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ABSTRACT. - This is the second part of "Sharp large deviations estimates
for simulated annealing algorithms". We give applications of our estimates
focused on the problem of quasi-equilibrium. Is quasi-equilibrium maintai-
ned when the probability of being in the ground state at some finite large
time is maximized? The answer is negative. Nevertheless the density of the
law of the system with respect to the equilibrium law stays bounded in
the "initial part" of the algorithm. The corresponding shape of the optimal
cooling schedules is where d is Hajek’s critical
depth. The influence of variations of B on the law of the system and its
density with respect to thermal equilibrium is studied: if B is above some
critical value the density has an exponential growth and the rate of

convergence can be made arbitrarily poor by increasing B. All these

computations are made in the non-degenerate case when there is only one
ground state and Hajek’s critical depth is reached only once.

Key words : Simulated annealing, large deviations, non-stationary Markov chains, optimal
cooling schedules.

RESUME. - Cet article constitue le deuxième volet de notre étude des
« Estimees précises de grandes deviations pour les algorithmes de recuit
simulé ». Nous donnons ici des applications de ces estimées ayant trait à

Classification A.M.S. : 60 F 10, 60 J 10, 93 E 25.
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464 O.CATONI

la question de l’équilibre thermique. Un quasi-équilibre thermique s’établit-
il lorsque la suite des temperatures est choisie de façon à maximiser la
probabilité pour que le système soit dans 1’etat fondamental a un instant
lointain fixé ? La réponse est negative. Néanmoins la densité de la loi du
systeme par rapport a la loi d’équilibre reste bornée dans la partie initiale
de l’algorithme. La forme correspondante des suites optimales de tempera-
tures a un développement de la forme 1 /Tn = d - i ln n + B + o ( 1 ) où d est
la profondeur critique de Hajek. Nous étudions l’influence des variations
de B sur la loi du système et sur sa densité par rapport a la loi d’équilibre :
si B dépasse une certaine valeur critique, la densité a une croissance

exponentielle avec le temps et la vitesse de convergence peut etre rendue
arbitrairement lente en augmentant B. Tous ces calculs sont menes dans
le cas non dégénéré où il existe un unique etat fondamental et où la
profondeur de Hajek n’est pas atteinte plus d’une fois.
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. INTRODUCTION

The study of cooling schedules of the type is the subject of
most of the literature about annealing (D. Geman and S. Geman[9],
Holley and Stroock[13], Hwang and Sheu [14], Chiang and Chow [6]). We
investigate here for the first time the critical case ~ =1 /d where d is
Hajek’s critical depth. We show that it is natural to introduce a second

constant and that quasi-equilibrium is never maintained
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465OPTIMAL COOLING SCHEDULES

in this case, but that the distance to quasi-equilibrium depends heavily on
the choice ofB.

These critical schedules are not merely a curiosity: when one fixes the
simulation time a priori the "best" cooling schedules take this shape in
their initial part. The final part of optimal schedules is beyond the scope
of this paper and will be reported elsewhere.

This paper is the second part of "Sharp large deviations estimates
for simulated annealing algorithms". We will assume that the reader is

acquainted with the results and notations of the first part.
This work, as well as the preceding one, would not have come to birth

without the incentive influence of R. Azencott, who has directed the thesis
from which it is drawn, let him receive my sincere thanks again.

1. ESTIMATION OF THE PROBABILITY
OF THE CRITICAL CYCLE

Our aim here is to study cooling schedules of the type 
The introduction of the non classical constant B will be justified when A
takes its critical value.
We restrict ourselves to the case where there is only one global minimum

and one deepest cycle not containing this global minimum. We will call
this deepest cycle the criticle cycle, or r. We are interested in the case
when the annealing algorithm converges. The condition for convergence

n

When A  H ~~’) - i , then ~ can be made large and

can be made small at the same time, and we can consider that
temperature is almost constant. We will prove in that case that

The system remains in a state of quasi-equilibrium during the cooling
process. This result is not new (cf Hwang and Sheu [14], Chiang and
Chow [6]).
When A = ~I (~’) - ~ we can no more consider that temperature is almost

constant. We have to study the behaviour of the system in the subdomain
E - ~ ~ ~’~ ~ h’) where f is the fundamental state (the global minimum).
Indeed the probability to stay U r) during times m to n is of
order

Vol. 27, n° 4-1991.



466 O.CATONI I

and H (E - { ~ , f’~ U T))  H (T). Thus during its life in E - ( ~ f ~ U r) the
system can be considered to be at almost constant temperature. Studying
the jumps of the system from f to r and back will give an estimate of
P (Xn E r). From this estimate we will derive in a second step an equivalent
of the law ofXn-
We will show that the influence of the second term B is decisive when

A = H (F)’ ~ = H’ (E) - and that there is a value of B for which

We will need the following definitions throughout the discussion:

DEFINITION 1 . 1. - Let (E, U, q) be an energy landscape. An initial

distribution F0 will be called y-uniform if

DEFINITION 1. 2. - An energy landscape (E, U, q) will be said to be non-
degenerate if.~

2022 The energy U reaches its minimum on a single state of E, equivalently
~F(E)~=l.

2022 There is in (E, U, q) a single cycle of maximal depth, equivalently

We will call this cycle the critical cycle of (E, U, q).

1. l. A lower bound for any cooling schedule

The speed at which a cycle may be emptied will turn to be linked with
the following quantity which we will call the "difficulty" of the cycle.

DEFINITION 1 . 3 . - Let (E, U, q) be any annealing framework. Let C be
a cycle of (E) which is maximal for inclusion. We define the difficulty of
C to be the quantity

[Let us remind that U (E) = 0 by convention.]

