>l. Therefore (4. 9) implies that
Hr has zero energy; i. e. Pm (Hf) - 0. The functionals H? (O:f:) are not
covered by (4.4) and (4.9). However, a direct computation shows that
P~(H?(0±)~)oo, and since

it follows that the functionals H° (O:i:) have zero energy also.
Recall from (2 . 4) for t>O and The constant

B appears in the next result.

(4 .10) PROPOSITION. - Let be ~ 1 measurable and such that

pm (Fk)  00 for each Let 03B2 =1-1 /a. Define
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Then po  ~ for n, k ~ N and

for k E N.

Proof. - The proof goes by induction on k. First note that

for j >_ 1 and x e R. Suppose k =1. Then

n

and since as n - + oo, this establishes (4 .11 ) when k =1.
j= i

Suppose (4 .11 ) is valid for 1 _ k  K and all F satisfying the hypotheses
in (4 .10). Then

where the sum after the first equality is taken over all K-tuples ( j 1, ... , j~)
from {1,2, ... , n ~ and A (I) is the sum over all such K-tuples with exactly
I distinct elements. Let G = sup Fk. Then Pm (G)  oo and

where C (I, K) is the number of K-tuples of I distinct elements such that
each element appears at least once in each K-tuple. By the induction
hypothesis n - a l A (l ) is bounded and hence (I K)
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If jl  j2  ... then because F is ~ 1 measurable

But one may readily check that as n - 00

Combining this with (4.12) and (4.13) completes the induction, establish-
ing (4 . 1 0)..

Remarks. - A more careful analysis actually shows that

In fact we may regard as a Markov chain with state space

(Q, and then the above limit is just the moment calculation necessary
to prove the discrete version of the Darling-Kac theorem. However, we
do not impose on F the strong restriction (A’) on page 452 of [DK57].
Of course we are dealing with a chain over X, for which a scaling
relationship is valid.

Proof of (4 . 3) (a). - Fix p > p°. It suffices to consider one fixed t > 0,
say t =1. We shall prove that

This is more than enough to yield both the a. s. and the Lr convergence
of V~ (1) to 0. To see (4.14) note that under P ° we have, by (4 . 4) for
each n E N

where 8=(~-/?o) (l-(l+y)/o()>0 and F=IH1Ip. Now and

P m (Fk)  00 for all k >_ I by (4 . 7) and (4 . 9) respectively. Because F E ff 1
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we can apply (4. 10) to obtain

which easily implies (4. 14). .
For the proofs of parts (b) and (c) of Theorem (4.3) we require the

Chacon-Ornstein ergodic theorem in the following form. The shift operator
01 is a measure preserving transformation of the c-finite measure space

According to the Chacon-Ornstein theorem if F, GEL 1 (pm)
with G>O, then, as n - + oo ,

Acutally, (4.15) obtains provided e1 and (Q, ~o, Pm) satisfy the following
two conditions (cf [Re75], p. 112, 118):
(4 . 16) If is positive and r:={ ~ then either

n~l 1

(4. 7) There is at least one positive Y ELl (Pm) such that

Now since X has independent increments, (4. 16) is an easy consequence
of Kolmogorov’s 0-1 law. As for (4 . 17) let g E L 1 (IR) be a bounded positive
function with compact support and m (g) > 0. Then by the discrete time
form of the Darling-Kac theorem [DK57], for each x e R we have

where 0  a  oo is a constant and is the Mittag-Leffler distribution
with parameter 1 - l/ex. But is concentrated on ]0,oo[ [ and

+00, so (4 . 1 7) holds for Y = g (Xo).

Proof of (4 . 3) (c). - To prove the convergence in probability assertion
it suffices to show

where D = ( k 2~"’ : k, m e Fl ) denotes the set of dyadic rationals. In fact,
if (4.19) holds and if N1 is an infinite sequence then by the Cantor
diagonal procedure we can find an infinite sequence N 2 c N1 such that
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Since D is dense in [0,oo[ and since both (t) and L~ are continuous
increasing functions of t, the qualifier in (4. 20) can be replaced
by "d t >_ 0 ". But if a sequence of increasing functions converges pointwise
to a continuous (increasing) function then the convergence occurs

uniformly on compacts. Thus (4. 20) implies

and this yields the first assertion in (4. 3) (c) since N was arbitrary.
By scaling it is enough to prove (4 .19) for t =1. As a special case of

(4 . 4), if n ~ N then

Now fix a bounded positive function 1 (~) with m (g) > 0, and note
that by (4 . 9) since po > 1. We claim that as n ~ +00,

Indeed P~(L~)==1, so hence the convergence in

(4.22) occurs a.s. pm by the ergodic theorem (4.15). Moreover the proof
oo

of (4.17) shows that £ ~(X~)= + 00 a. s. P~ for all x. Let us write r for
.7=0

the co-set on which either the convergence asserted in (4.22) fails or
oo

~ ~(X~.)oo. Clearly 811r=r and so

7=0

proving (4 . 22). On the other hand we know from (4.18) that the P °-law
2n-1 1

of dn L g(Xo) 0 8j converges weakly to a distribution concentrated on
j=O

]0,oo[. By Slutsky’s theorem [Du91], (4.22) therefore implies that as
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under P ° . In view of (4 . 21 ), (4 . 23) yields (4 . 19) for t =1.
It remains to show that - b Lt in as n - + oo for each r

with As before, it suffices to prove this for t =1. Since the

convergence in P °-probability of to b L° has already been estab-
lished, we need only show that for each the random variables

are uniformly integrable under P ° . But this follows imme-

diately from (4.10) since by (4 . 4), under P °

and since for all by (4 . 7) and

(4.9). N

Proof of (4. 3) (b). - Because of the discussion at the end of section 2,
we need only consider the case y>0. Fix By (4 . 3) (c) if Ni is

any subsequence then there is a subsequence N2 c N 1 such that

But then a simple real variable argument shows that

if 0  p It follows that Vpn (t) - + oo in P0-probability. []
Remark. - The proof of (4.3) (c) allows us to close a gap left open

in the statement of (4 . 9). Namely, 00 if y = 0 (p° =1 if

y = 0). For if were finite for y=0, then the argument used to

prove (4.3) (c) would yield the convergence in P °-probability of

( 1 ))n > i to a finite limit, and this would violate the fact that Hf (0) has
infinite 1-variation, as noted at the end of section 2.
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