DEFINITION 1 . 4. - Let (E, U, q) be a non-degenerate energy landscape
We introduce the second critical depth S (E) to be

where r is the critical cycle of E.
Let f be the natural context of r (that is the smallest cycle containing

both r and f ). Let 1.... , r be the natural partition of T. Assume
that the Gks are indexed according to decreasing depths, thus f E G 1 and

de l’Institart Henri Poincaré - Probabilités et Statistiques



467OPTIMAL COOLING SCHEDULES

G 2 = r. Let Y be the Markov chain on the "abstract" space {1, ..., r ~
with transitions

Let 03C3 be the stopping time

We define q to be the critical communication rate

The introduction of the term F (r) I - ~ 1 + s~ is somewhat arbitrary. The
meaning of q will be clear from equation (34) in lemma 1.9. It is the

multiplicative constant in the expression of the transitions between f and
r viewed as two abstract states in a large scale of time.
We define also a critical communication kernel K on the abstract space

~ 1,2~ by

Let us notice that K (2, 2) ~ 0 and K ( 1, 1 ) ~ 0. K ( 1, 2) is the probability
to jump from f into r knowing that the system has jumped out of G1 ~ f.

PROPOSITION 1 . 5. - There are positive constants To, oc and ~i such that
in the cooling framework G(T0, H (I-’)), for any initial distribution 

putting b = ~ (r),

and

we have

Remark. - During times 0 to N1 the chain X reaches a state of "partial
equilibrium" where the memory of the initial distribution is reduced
to the quantity ~o (r) in a sens which the proof will make clear.

Proof of proposition 1. 5. - It will require a succession of lemmas.
Let g be some state in F (r) and let us put E* * = E - ~ f, g ~ . We begin

with a formula.

Vol. 27, n° 4-1991.
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LEMMA 1. 6. - We have

Proof - We write

then we condition each term of this difference by the last visit to ~ f, g ~ .
End of the proof of lemma 1. 6.
Let us state now to which class belong the GTKs of lemma 1.6. The

results of proposition 1 . 4 . 5 about the behaviour of annealing in restricted
domains and the composition lemmas are leading to the following theorem:

LEMMA 1 7. - There exist positive constants To, a and oc such that in
the cooling schedule ~ (To, S (E))
~ the kernel M (E**, h)g is of class

~ the kernel M (E* *, T ) f is of class

s the kernel M (E * *, E - h)9,’ m is of class

~ the kernel M (E* *, E - is of class

2022 for any iEE** the kernels M (E* *, T)E and M (E* *, E - h)E are of
class

We deduce from this lemma the following proposition:

PROPOSITION 1 . 8. - For any energy landscape with communications

(E, U, q), there are positive constants To and 03B2 such that in G (To, H (r))
for any positive constant oc  (3, for NI = N (H (h), T1, -- a, 0) and any

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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N2 > we have

Proof of proposition 1 . 8. - We have

moreover

The second term in the right member of this equality is lower than

and the first is lower than

VoL 27, n° 4-19~1.
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Moreover

Let us put T 1, - 2 oc, 0) and N 1. 5 = N (H (T), T 1, - cc, N 1 ) .
For any m E [N 1 _ ~, N2] (if any) we have

because g is a concentration set of r.
For any 

as we can see from the fact that

and the fact that f is a concentration set of Gland that H’ (G 1)  H (r).
Moreover

hence

For a

because as can be seen from the fact that

~ _ f ’ ~ is a concentration set of E. This is true even for m - N 1 small, this
can be seen by starting at time s sufficiently remote in the past (if necessary
we start at a negative time, putting TI = T 1 for l ~ 0). Then (whatever the
initial distribution) P(X~==/)~1-~~ 1 and P (XN 1=, f ’) >_ 1- e - ~‘~T 1,
hence

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



471OPTIMAL COOLING SCHEDULES

Hence

Hence

End of the proof of proposition 1. 8.
We deduce from proposition 1 . 8 that

LEMMA 1 . 9. - There is a positive constant To such that in the cooling
framework G (To, H (r)), for any small enough constants 03B13  a2/2  03B11/10
putting

we have

Vol. 27, n° 4-1991.
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LEMMA 1 . 10. - There are positive constants To and 03B2 such that in the
cooling framework G (To, H (r)) we have

Proof of lemma 1.1 a. - The minimum of the function

is reached for

End of the proof of lemma 1 . 10.

Continuation of the proof of proposition 1 . 5. - Let us put
and i we have

from which we deduce proposition I . 5 with the help of lemma 1. 1 0.

End of the proof of proposition 1. 5.

PROPOSITION 1 .11. - For any energy landscape (E, U, q), there exist

positive constants Ta and oc such that in F (To), for any G0 we have for
any n E N

Proof of proposition 1 .11. - Let us choose To as in proposition 1 . 5.

With the same notations in the framework ff (To), if N 1 = +00, for any n

hence equation (39) is satisfied in this case.
If N 1  + oo , we have in the same way for any 1

and equation (39) is satisfied for 
Now putting = V (H (r), TI, it is easy to see that it is enough

to prove equation (39) for n = uk, We deduce from lemma 1. 9 that

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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if, for some n> 1

then

Let us choose a2 > 0 such that

We are able now to show that equation (39) is true for oc = a2 and

n = uk, by induction on k. It is true for k = 0, 1 according to equation
(41). Assume that it is true for some k >__ 1, then we can distinguish between
two cases:

hence

hence

End of the proof of proposition 1 . I I.

THEOREM 1 . I2. - For any positive constants (3 and ’to, for any energy
landscape (E, U, q), there exist positive constants ac and N such that in the

cooling framework ~ (’to), for any initial distribution ~Q satisfying

we have for any 

Vol. 27, n° 4-1991.
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Proof.

LEMMA 1 . 13. - For any positive constants To and 03C41 such that io > il,
any positive constant ~3, any initial distribution such that (T) >_ (3,
there is a positive constant ocl such that putting

we have in the cooling framework iF (To)

Remark. - Proposition 1 . 11 is sharper but works only for low temper-
atures.

Proof of lemma 1.13 . - As q is symmetric irreducible, it is easy to see
that PTo is recurrent aperiodic, hence we can consider

Let a2 = r). As E is finite, a2 > o. For any T such that
iEE

for i,jEE

where

Hence, if N ~ r

If N  r, putting

we have

End of the proof of lemma 1 . 13 .

With the notations of lemma 1 . 13 we put u0 = N and
un + = N (H (r), - a2, un) where a2 is the positive constant of propo-
sition 1 . 5, and where Ti is the "To" of proposition 1 . 5. Hence we have

where

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Let us put

and

For n >_ 1 such that un + 1 >_ M, we distinguish between two cases:

in which case we deduce from proposition 1 . 11 that

hence that

in which case, putting x~ = a2 , we have
2H(r)

provided that il has been chosen small enough. Lowering its value if

necessary, we can assume that a4  1.

If M ~ N, we deduce from 1 and 2 that for some a4 > 0

If M > N, putting

we have for any n such that n >_ R + 1

Vol. 27, n° 4-1991.
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Let us recall that M is a constant (contrary to N). We deduce from
equation (69) that

We deduce from equation (67) that there exist positive constants M2
and a 5 such that for any n such that 

Now let us consider some arbitrary n >__ M2. Let us distinguish between
two cases:

1. In case n >_ N, let us consider k such that We have for

some positive r16 and a~

2. 

Thus we have proved that for any n >__ M 2

hence for some positive a§ and M3 we have

End of the proof of theorem 1 . 12.

1.2. The critical feedback cooling schedule

Our aim will be now to prove that theorem 1.12 is sharp. We have a
lower bound for P (Xn E r) whatever the cooling schedule may be. We will
now be looking for a cooling schedule of the type for

which P r) is equivalent to this lower bound. We will thus prove
that there exist values of A and B for which is asymptoti-
cally minimizing P (Xn E r).
We will not study directly the closed form instead we

will define 1/Tn by a feedback relation of the type

It is easy to guess from lemma 1.9 what the optimal value of the
constant c should be. Solving this optimal feedback relation, we find

rlc. Henri Pnlll(’llr’c’ - Probabilités et Statistiques
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with for n large and accordingly

Then we show that P (Xn E r) is stable with respect to small perturbations
of 1 /Tn and conclude that equation (76) still holds when

with the "optimal" B.
Cooling schedules of the type with non optimal

B are studied in the same way through suboptimal feedback relations.

DEFINITION 1. 14. - Let (E, U, q, lt) be a simple annealing
framework. We define the critical feedback annealing algorithm to be the
annealing algorithm (E, U, q, T, X) defined by

where we have put To = To.
PROPOSITION 1 . 15. - For any energy landscape (E, U, q), there is a

positive constant T _ 1 such that for any simple cooling framework ~ (To)
such that To _ T _ 1, there are positive constants N and a such that for any
initial distribution ~o we have

COROLLARY. - With the notions of the proposition, for any constants
~i > 0, T _ 1 > 0, there exist positive constants N and a such that for any ~o,
iF (To) such that ~o (r) > ~3 and T _ 1, we have

Proof of proposition 1 . 15. - In all this proof we will forget the tildes
on the Ts.

For some positive constant a to be chosen later on, let us put uo = 0
and

We have for any 

Vol. 27, n° 4-1991.
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hence

Hence there exists a positive constant K such that in % (To, H (r)) we
have

We start with the rough inequalities: for any m

for any

hence for some constant K

With the help of these inequalities we deduce from lemma 1 . 6 that

It is easy to see that if a and T _ 1 are small enough, then the last term
is negligeable before (un + 1- (r»/Tun, indeed for

Annales de I’Institut Henri Poincaré - Probabilités et Statistiques
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r1 ~ (H (r) - S (E))/2 we have

Hence we have, omitting the negative term as well, for some positive
constant K

Thus there is a positive constant k such that

This enables us to sharpen our rough inequalities of the beginning: for
m >_ N (H (h), Tun -1, - 2 a, 1 ), m  un + 1

On the other side, also for m >_ N (H (T), 2 a, un _ 1 ), m  un + 1
we have

for some positive constants k and P.

Vol. 27, n° 4-1991.
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Hence, comming back to lemma 1.6, we get that

Noticing that

we deduce from this last inequality that there are positive constants To
and P such that in G (To, H (r))

Let us recall now that

hence we see from the preceding inequality that

On the other hand we know from the study of the chain at constant
temperature that for fixed small enough To there is some constant N such
that

From these remarks we deduce that for any small enough positive
choice of To there are positive constants N, P, such that for ~c >_ N

or

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Let us put pn = P (Xn E r), we get that for any n > 1

hence for un > N

We know that for un>N

hence choosing To small enough we have

hence putting

we have

Hence for some positive constant K, ~i > o, putting + ~ -1 ) - c 1 + s~~
we have

but

hence

Moreover uno _ 1 ) -- 2 e~H 
~r) - and

Vol. 27, n° 4-1991.
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for To small enough. Hence

for un large enough.
Now for have

hence there is a positive P such that for any large enough n

End of the proof of proposition 1 . 15.

1.3. Other feedback relations

As we have already explained at the beginning of the last section,
changing the constants in the feedback relation leads to cooling schedules

with critical A and non-critical B. One relatively innocu-
ous change is to play with constant p in

In order to get a decreasing sequence Tn we should have p > IF (r) I,
because is the asymptotical thermal equili-
brium equation for cycle r at low temperatures. For p ranging in

) I F (h) ~, + oo (, we get with B ranging in

) - oo, Bo( where Bo is a critical value which can be computed [cf. equation
(135)]. A more drastic move away from thermal equilibrium is to change
in (115) the potential U(F) of F to some lower value h. As the influence
of a change in p compared with a change of h is minor, we chose the
relation:

with h  U (r). With this relation, we find 
B ranging in )Bo, + oo (.
The conclusion is that the thermal quasi-equilibrium equation for cycle

r can be deeply affected by a change of the additive constant B only,
eventhough the multiplicative constant A is kept to the critical value.

DEFINITION 1.16. - Let (E, U, q, 20) be an energy landscape with
communications. For any positive constant To, for any real numbers

I and h, 0  h  U (T), we define the subcritical annealing algo-
rithms A1 (E, U, q, To, 20, P) and A2 (E, U, q, To, h) by

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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. ~1 (E, U, q, To, 20, p)=(E, U, ~’~ 20, T, X) with

. d2(E, U, q, To, 20, h) _ (E, U, q, 20, T, X) with

PROPOSITION 1 . 17. - Let (E, U, q) be an energy landscape. For any
p > ~ F (T) I, any positive y and any small enough positive To, there exist

positive constants N and a such that for any initial distribution such
that (I-’) > y, the annealing algorithm

satisfies

Consequently there is N (the same) and a positive a such that

Proof of proposition 1 . 17. - It is an easy adaptation of the proof of
proposition 1 . 15:

putting uo = 0 and

we have in the same way for some positive constants K and To in the
framework % (To, H (T))

from which we deduce that there are positive constants p, To such that in
~ (To, H (r)), putting

we have for n > 0

Vol. 27, n° 4-1991.
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The end of the proof are elementary calculations stemming from this
formula and will not be detailed.
End of the proof of proposition 1. 17.

PROPOSITION 1. 18. - Let (E, U, q) be an energy landscape. For any
positive constants y and h  U (T), for any small enough To, there exist

positive constants N and oc such that for any initial distribution such
that (I-’) >_ y, the annealing algorithm

satisfies

Consequently there exist N (the same) and a positive a such that

Remarks. - The feedbacks ~ 1 are not too far the critical one, in the
sens that P {~n E T) decreases according to the same power of n, but for the
feedbacks A2 the power of n is changed and tends to 0 when the parameter
h tends to 0. This shows that in the class of cooling schedules of the
parametric form

the rate of convergence of P (Xn E T) towards 0, and hence the rate of
convergence of P (U (Xn) = U (E)) towards 1 is strongly dependent on the
choice of the constant term B. This fact does not appear in the existant

literature and is worth being noticed.

Proof of proposition 1. 18. - It follows again the same lines as the
proof of proposition 1. 15.
We choose a such that M (T, E - r)~, i E T, j E B (r), and M (h, E - T)E

are a-adjacent to q(r) ~ ( H ( h We have
~ 

Annales de l’Institut Henri Poincar0 - Probabilités et Statistiques
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Hence there exists a positive constant K such that

from which we deduce estimation (124) as in the proof of proposition
1.15.

We see in the same way that there is some constant N independent of
G0 and some positive P such that

or

Hence we deduce that, putting Pn = P (Xn E r), we have

with ~, ~ Hence

with 
The end of the proof is as the end of the proof of proposition 1.15.
End of the proof of proposition 1 . 18.

1.4. Stability under small perturbations of the cooling schedule

In the preceding section we have built feedback cooling schedules with
asymptotics

with lim En = 0 and
n -~ 00

A natural question is then to ask for the behaviour of small perturbations
of these cooling schedules, i. e. to study the asymptotics of P (X~ E r) when
we modify the sequence En. The present section is answering this question.

PROPOSITION 1 . 19. - Let (E, U, q) be an energy landscape. Let B be a
real constant such that B  Bo where Bo is defined by equation (135). Let p

Vol. 27, n° 4-1991.
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be the positive real constant defined by

Let ~o be an initial distribution on E. Let T be the cooling schedule and
let X be the Markov chain of the feedback annealing algorithm
~1 (E, U, q, p). Let be a sequence of real numbers satisfying

and

is a cooling schedule (i. e. is decreasing, in fact the reader will easily see
that this condition is not necessary). Then for the annealing algorithm
(E, U, q, T, X) we have

uniformly in Moreover if there exist positive constants N and a such
that

then there exist positive constants N’ and 03B2 such that for any initial
distribution ~o

Consequently there exist positive constants N and a such that for any initial
distribution the annealing algorithm (E, U, q, T, X) associated with
the cooling schedule

satisfies

PROPOSITION 1 .20. - Let (E, U, q, be an energy landscape with
initial distribution satisfying (I-’) > 0. Let B be a real constant such
that B > Bo. Let h be defined by

Annales de l’Institut Henri Poirzcare - Probabilités et Statistiques
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[which implies that 0  h  U (h).] Let (En)n E ~~ be a sequence of real numbers
such that for some positive a and N and any n >_ N

and such that

is increasing.
Let (E, U, q, T, X) be the feedback annealing

~2 (E, U, q, To, h) where To is as in proposition 1 . 18.
There exists a positive constant ~, such that

Moreover, if we have only

we have still

Remark. - The limit ratio ~, depends on the sequence 8 of perturbations
and on the initial distribution ~fo.

In conclusion we can say that the feedback algorithms of type A1 are
stable under small perturbations whereas the feedback algorithms of type
j~2 are stable only according to the logarithmic equivalent of P (Xn e r).

Pr’oo,f’s. - Let a > 0 be chosen such that in some framework
~ (To, H(F)) for any M (r, E -1,)i and M (h, 
are a-adjacent F(H(0393)). Let us put u o = 0 and

Let us put and We have as in the proofs
of propositions 1. 15, 1.17 and 1 . 18

for some positive constant K.
We deduce from this that for any k > 1

Vol. 27, n° 4-1991.
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with

and |~ (k) for some positive constant p.
In the same way we have

with

for some positive constant P.
[We can use the same sequence un in both cases because for some

positive constants Kl and K2, depending on ~~, we have

and it is really all what we need about M~.]
Let us put We have for /~ 1

and

with

for a/~ and small enough.
Hence
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with

Let us distinguish at this point between proposition 1. 19 and 1.20.

CASE OF PROPOSITION 1. 19. - We have

and

hence

with

In the same way

hence

with
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From equation (160) we deduce that

and from

and

we deduce that

Now if for some N > 0 and any n > N

then for uk > N we have for some positive P

and

hence for some P > 0

with 5 (k) ~ E 
Hence

Now there is N > 0 such that for any 
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hence for N  uk  un

As (k) is bounded we can put

We have

for some ~ > 0.
This ends the case of proposition 1 . 19.

CASE OF PROPOSITION 1. 20. - Here for some ~3 > 0

hence in case for n large enough

and

(we do not know any more the sign of dk). Hence the infinite product

is convergent towards some strictly positive value,
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and xn converges towards

In case we have only

we do not know whether £ )  + o0 or not. However we have the
rougher estimates

because

On the other hand we know that

hence we have

but

with 111 (k) _ e - hence
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In the same way

hence

Hence

and

from which it is easy to end the proof of proposition 1 . 20.

End of the proofs of the section.

2. ASYMPTOTICS OF THE LAW OF THE SYSTEM

In this section we draw the conclusions of the last section concerning
the law of the system. We consider again converging cooling schedules of
the type and non-degenerate energy landscapes. We study
the behaviour of the system in the domain obtained by removing from
the states space the ground state and one point in the bottom of the
critical cycle. In this domain temperature can be considered to be almost
constant. Therefore it is straightforward to derive an equivalent of the
law of the system from an equivalent of the probability to be in any one
state of the bottom of the critical cycle.
We will consider cooling schedules of the following types

DEFINITION 2.1. - Let A, Band u be positive constants, let N be a

positive integer. We define the cooling framework ~ (A, B, a, N) to be the
set of cooling schedules satisfying the following assertion: for any n >_ N we
have
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We will look for an equivalent of the law of Xn in parametric cooling
frameworks Yf in which the annealing algorithm converges. We will

sometimes make the asumption that the energy landscape (E, U, q) is non-
degenerate in the sens of definition 1. 2.

This study can be compared with results in Holley and Stroock [13],
Chiang and Show [6] and Hwang and Sheu [15]. Theorem 2. 2 is proved
in [6] as well as in [15]. The introduction of the constant B is new. It

plays an important role in theorems 2.4 and 2. 5. These theorems show
that Hwang and Sheu’s claim that results for A > H‘ (E) extend to the case
A = H’ (E) is wrong (cf. [15] th. 4 . 2.).

THEOREM 2.2. - Let (E, U, q) be any energy landscape (non necessarly
non degenerate). Let A and B be real constants. Assume that

Let a be any positive constant, let N1 be a positive integer. Then there exist
positive constants N2 and 03B2 such that for any initial law in the annealing
framework (E, U, q, ~o, ~ (A, B, a, N1), ~’) we have for any i E E

Proof of theorem 2. 2. - We write for i E E and some f E F (E)

We will need the following lemma:

LEMMA 2 . 3. - For any energy landscape (E, U, q), for any f E F (E),
any cycle C c C E ~~ (E - ~ f ~), there are positive constants To, a such that
in the cooling framework ~ (To, H (E - { f ~)), the GTK

is o f class

Proof of lemma 2.3. - Let us examine first the case when

C E ~~ (E - ~ f ~). Let G be the smallest cycle containing f and C.
We know from the proof 1 in theorem 1.2.25 that

M (G - ~ , f ~, C) f is of class
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Moreover

M (E - ~.f ~’ C)f
(204)

M (G - ~ f ~, E-G) is of class ~l (H (G), H (E - ~ f ~)) and for any

j e E - G, the kernel M (E - ~ f ~, C)E is of class ~~ (0, H (E - ~, f ~))
(from proposition 1.4.5), hence by the composition lemmas

~ M (G - ~ f ~, E - G) M (E - ~ f ~, C) ~ f is of class ~l (H (G), H (E - ~ f ~)).
But H (G) > H (C) + U (C), hence M (E - { f ~, C) f is itself of class

l(H(C)+U(C), q (C), H (E - { f ~), a).

The case of a general is by induction: Assume that the
lemma is true for some cycle G m E. We will show it is still true for any
C E ~ (G) (the natural partition of G). For this purpose we write

and for any i E G, g being some point of F (G),

(for i = g there is only the second term).
This formula shows that

is of class

for some positive a in H (E- ~.f’~)). [The first term is negligea-
ble because H (G) > H (C) + U (C) - U~.]
Hence we deduce from equation (205) (where the first term is again

negligeable because H (G) + U (G) > H (C) + U (C)) that

is of class

for some positive contant a in some % (To, H (E- ~.f’~)).
End of the proof of lemma 2 . 3.
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Let us come back to equation (203). Let us assume that H’ (E) 1 /2.For m ~ n we have 
) _ /

Hence for n large enough there are  L~ such that

Putting

we have

Hence

hence for n large enough, putting

we have

Hence there exist positive constants N and ~i such that for n > N
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Thus, as f is a concentration set of E, we have for some positive 03B22 and
any l~ L2,

Thus there are positive constants a and b such that, for n > 1~T and some
positive ~i~

but

for n large enough, hence

On the other hand for n large enough and some positive a, b, ~34 and a~

End of the proof of theorem 2. 2.

THEOREM 2 . 4. ~ Let (~, U, q) be a non-degenerate energy landscape.
Let B be a real constant satisfying

where Bo is given by equation (135). Let p be defined by equation (136).
There exist positive constants such that for any positive constants
N1 and a, there are positive constants and 03B2 such that for any initial
law G0 in the annealing framework (E, U, q, (H (T), B, a, N1), X)
we have
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Moreover we have

Substituting Tn with its asymptotic expression in equation (221) gives
the following corollary:

COROLLARY. - With the notations of theorem 2.4 there exist positive
constants N2 and oc such that

THEOREM 2.5. - Let (E, U, q) be a non-degenerate energy landscape
Let B be a real constant satisfying

where Bo is given by equation (135). There exist positive or null constants
such that for any positive constants N1 and a, any initial law G0 in

the annealing framework (E, U, q, ~o, ~ (H (T), B, oc, N 1 ), there exist
real numbers Li (T) such that

Moreover we have

and the inequality is strict for i E T.

Proof of theorem 2 . 4 and theorem 2. 5. - Let F (E) = ~ f ~ and let g be
some point of F (T). We write for i E E - ~ f ~, putting E** = E - ~ f, g ~,

As in the proof of the previous theorem, we will introduce a lemma
giving estimates of some interesting GTKs:

LEMMA 2 . 6. - For any non-degenerate energy landscape (E, U, ~), there
are positive a, To such that for any g E F (T), any cycle
C c C E ~~ (E - ~ f, g ~ ), there are constants y ( f, C) ? 0, y (g, C) >_ 0,
H ( f, C) and H (g, C) such that in the cooling framework
~ (To H (E - ~ f; g ~ )) the kernels

h = f, g are of class ~l (H (h, C), y (h, C), H (E - ~ f, g ~, a)). Moreover
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and

Proof of lemma 2 . 6. - In case C E ~~ (E - ~ f, g ~ ), the only sharpening
from proposition 1.4.5 is to get rid of the exp ( - H (E - ~ f, g ~ )/Tm + ~)
before the GTKs. For this purpose, let G be the largest cycle containing f
and not r. Let us put A = E - ~ f, g ~ .

If C c G then M (G - ~ f ~, C) f is of class ~l (H (C) + U (C), q (C),
H (A), a) from the proof of * 1 of theorem 1.2.25, and

In this equation, the second term is of class $- (H (G), H (A)), moreover

H (G) > H (C) + U (C).
If C n G = 0 we have again

M (G - { f ~, A - G) f is of class ~ (H (G), q.(G, j), H (A), oc) for j E B (G)
and exp (- H (A)/T m+ 1) M (A, C)~ ~m is of class ~ (H (A) + H J, C), ~ J, C),
H (A), a) for some appropriate constants in some framework % (To, H (A)).
Moreover H (G) > H (A), hence composition lemmas show that M (A, C)
is of class ~l (H ( f, C), y ( f, C), H (A), u).

Evaluating M (A, C); can be done in the same way, treating separately
the case and the case C D r = 0.
Now it remains to prove that

and that

but it is easily seen to be a necessity from the case of annealing at constant
low temperature T, being the invariant probability measure: the equa-
tion to be considered is

This ends the proof when C is maximal, the remaining part of the proof
is the same as in lemma 2. 3.

End of the proof of lemma 2. 6.
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Proving theorems 2.4 and 2. 5 from equation (227) and lemma 2. 6 is
no more difficult than proving theorem 2. 2 from lemma 2. 3 and will not
be detailed.

End of the proof of theorem 2 . 4 and theorem 2 . 5.

3. TRIANGULAR COOLING SCHEDULES

This section is mainly descriptive. It introduces the optimization problem
we will be interested in. Subsection 3 .1 shows that the probability to be
in any state which is not a global ground state cannot be smaller than what
it is at thermal equilibrium. Subsection 3.2 formulates the optimization
problem. We still work with the assumption that the energy landscape is
non-degenerate.

3.1. A rough upper bound for the convergence rate

PROPOSITION 3.1. - Let (E, U, q) be an energy landscape. For any
positive constant y, for any 03B3-uniform initial distribution for any anneal-
ing algorithm (E, U, q, ~o, T, X) we have

Proof of proposition 3 .1. - The proof is by induction on n. Let n > 0
and assume that

then

Hence we have

End of the proof of proposition 3 . 1 .

3. 2. Description of the optimization problem

We will be interested in non-degenerate energy landscapes. If f is the
ground state and N the time of the end of the simulation, we measure the
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quality of convergence by the quantity P (XN =, f ’). Our optimization pro-
blem is max P (XN = f ). There is no reason why the optimal solutions

Ti,...,TN

(T~, T2, ..., should not depend on N. Thus the proper framework
to study our optimization problem is to consider "triangular" annealing
algorithms where we are given for each N a finite sequence (T~, ..., T~)
and the corresponding finite Markov chain (X~, ..., XN).

DEFINITION 3. 2. - A triangular cooling schedule is a family (Tn )~ ~ n  N
indexed by increasing couples of integers with values in R+ such that for
any Ne decreasing sequence relatively to n:

DEFINITION 3. 3. - We define a triangular annealing algorithm to be (E,
U, q, ~o, T, X) where:
~ (E, U, q, ~o) is an energy landscape with communications and initial

distribution ;
~ T is a triangular cooling schedule;
~ and X is the family of finite Markov chains XN, where XN is the chain

(Xn )o  n  N with initial distribution ~o and transitions

Notice that we do not specify any stochastic link between the we

define them on different probability spaces. We will call X a "triangular
Markov chain ".

DEFINITION 3 .4. - We define a triangular cooling framework to be any
set of triangular cooling schedules.
We define a triangular annealing framework to be (E, U, q, ~o, ~ , ~’)

where (E, U, q, is an energy landscape with communications and initial
distribution, ~ is a triangular cooling framework and ~’ is the family of
triangular Markov chains X such that there exists some T E ~ such that
(E, U, q, T, X) is a triangular annealing algorithm.

Let us introduce now the optimization problem we are going to be
interested in:

DEFINITION 3.5. - Let To be a positive constant. Let (E, U, q, £V~,
iF (To), be a simple triangular annealing framework

We will say that the cooling schedule T is optimal in ~ (To) for ~o for
~o and write 

’
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if the triangular Markov chain X associated with T satisfies for any N E (~

We are interested in the asymptotical behaviour of Tn when N is large.

4. THE OPTIMIZATION PROBLEM FAR FROM THE HORIZON

The probability to be in the ground state moves slower than the proba-
bility to be in any other state: if the cooling schedule is convergent this
probability is almost equal to one for large times, hence almost constant.
Then comes the probability to be in any state in the bottom of the critical
cycle r, because r is the deepest cycle not containing the ground state.
Hence if there is a sufficient stretch of time between the time k we examine
and the time N of the end of simulation, the law of the system at time N
will depend almost exclusively on and P (Xk = f ). Hence we
expect the solutions ..., TN) of max P (NN = f ) and the solutions

T 1, ... , TN

(TM, ..., TN) of min P(XMer) to be close as long as (N - M) is

large enough. For technical considerations, we will prove that

for k large enough and N - M large enough, and that roughly speaking
sup { 1 is almost optimal.
We will prove elsewhere that TN is far to be even an approximated

solution to max P (XN = f).

THEOREM 4. 1. - Let To, y be any positive constants. Let (E, U, q, 
g; (To), f!l’) be a simple annealing framework such that is y-uniform. For
any U, q, there exist positive constants K and oc

such that we have for any k > K

Remark. - More precisely, inequality (242) holds for couples (k, N)
satisfying

for some positive constant a.
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In [2] we had given a lower bound as well. Unfortunately the proof
concerning that lower bound has revealed to be uncomplete. However we
will show the following slightly weaker result:

THEOREM 4.2. - Let To and y be any positive constants. Let (E, U, q,
~o) be a non-degenerate energy landscape with y-uniform initial distribu-
tion G0. There is a triangular cooling schedule T~F (To) and positive
constants ~3 and M such that for T E ~ (E, U, q, ~ (To)) we have

and such that for any k

Remark. - Equation (244) implies that for some positive constants a and
M

Proof of theorem 4. l. - During the course of this proof, T will be in
g- (E, U, q, 20, ff (To)), that is, will be some optimal triangular cooling
schedule, and

will be the critical feedback annealing algorithm for (E, U, q, 
We begin with the following lemma:

LEMMA 4 . 3. - We have for any k~N

Proof - It is enough to give the proof for any k >_ M for some constant
M (it would even be enough to give a proof for some fixed k).
According to theorem 1.12, there are positive constants M1 and K1

such that for any k >_ M 1, for any N >_ k

Let us choose some positive constant T such that we can apply
theorem 1.2.25 to r with T = To.
~ If Tk > T, putting

we have
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Hence putting

we have

~ If T we have, according to equation (248)

Hence there exist some positive function of k only f(k) such that for
any 

As

we deduce lemma 4. 3 from equation (254).

End of the proof of lemma 4 . 3 .

DEFINITION 4 . 4. - Let (E, U, q, ~o, ~ , ~’) be an annealing framework.
An initial differential distribution is defined to be any signed measure po on
E such that

We will note po the measure po (i) = (po (i)) +, i E E and po the measure

Po (i) _ ( - po (i))+, iEE. We have 03C10 = 03C1+003C1-0. We will also put

I Po I - Po + Po .
For any initial distribution po, we define the differential distribution at

time n, pn, to be

(It depends on the cooling schedule T.)
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PROPOSITION 4.5. - For any energy landscape (E, U, q) there exist

constants To> 0, oc > 0, and constants 0, i ~ E, such that in ~ (To, H (r)),
putting

we have

Moreover for i E T, Ki=O and for i~G1, the maximal cycle containing f
and not r, Ki = 1.

DEFINITION 4. 6. - We define two ’principal valleys" V I and V Z in the
following way:

~ V 1 is the function i --~ Ki ;
~ V2 =1- V is the function i ~ 1- Ki.

For any measure ~, E M (E) we put

Proof of proposition 4 . 5. - Let g be a point of F(r). We put

and in the same way for any g E F (r)

From proposition 1.4.5 we deduce that there are positive constants To,
fl, and constants the intervall [0, 1], such that the GTKs

and M(A, E-A)f are respectively of class ~r (o, Ki,
H (A), a) and ~r (o, 1 - Ki, H (A), a) in ~ (To, H (A)). [We see moreover
that Ki = 1 if i e Gi and Ki = 0 if for, the convention for sr(H1, 0, H2, a)
is sr- + y, H~) for some positive y.]
Moreover for l E [ l , N], f being a concentration set of E, there exists a

positive P such that
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and, putting

for l E [ 1, M] we have

g being a concentration set of r, as soon as, say, a _ (H (r) - H (A))/2.
We have thus

In the same way

From these two inequalities we deduce proposition 4. 5 for
a = (H (r) - H (A))/4.
End of the proof of proposition 4 . 5.

PROPOSITION 4. 7. - For any non-degenerate energy landscape (E, U, q),
for any positive constant al there exist positive constants To and a2 such
that in 3’ (T) for any initial dif’, f’erential distribution po such that,

we have for any n E ~I

Proof of proposition 4. 7. - We will prove first the following:
LEMMA 4 . 8. - Let us choose oc as in proposition 4 . 5. Let uo = 0 and

For any small enough positive (3, there is a positive constant To such that if
T and if

then for any k > 0 the same inequalities are true:
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Proof of lemma 4. 8. - The proof is by induction on k. Let us put

From proposition 1.4.5 we see that there is a positive ai such that

and

Now it is easy to see that 1 (F (r)) = 0 and that 1 (~f’) = o~ Indeed
there is a2 > 0 such that

(because of the induction hypothesis and the fact that f’ and g are concen-
tration sets). Hence

[Let us remind that p + (E) = p - (E).]
From this we deduce that

and that

hence from inequalities (273) and (274) we have

(let us lay the stress on the fact that al is independent of ~i; only oc2 is

dependent on ~i).
Hence ai 1 the induction step is proved.

End of the proof of lemma 4. 8.
It is an easy matter to deduce proposition 4. 7 from lemma 4. 8, using

inequalities of the kind of (276) and (277).

End of the proof of proposition 4. 7.

LEMMA 4.9. - Let To, y be any positive constants. Let (E, U, q, ~o,
iF (To), ~’) be a non-degenerate simple annealing framework such that 
is y-uniform. For any positive constant 03C33 there exist positive constants K,
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61, 03C32 such that for any k > K, for any cooling schedule T E iF (To) satisfying

where T is defined by

we have, putting n = k + ~r) -62)/Tk~

Proof. - According to theorem 1 . 12 there are positive constants al, K
such that in 3’ (To), for any k >__ K,

Let us put

We are led to distinguish between two cases:
1. Case ( 1 ):

In this case

provided that k is large enough.
2. Case (2):

Let us call T the constant named To in lemma 1. 9. We can assume that
K has been chosen large enough such that

Let us put
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then

hence

Thus we can apply proposition 1.8. There are positive constants oc2 and
K such that for any k>K and any cooling schedule T such that

Tk 1 >_ for any ~2 > 0 we have for n = k + [e~H - 

Thus, using equation (284) and noticing that

choosing K such that

we have
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Using the fact that

and putting

we deduce from (296) that for

we have

with

On the other hand we see that for cr 2 small enough

and that
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hence

We can choose cr and cr 2 such that

For example we can take

With these choices we see that for 1 jT k large enough, that is for k large
enough, and for some positive constant a

End of the proof of lemma 4. 9.
Let us call Oy the constant a of proposition 4.5. Let us put

Let us consider the differential distributions

and for any m > uo

Then pm is the differential distribution starting from time uo of the
annealing Markov chain X associated to T and the annealing Markov
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chain X associated to the cooling schedule T defined by

For any positive s we have

hence as long as

we have

Moreover there are positive constants a9 such that

hence assuming that 03  oc9 and that K is large enough, we have

Then according to proposition 4.5, for any m such that

we have

But for any differential distribution p

hence equation (318) becomes
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from which we deduce that

In the same spirit as equation (312), we have or any s, m such that

s  m and m K e - °‘~~Tk _ 1 e - 

but from equation (314)

hence for Tk large enough

hence coming back to equation (322)

hence

Moreover

LEMMA 4.10. - There is some positive constant 03B110 such that for any

positive s > 1 such that s K e ~ °‘~~Tk  1 e r a3~Tk.
Proof of lemma 4.10. - We have

where g is some given point of F (r). Thus equation (328) takes the form

Vol. 27, n° 4-1991.



514 O.CATONI I

with, for some constants a, b

and it is clear from the proof of lemma 4.9 that we can assume that
03C32  H (r) - S (E), hence, assuming that K is large enough we have for
any k >_ K

There is a positive constant K4 such that

[recall that H (G 1 ) = H (r) + U (T)] and

(These estimations of R1, R2 and R3 are a consequence of propsition 1.4.5
and the composition lemmas of the appendix.) Comparing these inequali-
ties with equation (284) gives

End of the proof of lemma 4.10.
Using lemma 4.10 we see that there are positive constants 03B111 i and 03B112

such that

as soon as 03 has been chosen small enough. Hence we deduce from
equation (326) that

Coming back to equation (321) we have
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We can take for m the integer part of 1 3K1e(03B17 -03C33)/Tk and we can choose

03C33  03B17 2, in this way we get

Hence we have

and in the same way

We conclude from (339), (340) and proposition 4.7 that the for any
1 we have Hence cannot be optimal for

End o the proof of theorem 4.1.

Proof of theorem 4.2. - Let T be in ~ (E, U, q, To). For N large
enough, let us put, with the notations of the remark following theorem 4.1

Let T be the cooling schedule

Then we know that for some positive constants K and fl, for N large
enough and for any k E [K, M]

Let us consider the time
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We will show that the triangular cooling schedule T defined by

has the properties stated in theorem 4.2.
Let us define the temperature T by

Let us put

For N large enough (and hence T small enough) we have

On the other side, as J > M,

hence there are positive constants a and b such that

Hence for N large enough

and, applying proposition 4.5 we see that there exist positive constants Pi 1
and ~i2 such that for any t such that

we have

Writing equation (227) for X, we deduce from equation (352) and from
theorem 1.12 and lemma 2.6 that there exists a positive constant ~3~ such
that for N large enough
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Hence, as and as the conditional probabilities and
are the same, we have

hence

As it is easy to see that for N large enough

this ends the proof.
End of the proof of theorem 4.2.

CONCLUSION

Our aim in this second paper about sharp large deviations estimates
was to give applications. These applications are linked to the central

problem of quasi-equilibrium.
We would like to have convinced the reader that it is important to add

a constant term to the "expansion" of writing 
Interestingly quasi-equilibrium is not strictly speaking maintained for

those schedules, but the density of the law of the system with respect to
the law at thermal equilibrium stays bounded if B is small enough.
We would like also to convince people that it is natural to consider

simulated annealing algorithms up to a finite time N and to let the whole
cooling schedule depend on N. The fact that the initial shape of the
"best" triangular cooling schedules is is a serious
objection to the common belief that quasi-equilibrium should be maintai-
ned during the simulation.

Let us conclude by recalling that the precision of sharp estimates was
fully needed to obtain this set of results.
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